

Digital Electronics

Republic of Iraq

Ministry of Higher Education & Scientific Research

Northern Technical University

Technical College of Kirkuk

Electronic & Control Dept.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

1

1-Number Systems

1.1 Decimal Numbers

You are familiar with the decimal number system because you use decimal

numbers every day. Although decimal numbers are commonplace, their weighted

structure is often not understood. The decimal number system has ten digits. Each

of the ten digits, 0 through 9, represents a certain quantity

1.2 Binary Number

The binary number system is another way to represent quantities. It is less

complicated than the decimal system because it has only two digits. The decimal

system with its ten digits is a base-ten system; the binary system with its two digits

is a base-two system. The two binary digits (bits) are 1 and 0. The weights in a

binary number are based on powers of two.

Table 1

Decimal Number Binary Number

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

2

As you have seen in Table1, four bits are required to count from zero to 15. In

general, with n bits you can count up to a number equal to 12 n . The weight or

value of a bit increases from right to left in a binary number.

1.2.1 Binary-to-Decimal Conversion

The decimal value of any binary number can be found by adding the weights of all

bits that are 1 and discarding the weights of all bits that are 0.

Example:

Convert the binary number 1101101 to decimal.

Solution

1091483264

22222221101101

1011011:

2222222:

0123456

0123456





numberbinary

weight

Example:

Convert the fractional binary number 0.1011 to decimal.

Solution

6875.00625.0125.05.0

2221011.0

1101.0:

2222:

431

4321



 



numberbinary

weight

1.2.2 Decimal-to-Binary Conversion

1- Sum-of-Weights Method

To get the binary number for a given decimal number, find the binary

weights that adds up to the decimal number.

Example:

Convert the following decimal numbers to binary:

(a) 12 (b) 25 (c) 58 (d) 82

Solution

10100102222166482)

111010222228163258)

11001222181625)

1100224812)

146

1345

034

23









d

c

b

a

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

3

2- Repeated Division-by-2 Method

To get the binary number for a given decimal number, divide the decimal

number by 2 until the quotient is 0. Remainders form the binary number.

Example:

Convert the following decimal numbers to binary:

 a) 12 b) 19 c) 45

Solution

a)

b)

c)

MSB: Most Significant Bit.

LSB: Least Significant Bit

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

4

1.2.3 Converting Decimal Fractions to Binary

1- Sum-of-Weights

The sum-of-weights method can be applied to fractional decimal numbers,

as shown in the following example:

101.022125.05.0625.0 31  
There is a 1 in the 12 position, a 0 in the 22 position, and a 1 in the 32

position.

2- Repeated Multiplication by 2

Decimal fractions can be converted to binary by repeated multiplication by

2.

Example

Convert the decimal fraction 0.3125 to binary.

 H.W

1. Convert each decimal number to binary by using the sum-of-weights method:

(a) 23 (b) 57 (c) 45.5

2. Convert each decimal number to binary by using the repeated division-by-2

method (repeated multiplication-by-2 for fractions):

(a) 14 (b) 21 (c) 0.375

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

5

1.2.4 Binary Arithmetic

Binary arithmetic is essential in all digital computers and in many other types of

digital systems. To understand digital systems, you must know the basics of binary

addition, subtraction, multiplication, and division.

1- Binary Addition

The four basic rules for adding binary digits (bits) are as follows:

1 ofcarry with 0 of Sum

0 ofcarry with 1 of Sum

0 ofcarry with 1 of Sum

0 ofcarry with 0 of Sum

1011

101

110

000









When there is a carry of 1, you have a situation in which three bits are being

added (a bit in each of the two numbers and a carry bit). This situation is

illustrated as follows:

1 ofcarry with 1 of Sum

1 ofcarry with 1 of Sum

1 ofcarry with 0 of Sum

0 ofcarry with 1 of Sum

1111

1010

1001

0100

1

1

1

1



















bits

carry

Example

Add the following binary numbers:

(a) 11 + 11 (b) 100 + 10

(c) 111 + 11 (d) 110 + 100

Solution

The equivalent decimal addition is also shown for reference.

10

4

1010

100

10

3

1010

11

6

2

110

10

6

3

110

11

6 110)7 111)4 100)3 11)



dcba

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

6

2- Binary Subtraction

The four basic rules for subtracting bits are as follows:

Example

Perform the following binary subtractions:

(a) 11 - 01 (b) 11 – 10

Solution

1

2

01

10

2

1

10

01

3 11)3 11)



ba

Example

Subtract 011 from 101.

Solution

2

3

010

011

5 101



 H.W

1- Perform the following binary subtractions.

a) 111 - 100.

b) 110-001

2- Subtract 101 from 110.

1 of borrow a with 101110

101

011

000









http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

7

3- Binary Multiplication

The four basic rules for multiplying bits are as follows:

111

001

010

000









Example

Perform the following binary multiplications:

(a) 1111  (b) 111101 

Solution

100011

11100
0000

1001

110

35

5

111

101

9

3

11

11

7 111)3 11)






ba

4- Binary Division

Division in binary follows the same procedure as division in decimal.

Example

Perform the following binary divisions:

(a) 11110  (b) 10110  (c) 111001 (d) 10010100

Solution

000

110

10

11011

)



a

0

6

3

62

00

10
10

10

11

11010

)







b

0

9

3

93

00

`11
110

11

11

100111

)







c

0

20

5

204

00

`100
01000

100

101

10100100

)







d

 H.W

1. Perform the following binary additions:

a) 10101101 (b) 0110110111

2. Perform the following binary subtractions:

a) 01001101 (b) 01111001

3. Perform the indicated binary operations:

a) 111110 (b) 0111100 (c) 10101101 (d) 1011111

.نأخذ الاعداد من الٍسار

 العدد أصغز ٌضاف صفز الى فً حالت ناتج الطزح لٍس صفز

 الناتج ثم ٌتم إنزال العدد الذي ٌلٍه

 فً حالت بقاء اصفار فقط وناتج الطزح اصفار فقط ٌتم وضعها

 مباشزة فً الناتج

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

8

1.2.5 Signed Binary Numbers

Positive Signed Binary Numbers

Negative Signed Binary Numbers

unsigned numbers can have a wide range of representation. But whereas, in case of

signed numbers, we can represent their range only from

   1212 11   nn to

Where n is the number of bits (including sign bit).

Example:

For a 5 bit signed binary number (including 4 magnitude bits & 1 sign bit), the

range will be

– (2
(5-1)

– 1) to + (2
(5-1)

 – 1)

-(2
(4)

 – 1) to + (2
(4)

 – 1)

-15 to +15

Unsigned 8- bit binary numbers will have range from 0-255. The 8 – bit signed

binary number will have maximum and minimum values as shown below.

The maximum positive number is 0111 1111 +127

The maximum negative number is 1000 0000 -127

There are three common ways to represent negative numbers within the

computer. They are

1) Signed magnitude representation.

2) 1‟s compliment representation.

3) 2‟s complement representation.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

9

1- Signed magnitude representation

The binary numbers which can be identified by their MSB (Most Significant Bit),

whether they are positive or negative are called “Signed binary numbers”.

Ex:)(11001,)(91001 negativepositive 

This is the simplest way of representing the both positive and negative numbers in

binary system. In the signed magnitude representation,

 Positive number is represented with „0‟ at its most significant bit (MSB).

 Negative number is represented with „1‟ at its most significant bit (MSB).

2- One’s Complement of a Signed Binary Number

1‟s complement is another way of feeding the negative binary number to the

computer. In one‟s complement method , the positive binary numbers are

unchanged. But the negative numbers are represented by taking 1‟s complement of

unsigned positive number.

A positive number always starts with 0, at its MSB while a negative number

always starts with 1, at its MSB.

Finding the 1’s Complement

The 1‟s complement of a binary number is found by changing all 1s to 0s and all

0s to 1s, as illustrated below:

 complement s1'

number Binary

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

 

Ex:If a binary number is 01101001=(105)10,

then its one‟s complement is 10010110 =(-105)10

Ex: -33 =?

33 is represented as (100001)2

In 8 bit notation, it is represented as (0010 0001)2

Now, -33 is represented in one‟s compliment as (1101 1110)2

Ex : -127 =?

In 8 bit notation, 127 is represented as (0111 1111)2

Now, -127 is represented in one‟s compliment as (1000 0000)2

Ex : -1 =?

1 is represented as (001)2

In 8 bit notation, it is represented as (0000 0001)2

Now, -1 is represented in one‟s compliment as (1111 1110)2

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

10

Subtraction using 1’s compliment

To subtract a number from another binary number, first it has to be converted into

its one‟s compliment.

There are 3 possible cases for subtracting the negatives numbers by using 1‟s

compliment.

Case 1 : Negative number smaller than positive number.

Ex: (28)10 & (-15)10

We know 28 is represented in binary number system as (011100)2

15 is represented in binary number system as (01111)2

1‟s compliment of 15 is (10000)2 i.e. -15

(13)10 is same as 0 01101 in binary system.

Case 2: Negative number greater than positive number.

Ex: (15)10(-28)10

We know 28 is represented in binary number system as (011100)2

15 is represented in binary number system as (01111)2

1‟s compliment of 28 is (100011)2 i.e. -28

(-13)10 is same as 1 10010 in binary system.

Case 3: both are negative.

Ex: (-28)10 & (-15)10

We know 28 is represented in binary number system as (011100)2

1‟s compliment of 28 is (100011)2i.e. -28

15 is represented in binary number system as (01111)2

1‟s compliment of 15 is (10000)2 i.e. -15

(-43)10 is same as 1010100 in binary system.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

11

3- Two’s Complement of a Signed Binary Number

Finding the 2’s Complement

The 2‟s complement of a binary number is found by adding 1 to the LSB of the 1‟s

complement.

2‟s complement = (1‟s complement) + 1

Ex Find the 2‟s complement of 10110010.

complement s2'

 1 Add

complement s1'

number Binary

01001110

1
01001101

10110010



Ex: -33 =?

33 is represented as (100001)2

In 8 bit notation, it is represented as (0010 0001)2

Now, -33 is represented in one‟s compliment as (1101 1110)2

Adding 1 (0000 0001) to it,

The result is (1101 1111)2

Therefore, the two‟s complement of the number – 33 is (1101 1111)2.

Ex: -127 =?

In 8 bit notation, 127 is represented as (0111 1111)2

Now, -127 is represented in one‟s compliment as (1000 0000)2

Adding 1 (0000 0001) to it,

The result is (1000 0001)2

Therefore, the two‟s complement of the number -127 is (1000 0001)2

Ex: -1 =?

1 is represented as (001)2

In 8 bit notation, it is represented as (0000 0001)2

Now, -1 is represented in one‟s compliment as (1111 1110)2

Adding 1 (0000 0001) to it,

The result is (0000 0010)2

Therefore, the two‟s complement of the number -1 is (0000 0010)2

2's complement subtraction

For subtracting a smaller number from a larger number, the 2's complement

method is as follows:

1. Determine the 2's complement of the smaller number.

2. Add the 2's complement to the larger number.

3. Discard the final carry (there is always one in this case).

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

12

Example

Use 2‟s complement to subtract the 11001-10011.

Solution

 result

carry final theDiscard

 number larger

complement s2'

 1 Add

 complement s1'

 number smaller

000110

100110

11001
01101

1
01100

10011





For subtracting a larger number from a smaller number, the 2's complement

method is as follows:

1. Determine the 2's complement of the larger number.

2. Add the 2's complement to the smaller number.

3. There is no carry from the left-most column. The result is in 2's complement

form and is negative.

4. Change the sign and take the 2's complement of the result to get the final

answer.

Example

Subtract 11100 from 10011 Using 2‟s complement.

Solution

answer final get the sign to change

 sign out h result wit

 1 Add

complement s1'

resultfirst

 number smaller

complement s2'

 1 Add

 complement s1'

 number larger

01001-

01001

1

01000

10111

00111
00100

1
00011

11100







http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

13

1.3 Octal Number

The octal number system is composed of eight digits, which are 0, 1,2,3,4,5,6,7. To

count above 7, begin another column and start over 10, 11, 12……etc.

The octal number system has a base of 8

Decimal Octal Decimal Octal

0 0 8 10

1 1 9 11

2 2 10 12

3 3 11 13

4 4 12 14

5 5 13 15

6 6 14 16

7 7 15 17

1.3.1 Octal-to-Decimal Conversion

The conversion of an octal number to its decimal equivalent is accomplished by

multiplying each digit by its weight and summing the products, as illustrated here

for  82374 .

         
       

 10

0123

8

0123

1276

4561921024

14876435122

848783822374

4732:

8888:









numberbinary

weight

 H.W / Determine the decimal value of  8325.0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

14

1.3.2 Decimal-to-Octal Conversion

A method of converting a decimal number to an octal number is the repeated
division-by-8 method.

Example

Convert the following decimal number to octal number 359.

Solution

1.3.3 Octal-to-Binary Conversion

Because each octal digit can be represented by a 3-bit binary number, it is very

easy to convert from octal to binary. Each octal digit is represented by three bits as

shown in Table 2.

Table 2

Octal/binary conversion.

Octal Digit 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

To convert an octal number to a binary number, simply replace each octal digit

with the appropriate three bits.

Example

Convert each of the following octal numbers to binary:

a)
813 b)

825 c)
8140 d)

87526

Solution

 



31

011001

)

numberbinary

a

 



52

101010

)

numberbinary

b





041

000100001

)

numberbinary

c

 



6257

110010101111

)

numberbinary

d

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

15

1.3.4 Binary-to-Octal Conversion

To convert a binary number to an octal number simply break the binary number to

groups of three bits and convert each group in to the appropriate octal digit.

Example

Convert each of the following binary numbers to octal:

a) 110101 (b) 101111001 (c) 100110011010 (d) 11010000100

Solution



8

56

65number octal

101110)





a



8

175

571number octal

001111101)





b



8

2364

6324number octal

010011110100)





c



8

4023

3204number octal

100000010011)





d

 H.W

1. Convert the following octal numbers to decimal:

a)
873 (b)

8125

2. Convert the following decimal numbers to octal:

a)
1098 (b)

10163

3. Convert the following octal numbers to binary:

a)
846 (b)

8723 (c)
85624

4. Convert the following binary numbers to octal:

a) 110101111 (b) 1001100010 (c) 10111111001

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

16

1.4 Hexadecimal Numbers

The hexadecimal number system has sixteen characters; it is used primarily as a

compact way of displaying or writing binary numbers because it is very easy to

convert between binary and hexadecimal.

The hexadecimal number system consists of digits 0–9 and letters A–F.

Each hexadecimal digit represents a 4-bit binary number (as listed in Table 3).

Table 3

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

1.4.1 Binary-to-Hexadecimal Conversion

Converting a binary number to hexadecimal is a straightforward procedure. Simply

breaks the binary numbers into 4-bit groups, starting at the right-most bit and

replace each 4-bit group with the equivalent hexadecimal symbol.

Example

Convert the following binary numbers to hexadecimal:

a) 1100101001010111 (b) 111111000101101001

Solution



16

75

57number lhexadecima

0111010110101100)

CA

a

AC






16

9613

1693number lhexadecima

10010110000111110011)

F

b

F





Two zeros have been added in part (b) to complete a 4-bit group at the left.

 H.W/ Convert the binary number 1001111011110011100 to hexadecimal.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

17

1.4.2 Hexadecimal-to-Binary Conversion

To convert from a hexadecimal number to a binary number, reverse the process

and replace each hexadecimal symbol with the appropriate four bits.

Example

Determine the binary numbers for the following hexadecimal numbers:

a)
16410A b)

168ECF c)
169742

Solution

 



401

0100101000001

)
A

numberbinary

a

 



EFC

numberbinary

b

1110100011111100

)
8





2479

0010010001111001

)

numberbinary

c

In part (a), the MSB is understood to have three zeros preceding it, thus forming a

4-bit group.

 H.W/ Convert the hexadecimal number 6BD3 to binary.

1.4.3 Hexadecimal-to-Decimal Conversion

One way to find the decimal equivalent of a hexadecimal number is to first convert

the hexadecimal number to binary and then convert from binary to decimal.

Example

Convert the following hexadecimal numbers to decimal:

(a)
161C (b)

1685A

Solution

Remember; convert the hexadecimal number to binary first, then to decimal.


10

234

1

284816222

11001

)





C

numberbinary

a


10

027911

58

269314128512204822222

010110001010

)





A

numberbinary

b

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

18

Or using the sum of weights method

Example

Convert the following hexadecimal numbers to decimal:

(a)
165E (b)

1682FB

Solution

Recall from Table 3 that letters A through F represent decimal numbers 10 through

15, respectively.

10

01

16 2295224)15()1614()165()16(5)  EEa

)168()16()162()16(82) 0123

16  FBFBb

)18()1615()2562()409611(

1045816

824021545056





 H.W: Convert the following hexadecimal numbers to decimal.

a)
166BD b)

1660A

1.4.4Decimal-to-Hexadecimal Conversion

Repeated division of a decimal number by 16 will produce the equivalent

hexadecimal number, formed by the remainders of the divisions.

Example

Convert the decimal number 650 to hexadecimal by repeated division by 16.

Solution

 H.W: Convert decimal 2591 to hexadecimal.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

19

1.5 Binary Coded Decimal (BCD)

Binary coded decimal (BCD) is a way to express each of the decimal digits with a

binary code. There are only ten code groups in the BCD system, so it is very easy

to convert between decimal and BCD.

1.5.1 The 8421 BCD Code

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded

decimal means that each decimal digit, 0 through 9, is represented by a binary code

of four bits. The designation 8421 indicates the binary weights of the four bits
1123 2,2,2,2 . The ease of conversion between 8421 code numbers and the

familiar decimal numbers is the main advantage of this code. The 8421 code is the

predominant BCD code, and when we refer to BCD, we always mean the 8421

code unless otherwise stated.

You should realize that, with four bits, sixteen numbers (0000 through 1111) can

be represented but that, in the 8421 code, only ten of these are used. The six code

combinations that are not used (1010, 1011, 1100, 1101, 1110, and 1111) are

invalid in the 8421 BCD code.

To express any decimal number in BCD, simply replace each decimal digit with

the appropriate 4-bit code.

 Example

Convert each of the following decimal numbers to BCD:

a) 35 (b) 98 (c)170 (d) 2469

Solution



01010011

)
53



BCD

a

 

10001001

)
89



BCD

b



000001110001

)
071



BCD

c

 

1001011001000010

)
9642



BCD

d

 H.W: Convert the decimal number 9673 to BCD.

Table 4
Decimal /BCD conversion.
decimal Digit 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

20

It is equally easy to determine a decimal number from a BCD number. Start at the

right-most bit and break the code into groups of four bits. Then write the decimal

digit represented by each 4-bit group.

Example

Convert each of the following BCD codes to decimal:

a) 10000110 (b) 001101010001 (c) 1001010001110000

Solution



86number decimal

01101000)

68





a



351number decimal

000101010011)

153





b



9470number decimal

0000011101001001)

0749





c

 H.W: Convert the BCD code 10000010001001110110 to decimal.

1.6 BCD Addition

BCD is a numerical code and can be used in arithmetic operations. Addition is the

most important operation because the other three operations (subtraction,

multiplication, and division) can be accomplished by the use of addition. Here is

how to add two BCD numbers:

Step 1- Add the two BCD numbers, using the rules for binary addition.

Step 2: If a 4-bit sum is equal to or less than 9, it is a valid BCD number.

Step 3: If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is

generated, it is an invalid result. Add 6 (0110) to the 4-bit sum in order to

skip the six invalid states and return the code to 8421. If a carry results

when 6 is added, simply add the carry to the next 4-bit group.

Example

Add the following BCD numbers:

a) 0011 + 0100 (b) 00100011 + 00010101 (c) 10000110 + 00010011

 (d) 010001010000 + 010000010111

Solution

The decimal number additions are shown for comparison.

7

4

0111

0100

3 0011)



a

38

15
23

1000 0011

0101 0001

 0011 0010)


b

99

13
68

1001 1001

0011 0001

 0110 1000)


c

867

417
504

 0111 0110 0010

 0111 0001 0010

 0000 0101 0010)


d

 H.W: Add the BCD numbers: 1001000001000011 + 0000100100100101.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

21

Example

Add the following BCD numbers:

(a) 1001 + 0100 (b) 1001 + 1001 (c) 00010110 + 00010101

(d) 01100111 + 01010011

Solution

The decimal number additions are shown for comparison.

13

4
9

number BCD valid

6 Add

9)(number BCD Invalid

0011 0001

0110
1101

0100

1001)






a

18

9
9

number BCD valid

6 Add

carry of because Invalid

1000 0001

0110
0010 1

1001

1001)







b

31

15
61

number BCD valid

group.next to0001carry Add code, invalid to6 Add

 valid.is groupleft),9(invalid is groupRight

0001 0011

0110 1
1011 0010

1010 0001

1100 0001)






c

120

53
76

number BCD valid

. groupsboth 6 Add

)9(invalid are groupsBoth

0000 0010 0001

0110 0110
1010 1011

0110 0101

1110 0110)






d

 H.W

1- Add the BCD numbers: 01001000 + 00110100.

2- Convert the following decimal numbers to BCD:

(a) 6 (b) 15 (c) 273 (d) 849

3- What decimal numbers are represented by each BCD code?

(a) 10001001 (b) 001001111000 (c) 000101010111

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

22

1.7 Digital Codes

1.7.1 The Gray Code

The Gray code is unweighted and is not an arithmetic code; that is, there are

no specific weights assigned to the bit positions. The important feature of the Gray

code is that it exhibits only a single bit change from one code word to the next in

sequence. This property is important in many applications, such as shaft position

encoders, where error susceptibility increases with the number of bit changes

between adjacent numbers in a sequence. Table 5 is a listing of the 4-bit Gray code

for decimal numbers 0 through 15. Binary numbers are shown in the table for

reference. Like binary numbers, the Gray code can have any number of bits. Notice

the single-bit change between successive Gray code words. For instance, in going

from decimal 3 to decimal 4, the Gray code changes from 0010 to 0110, while the

binary code changes from 0011 to 0100, a change of three bits. The only bit change

in the Gray code is in the third bit from the right: the other bits remain the same.

Table 5

Decimal Binary Gray code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

23

1.7.2Binary-to-Gray Code Conversion

Conversion between binary code and Gray code is sometimes useful. The

following rules explain how to convert from a binary number to a Gray code word:

1. The most significant bit (left-most) in the Gray code is the same as the

corresponding MSB in the binary number.

2. Going from left to right, add each adjacent pair of binary code bits to get the

next Gray code bit. Discard carries.

Example

Convert the following binary number 10110 to Gray code.

Solution

The Gray code is 11101.

1.7.3Gray-to-Binary Code Conversion

To convert from Gray code to binary, use a similar method; however, there are

some differences. The following rules apply:

1. The most significant bit (left-most) in the binary code is the same as the

corresponding bit in the Gray code.

2. Add each binary code bit generated to the Gray code bit in the next adjacent

position. Discard carries.

Example

Convert the following Gray code word 11011 to binary.

Solution

The binary number is 10010

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

24

Example

a) Convert the binary number 11000110 to Gray code.

b) Convert the Gray code 10101111 to binary

Solution

(a) Binary to Gray code:

(b) Gray code to binary:

 H.W

a. Convert binary 101101 to Gray code.

b. Convert Gray code 100111 to binary.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

25

2-Logic Gates
A logic gate is an electronic circuit which makes logic decisions. It has one

output and one or more inputs. The output signal appears only for certain

combinations of input signals. Logic gates are the basic building blocks from

which most of the digital systems.

2.1 Types of Logic Gates

1-The NOT Gate (Inverter).

It's so called because its output is NOT the same as its input. It is also called an

inverter because it inverts the input signal. This is the simplest form of logic gate

and has only 1 input and 1 output. Simply the purpose of this gate is to invert the

input signal so if a 0 is at the input, the output will be at 1 and vice versa. The

symbol for a NOT gate is as follows.

The output of a logic gate can also be summarised in the form of a table, called a

„Truth Table‟. The truth table for a NOT gate is the simplest of all Truth Tables

and is shown below.

Input Output

A Y

0 1

1 0

The Boolean expression for a NOT gate is

AY 
The „bar‟ over the A indicates that the output Y is the opposite of A.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

26

2-The AND gate.

The AND gate is one of the basic gates that can be combined to form any logic

function. An AND gate can have two or more inputs and performs what is known

as logical multiplication. The symbol is:

AND gate produces a 1 output only when all of the inputs are 1. When any of the

inputs is 0, the output is 0.

AND Gate Truth Table

The logical operation of a gate can be expressed with a truth table that lists all

input combinations with the corresponding outputs, as illustrated in Table for a 2-

input AND gate. The truth table can be expanded to any number of inputs.
nN 2

Where N is the number of possible input combinations and n is the number of

input variables. To illustrate,

For two input variables: 22N = 4 combinations

For three input variables: 32N = 8 combinations

For four input variables: 42N = 16 combinations

The truth table for the 2 input AND gate is shown below.

Inputs Output

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

The Boolean expression for a 2 input AND gate is

BAY 
Where: „.‟ between the A and B means AND in Boolean algebra.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

27

The AND gate with 3 inputs.

The symbol is:

CBAY 
The truth table for the 3 input AND gate is shown below.

Example

If two waveforms, A and B, are applied to the AND gate inputs as in Figure1, what

is the resulting output waveform?

Figure 1

Inputs Output

A B C Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

28

3-The OR gate.

The OR gate is another of the basic gates from which all logic functions are

constructed. An OR gate can have two or more inputs and performs what is known

as logical addition. The symbol is:

The truth table for the 2 input OR gate is shown below.

Inputs Output

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

An OR gate produces a 1 on the output when any of the inputs is 1. The output is 0

only when all of the inputs are 0. The Boolean expression for a 2 input OR gate is

BAY 
Where: „+‟ between the A and B means OR in Boolean algebra.

The OR gate with 3 inputs.

The symbol is:

CBAY 

The truth table for the 3 input OR gate is shown below.

Inputs Output
A B C Y

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

29

Example

If the two input waveforms, A and B, in Figure2 are applied to the OR gate, what

is the resulting output waveform?

Solution

Figure 2

When either or both input waveforms are 1, the output is 1 as shown by the output

waveform Y in the timing diagram.

Example

If the 3-input OR gate waveforms, A, B and C, in Figure3, what is the resulting

output waveform?

Solution

Figure 3

The output is 1 when one or more of the input waveforms are 1 as indicated by the

output waveform Y in the timing diagram.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

30

4 The NAND gate.

The NAND gate is a popular logic element because it can be used as a universal

gate; that is, NAND gates can be used in combination to perform the AND, OR,

and inverter operations. The symbol is:

The truth table for the 2 input NAND gate is shown below.

Inputs Output

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A NAND gate produces a 0 output only when all the inputs are 1. When any of the

inputs is 0, the output will be 1.The Boolean expression for a 2 input NAND gate

is

BAY 
Where: „.‟ between the A and B means AND, and the „bar‟ means invert the

output in Boolean algebra.

The NAND gate with 3 inputs.

The symbol is:

CBAY 
The truth table for the 3 input NAND gate is shown below.

Inputs Output
A B C Y

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

31

Example

If the two waveforms A and B shown in Figure4 below are applied to the NAND

gate inputs, determine the resulting output waveform.

Figure 4

Output waveform Y is 0 only during the four time intervals when both input wave-

forms A and B are 1 as shown in the timing diagram.

Example

Show the output waveform for the 3-input NAND gate in Figure 5 with its proper

time relationship to the inputs.

Figure 5

The output waveform Y is 0 only when all three input waveforms are 1 as shown

in the timing diagram.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

32

5-The NOR gate.

The NOR gate, like the NAND gate, is a useful logic element because it can also

be used as a universal gate; that is, NOR gates can be used in combination to

perform the AND, OR, and inverter operations. The symbol is:

The truth table for the 2 input NOR gate is shown below.

Inputs Output

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A NOR gate produces a 0 output when any of its inputs is 1. Only when all of its

inputs are 0 is the output HIGH. The Boolean expression for a 2 input NOR gate is

BAY 
Where: „+‟ between the A and B means OR and the „bar‟ means invert the result in

Boolean Algebra.

The NOR gate with 3 input.

The symbol is:

CBAY 
The truth table for the 3 input NOR gate is shown below.

Inputs Output

A B C Y

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

33

Example

If the two waveforms shown in Figure 3–36 are applied to a NOR gate, what is the

resulting output waveform?

Figure 6

Whenever any input of the NOR gate is 1, the output is 0 as shown by the output

waveform Y in the timing diagram.

Example

Show the output waveform for the 3-input NOR gate in Figure 7 with the proper

time relation to the inputs.

Figure 7

The output Y is 0 when any input is 1 as shown by the output waveform Y in the

timing diagram.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

34

6- The XOR gate "Exclusive-OR".

The XOR gate has 2 inputs and is a specialized version of the OR gate. The

symbol for a 2 input XOR gate is as follows.

The truth table for the 2 input XOR gate is shown below.

Inputs Output

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

For an XOR gate, output Y is 1 when input A is 0 and input B is 1, or when input

A is 1 and input B is 0; Y is 0 when A and B are both 1 or both 0.

The Boolean expression for a 2 input XOR gate is

BABABAY 
The „ ‟ between the A and B means Exclusive –OR.

7- The XNOR gate.

The XNOR gate has 2 inputs and is the inverted form of the EXOR gate. The

symbol for a 2 input XNOR gate is as follows.

The truth table for the 2 input XNOR gate is shown below.

Inputs Output

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

35

For an XNOR gate, output Y is 0 when input A is 0 and input B is 1, or when A is

1 and B is 0; Y is 1 when A and B are both 1 or both 0.

The Boolean expression for a 2 input XNOR gate is

ABBABAY 

The „ ‟ between the A and B means Exclusive OR, and the „bar‟ means that the

result is inverted.

Example

Determine the output waveforms for the XOR gate and for the XNOR gate, given

the input waveforms, A and B, in Figure 8.

Figure 8

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

36

3-Boolean Algebra and Combinational Logic

Boolean algebra is a mathematical system based on logic. It has its own set of

fundamental laws which are necessary for manipulating different Boolean

expressions:

3.1-Basic rules of Boolean algebra.

Table 6

Basic rules of Boolean algebra

1 7

2
 or

1 A B … 1
8 ̅

3 9 ̿

4 10

5 11 ̅

6 ̅ 12 ()()

Example

Prove the following Boolean identities.

1- AC ABC AC

2- (A B)(A C) A BC
3- A A̅B A B
4- (A B)(A B̅)(A̅ C) AC
5- ABC AB̅C ABC̅ A(B C)

Solution

4- AC ABC AC

 (1)

5- (A B)(A C) A BC

()()

 (1)

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

37

6- A A̅B A B

 ̅ 1 ̅
 (1) ̅
 ̅
 (̅)

7- (A B)(A B̅)(A̅ C) AC

()(̅)(̅) (̅ ̅)(̅)
 (̅)(̅)
 (1 ̅)(̅)
 (1)(̅)
 ̅)
)
8- ABC AB̅C ABC̅ A(B C)

 (̅) ̅
 ̅
 (̅)
 ()
 ()

Example

Simplify the following Boolean expression () ()

Solution

 () ()

 (1)

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

38

Example

Simplify the following Boolean expression: AB̅(C BD) A̅ B̅ C

Solution

 ̅() ̅ ̅
 (̅ ̅ ̅ ̅)
 (̅ ̅ ̅)
 ̅ ̅ ̅
 ̅ (̅)
 ̅

Example

Simplify the following Boolean expression and show the minimum logic gate

implementation. ̅ ̅ ̅ ̅ ̅

Solution

 ̅ ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅ ̅

 (̅) ̅(̅) ̅

 (̅) ̅

 ̅

Example

Simplify the following Boolean expression and show the minimum logic gate

implementation. ̅ ̅ ̅ ̅ ̅ ̅

Solution

 ̅ ̅ ̅ ̅ ̅ ̅

 ̅ ̅(̅) ̅

 ̅(̅)

 ̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

39

Example

Simplify the following Boolean expression and show the minimum logic gate

implementation. ̅() (̅)

Solution

 ̅() (̅)

 ̅ ̅ ̅

 ̅ (̅ ̅)

 ̅

Example

Simplify the expression ()()

Solution

 ()()

 (1)

Example

Prove that ̅ by using truth table.

Solution
 ̅ ̅ ̅

0 0 1 0 0 0

0 1 1 1 1 1

1 0 0 0 1 1

1 1 0 0 1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

40

Example

Determine the logic expression for the output Y from the following truth table.

Simplify and sketch the logic circuit for the simplified expression.

Solution

1-

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

𝐴̅𝐵̅𝐶

𝐴𝐵̅𝐶

𝑌 𝐴̅𝐵̅𝐶 𝐴𝐵̅𝐶

𝑌 𝐵̅𝐶(𝐴̅ 𝐴)

𝑌 𝐵̅𝐶

𝐴̅𝐵𝐶

𝐴𝐵𝐶

𝐴𝐵̅𝐶

𝐴𝐵𝐶̅

𝑌 𝐴̅𝐵𝐶 𝐴𝐵̅𝐶 𝐴𝐵𝐶̅ 𝐴𝐵𝐶

𝑌 𝐴̅𝐵𝐶 𝐴𝐵̅𝐶 𝐴𝐵(𝐶̅ 𝐶)

𝑌 𝐴̅𝐵𝐶 𝐴𝐵̅𝐶 𝐴𝐵

𝑌 𝐵(𝐴̅𝐶 𝐴) 𝐴𝐵̅𝐶

𝑌 𝐵𝐶 𝐴𝐵 𝐴𝐵̅𝐶

𝑌 𝐵𝐶 𝐴(𝐵 𝐵̅𝐶)

𝑌 𝐵𝐶 𝐴𝐵 𝐴𝐶)

𝑌 𝐶(𝐴 𝐵) 𝐴𝐵

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

41

Example:

 State the logic functions performed by the circuits below

a-

b-

c-

d-

e-

f-

𝑌 (𝐴 𝐵) (𝐵 𝐶)

𝑌 𝐴 (𝐵 𝐶 𝐷)

𝑌 (𝐴̅𝐵 𝐴𝐵̅)(𝐴 𝐵̅)

 (𝐴̅𝐵 𝐴𝐵̅)(𝐴 𝐵̅)

 (𝐴𝐵̅ 𝐴𝐵̅)

𝑌 𝐴𝐵̅

𝑌 (𝐴̅ 𝐵̅)(𝐴 𝐵)

 (𝐴̅𝐵 𝐴𝐵̅)

 𝐴̅𝐵 𝐴𝐵̅

𝑌 𝐴 𝐵

𝐹 𝑊̅ 𝑊̅𝑍 𝑋𝑌𝑍̅

𝐹 𝑊̅(1 𝑍) 𝑋𝑌𝑍̅

 𝐹 𝑊̅ 𝑋𝑌𝑍̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

42

3.2-DeMorgan’s Theorems

These theorems consist of two rules of a great help in simplifying complicated

logical expression. It can be stated as follows.

1- ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅

2- ̅̅ ̅̅ ̅ ̅ ̅

The first statement says that the complement of a sum equals the product of

complements. The second statement says that the complement of a product equals

the sum of the complements. In fact, it allows transformation from a sum-of-

products from to a product-of-sum from.

These rules are illustrated by the gate equivalencies and truth tables in the

following figure.

 ̅̅ ̅̅ ̅ ̅ ̅

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

 ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅

0 0 1 1

0 1 0 0

1 0 0 0

1 1 0 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

43

Example

Simplify the following Boolean expression ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (̅̅̅ ̅̅ ̅̅ ̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 Solution

 ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (̅̅̅ ̅̅ ̅̅ ̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) (̅̅̅ ̅̅ ̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (̅) (̅ ̅)

Example

Determine the Boolean expression for the logic circuit shown below. Simplify the

Boolean expression using Boolean Laws and De Morgan‟s theorem. Redraw the

logic circuit using the simplified Boolean expression.

Solution

 () (̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

 () (̅̅ ̅̅ ̅̅)

 () (̅ ̅)

 () (̅ ̅)

 () (̅ ̅)

 ̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

44

Example

Determine the output of the logic circuit shown in Fig. below. Simplify the output

Boolean expression and sketch the logic circuit.

Solution

The output of the circuit can be obtained by determining the output of each logic

gate while working from left to right.

 (̅) (̅̅ ̅̅)

 ̅ ̅ ̅

 ̅(1) ̅

 ̅ ̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

45

3.2.1The Universal Property of NAND and NOR Gates

The universality of the NAND gate means that it can be used as an inverter and

that combinations of NAND gates can be used to implement the AND, OR, and

NOR operations. Similarly, the NOR gate can be used to implement the inverter

(NOT), AND, OR, and NAND operations.

The NAND Gate as a Universal Logic Element

The NAND gate is a universal gate because it can be used to produce the NOT, the

AND, the OR, and the NOR functions. An inverter can be made from a NAND

gate by connecting all of the inputs together and creating, in effect, a single input,

as shown in Figure below part(a) for a 2-input gate. An AND function can be

generated by the use of NAND gates alone, as shown in Figure below part (b). An

OR function can be produced with only NAND gates, as illustrated in part (c).

Finally, a NOR function is produced as shown in part (d).

Combinations of NAND gates can be used to produce any logic function.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

46

The NOR Gate as a Universal Logic Element

Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR,

and NAND functions. A NOT circuit, or inverter, can be made from a NOR gate

by connecting all of the inputs together to effectively create a single input, as

shown in Figure below part (a) with a 2-input example. Also, an OR gate can be

produced from NOR gates, as illustrated in Figure below part (b). An AND gate

can be constructed by the use of NOR gates, as shown below

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

47

3.3Standard Forms of Boolean Expressions

All Boolean expressions, regardless of their form, can be converted into either of

two standard forms: the sum-of-products form or the product-of-sums form.

Standardization makes the evaluation, simplification, and implementation of

Boolean expressions much more systematic and easier.

3.3.1 The Sum-of-Products (SOP) Form

A product term was defined as a term consisting of the product (Boolean

multiplication) of literals (variables or their complements). When two or more

product terms are summed by Boolean addition, the resulting expression is a sum-

of-products (SOP). Some examples are

 ̅ ̅
 ̅ ̅ ̅
Also, an SOP expression can contain a single-variable term, as in

 ̅ ̅.

In an SOP expression a single overbar cannot extend over more than one variable;

however, more than one variable in a term can have an overbar. For example, an

SOP expression can have the term ̅ ̅ ̅ but not ̅̅ ̅̅ ̅̅

Implementing an SOP expression simply requires ORing the outputs of two or

more AND gates. A product term is produced by an AND operation, and the sum

(addition) of two or more product terms is produced by an OR operation.

Therefore, an SOP expression can be implemented by AND-OR logic in which the

outputs of a number as shown below for the expression . The

output X of the OR gate equals the SOP expression.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

48

Converting Product Terms to Standard SOP:

Each product term in an SOP expression that does not contain all the variables

in the domain can be expanded to standard SOP to include all variables in the

domain and their complements. As stated in the following steps, a nonstandard

SOP expression is converted into standard form using Boolean algebra rule

(̅ 1) from Table 6: A variable added to its complement equals 1.

Step 1: Multiply each nonstandard product term by a term made up of the sum

of a missing variable and its complement. This results in two product

terms.

As you know, you can multiply anything by 1 without changing its

value.

 Step 2: Repeat Step 1 until all resulting product terms contain all variables in

the domain in either complemented or uncomplemented form. In

converting a product term to standard form, the number of product

terms is doubled for each missing variable.

Example

Convert the following Boolean expression into standard SOP form:

 ̅ ̅ ̅ ̅
 Solution

The domain of this SOP expression
The first term:

 ̅ ̅ (̅) ̅ ̅ ̅

In this case, two standard product terms are the result.

The second term,

 ̅ ̅ ̅ ̅(̅) ̅ ̅ ̅ ̅ ̅
 ̅ ̅ (̅) ̅ ̅ ̅(̅) ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

In this case, four standard product terms are the result.

The third term, ̅ , is already in standard form.

The complete standard SOP form of the original expression is as follows:

 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

49

3.3.2 Product of Sums (POS) Form

A sum term was defined before as a term consisting of the sum (Boolean addition)

of literals (variables or their complements). When two or more sum terms are

multiplied, the resulting expression is a product-of-sums (POS). Some examples

are

(̅)(̅)
(̅ ̅)(̅)()
(̅)(̅)()
A POS expression can contain a single-variable term, as in

A(A B C)(B C D)
In a POS expression, a single overbar cannot extend over more than one variable;

however, more than one variable in a term can have an overbar.

For example, a POS expression can have the term A̅ B ̅ C̅ but not

A B C ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.

Implementation of a POS Expression simply requires ANDing the outputs of two

or more OR gates. A sum term is produced by an OR operation and the product of

two or more sum terms is produced by an AND operation. Figure below shows for

the expression()()(). The output X of the AND gate equals

the POS expression.

The Standard POS Form

 So far, you have seen POS expressions in which some of the sum terms do not

contain all of the variables in the domain of the expression. For example, the

expression

(̅) (̅) (̅ ̅)
has a domain made up of the variables A, B, C, and D. Notice that the complete set

of variables in the domain is not represented in e first two terms of the expression;

that is, or ̅ is missing from the first term and or ̅ is missing from the second

term.

A standard POS expression is one in which all the variables in the domain appear

in each sum term in the expression. For example,

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

50

 (̅ ̅)(̅)()
is a standard POS expression. Any nonstandard POS expression (referred to simply

as POS) can be converted to the standard form using Boolean algebra.

Converting a Sum Term to Standard

POS Each sum term in a POS expression that does not contain all the

variables in the domain can be expanded to standard form to include all variables

in the domain and their complements. As stated in the following steps, a

nonstandard POS expression is converted into standard form using Boolean

algebra rule (̅) from Table 6:

Step 1: Add to each nonstandard product term a term made up of the product

of the missing variable and its complement. This results in two sum

terms.

As you know, you can add 0 to anything without changing its value.

Step 2: Apply the rule from Table 6: ()()
Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the

domain in either complemented or noncomplemented form.

Example

Convert the following Boolean expression into standard POS form:

 (̅)(̅ ̅)(̅ ̅)
Solution

The domain of this POS expression is A, B, C, D.

 The first term,

 ̅ ̅ ̅
 (̅)(̅)

The second term,

 ̅ ̅ ̅ ̅ ̅
 (̅ ̅)(̅ ̅ ̅)

The third term,(̅ ̅), is already in standard form.

The standard POS form of the original expression is as follows:
(̅)(̅)(̅ ̅)(̅ ̅ ̅)(̅ ̅)

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

51

3.4 Minterms and Maxterms

3.4.1 Minterms

Each row of a truth table can be associated with a minterm, which is a product

(AND) of all variables in the function, in direct or complemented form. A minterm

has the property that it is equal to 1 on exactly one row of the truth table.

Here is the three-variable truth table and the corresponding minterms:

 minterm

0 0 0 ̅ ̅ ̅

0 0 1 ̅ ̅

0 1 0 ̅ ̅

0 1 1 ̅

1 0 0 ̅ ̅

1 0 1 ̅

1 1 0 ̅

1 1 1

The subscript on the minterm is the number of the row on which it equals 1.

(The row numbers are obtained by reading the values of the variables on that row

as a binary number).

Minterms provide a way to represent any Boolean function algebraically,

once its truth table is specified. The function is given by the sum (OR) of those

minterms corresponding to rows where the function is 1. By the minterm property,

the OR will contain a term equal to 1 (making the function 1) on exactly those

rows where the function is supposed to be 1.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

52

Example:

Suppose a function is defined by the following truth table:

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Since 1 on rows 1, 2, 4, and 7, we obtain

 ̅ ̅ ̅ ̅ ̅ ̅

A compact notation is to write only the numbers of the minterms included in

 , using the Greek letter capital sigma to indicate a sum:

 ∑(1)

This form can be written down immediately by inspection of the truth table.

3.4.2 Maxterm

Each row of a truth table is also associated with a maxterm, which is a sum

(OR) of all the variables in the function, in direct or complemented form. A

maxterm has the property that it is equal to 0 on exactly one row of the truth table.

Here is the three-variable truth table and the corresponding maxterms:

 maxterms

0 0 0

0 0 1 ̅

0 1 0 ̅

0 1 1 ̅ ̅

1 0 0 ̅

1 0 1 ̅ ̅

1 1 0 ̅ ̅

1 1 1 ̅ ̅ ̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

53

Like minterms, maxterms also provide a way to represent any Boolean

function algebraically once its truth table is specified. The function is given by the

product (AND) of those maxterms corresponding to rows where the function is 0.

By the maxterm property, the AND will contain a term equal to 0 (making the

function 0) on exactly those rows where the function is supposed to be 0.

Example:

 For the same function as previously, we observe that it is 0 on rows 0, 3, 5, and 6.

Solution

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

 ()(̅ ̅)(̅ ̅)(̅ ̅)

This form also lends itself to a compact notation: using the Greek letter capital pi

to denote a product, we write only the numbers of the maxterms included in :

 ∏()

Two Boolean functions are equivalent if their  forms are the same.

 Note that each maxterm is the complement of its corresponding minterm and vice

versa.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

54

3.5 KARNAUGH MAP MINIMIZATION

A Karnaugh map provides a systematic method for simplifying Boolean

expressions and, if properly used, will produce the simplest SOP or POS

expression possible.

The map format:- the k-map is composed of an arrangement of adjacent cells each

representing are particular combination of variables in product form. Since the

total number of combination of variables and their complement is , the k-

map consist of cells. For example, there are four combinations of the products

of two variables (A and B) and their complements ̅ ̅ ̅ ̅ and , therefore,

the k-map must have four cells, with each cell representing one of the variables

combinations , as illustrated below.

 ̅

 ̅ ̅ ̅ ̅

 ̅

 ̅

 ̅ 0 2

 1 3

Extensions of the k-map to three and four variables are shown below

 ̅ ̅ ̅ ̅

 ̅ 0 2 6 4

1 3 7 5

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 4 12 8

 ̅ 1 5 13 9

 3 7 15 11

 ̅ 2 6 14 10

Notice that the cells are arranged such that there is only a single variable change

between any adjacent cells.

K-maps of five, six or more variables can be constructed, but they are quite

impractical except when implemented a computer.

 Plotting a Boolean expression:- Once a Boolean expression is in the sum-of-

product form, you can plot it on the k-map by placing a 1 in each cell

corresponding to a term in the sum-of-products expression. For example, the 3-

variable expression ̅ ̅ is plotted in the k-map below.

 ̅ ̅ ̅ ̅

 ̅ 0 0 1 0

 0 1 1 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

55

 Grouping cells for simplification:- You can group 1's that are in adjacent cells

according to the following rules by drawing a loop around those cells:

1- Adjacent cells are cells that differ by only one variable (for example

and ̅.

2- The 1's in adjacent cells must be command in groups of 1, 2, 4, 8, 16, and so

on.

3- Each group of 1's should be maximized to include the largest number of

adjacent cells as possible in accordance with rule 2.

4- Every 1's in the map must be included in at least one group. There can be

overlapping groups if they include non common 1's.

For example

 Simplifying the expression:- In order to write the simplified Boolean expression,

follow the rules:

1- Each group of 1's creates a product term composed of all variables that appear

in only one form (complemented or uncomplemented) within the group

variables that appear both uncomplemented and complemented are eliminated.

2- The final simplified expression is formed by summing the product terms of all

the groups. for example

The simplified expression:-

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 1 1

 ̅ 1 1 1 1

 1 1 1 1

 ̅ 0 1 0 0

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 1 1

 ̅ 1 1 1 1

 1 1 1 1

 ̅ 0 1 0 0

𝐹 𝐴𝐶̅ 𝐷 𝐴̅𝐵𝐶

𝐴𝐶̅

𝐷

𝐴̅𝐵𝐶

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

56

 Summary of using the k-map

1- Construct a -cell k-map for the variables

2- Put 1's in the cells corresponding to the terms of the Boolean expression to be

simplified, and put 0's elsewhere.

3- Combine the cells containing 1's as you have learned before.

4- Write the simplified expression.

Example

Minimize the expression:- ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅
Solution

 ̅ ̅

Example

Reduce the following 4-variables function to its minimum sum-of-product form:-
 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

Solution

 ̅ ̅

We have simplified X from ten 4-inputs ANDs and one 10-input OR to one 2-input

AND and one 2-input OR.

 ̅ ̅ ̅ ̅

 ̅ 1 0 0 1

 1 1 0 1

 ̅ ̅ ̅ ̅

 ̅ ̅ 1 1 1 1

 ̅ 0 0 0 0

 1 0 1

 ̅ 1 1 1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

57

Example

Minimize the expression:-

 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

Solution

The term ̅ must be expanded into ̅ and ̅ ̅ to get the standard

SOP expression, which is then mapped; the cells are grouped as shown below

 ̅ (̅) ̅ ̅ ̅

 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

 ∑(1)

The corner of the map can be grouped together when they are 1's

 ̅ ̅ ̅

Example

Use a Karnaugh map to minimize the following standard POS expression:

 ()(̅)(̅)(̅ ̅)(̅ ̅)
Solution

 ∏(1)

 ̅ ̅ ̅

 ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 (̅)

 ̅ ̅ ̅ ̅

 ̅ ̅ 1 0 0 1

 ̅ 0 0 0 0

 1 1 0 0

 ̅ 1 0 0 1

 A̅B̅ A̅B AB AB̅

C̅ 0 0 0 1

C 0 0 1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

58

Example

Use a Karnaugh map to minimize the following POS expression:
 ()(̅)(̅)(̅ ̅)(̅)(̅ ̅)

Solution

The term (B C D)must be expanded into and ̅

to get a standard POS expression, which is then mapped; and the cells are grouped

as shown in Figure below.

 ∏(1)

 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅
 ()(̅)()

Don't-Care

In some situations, we don't care about the value of a logic function. For example,

if we use to represent a number from 0 to 9, we need not worry about the

function value produced for 1 1
For these situations, the function can be assigned an output in order to make the

resulting circuit as simple as possible.

Suppose we wish to implement the function

 () ∑()

And we have the don't-care condition of

 ∑(1 11 1 1 1 1)

The sum-of-products implementation:

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 0 0

 ̅ 1 1 1 0

 1 1 1 1

 ̅ 0 1 1 1

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 x 0

 ̅ 0 1 x 0

 1 1 x x

 ̅ 0 1 x x

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

59

Example

Simplify the following Boolean function, with the don‟t-care conditions d

: () ∑(1 1 11 1) ∑ (1)

Solution
 ̅ ̅ ̅

Example

Simplify the following Boolean function, with the don‟t-care conditions d:
 () ∑(1) ∑ ()
Solution

 1

Example

Simplify the following Boolean function, with the don‟t-care conditions d:

 () ∑ (1 1) ∑ (1)

Solution

 ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 0 0

 ̅ 1 x 1 0

 0 1 x 1

 ̅ 0 0 0 1

 A̅B̅ A̅B AB AB̅

C̅ 1 1 X 1

C 1 X X 1

 ̅ ̅ ̅ ̅

 ̅ ̅ 1 x 0 1

 ̅ 0 0 1 0

 0 0 0 0

 ̅ x 1 1 x

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

60

3.6 Designing combinational logic circuits

In this section we start with an equation or truth table that describes algebraic

function and from it we will determine the circuit required to implement the

function. For example, the Boolean expression: by inspection we

can tell that this function is composed of two terms and the first term

could be implemented by ANDing A with B and similarly , that second term could

be implemented by ANDing C,D and E together. Next, the output forms the first

and the second AND gates are ORed to give the final value of the function as

shown below.

Sometimes, we'll begin with the truth table for algebraic function. In such case we

can write the Boolean expression form the truth table, simplify it when possible,

and then implement the simplified logic circuit.

A General design procedure:

1- The number of variables, input variables and variables in determined.

2- The input and output variables are assigned letters (symbols).

3- The truth table that defines the required relationships between input and

output variables is derived.

4- The simplified Boolean functions for each output are obtained.

5- The logic diagram is drawn.

The following examples will make the design procedure of logic circuit clear and

easy.

Example

Design logic circuit for the following expression.

1- (̅̅ ̅̅ ̅)(̅̅ ̅̅ ̅)(̅ ̅̅̅ ̅̅ ̅)

2- ̅ ̅ ̅ ̅ ̅ ̅ ̅

Solution

1-

 (̅̅ ̅̅ ̅)(̅̅ ̅̅ ̅)(̅ ̅̅̅ ̅̅ ̅)

 (̅̅ ̅̅)(̅ ̅̅̅ ̅̅)

 (̅̅ ̅̅)()

The logic cct is as shown beside

2- ̅ ̅ ̅ ̅
 ̅ ̅ ̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

61

 ̅ ̅ ̅ ̅ ̅ ̅

 ̅(̅) ̅ (̅)

 ̅ ̅

Example

Design the logic circuit that can implement the truth table below using NAND

gates only.

Solution

 ̅ ̅ ̅
By using NAND

 ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 (̅̅̅ ̅̅) (̅ ̅̅̅ ̅̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

 A̅B̅ A̅B AB AB̅

C̅ 1 0 0 1

C 0 0 0 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

62

Example

Design the logic circuit that can implement the truth table below using POS and

SOP forms.

2-POS forms

 ̅ ̅ ̅

 ̅̅ ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (̅ ̅̅ ̅̅)(̅̅ ̅̅)(̅ ̅̅ ̅̅)

 (̅)(̅ ̅)(̅)

Inputs Output

A B C D Y

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 x

1 0 0 0 1

1 0 0 1 0

1 0 1 0 x

1 0 1 1 0

1 1 0 0 x

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0

 ̅ ̅ ̅ ̅

 ̅ ̅ 1 1 x 1

 ̅ 0 0 1 0

 0 x 0 0

 ̅ 1 0 0 x

 ̅ ̅ ̅ ̅

 ̅ ̅ 1 1 x 1

 ̅ 0 0 1 0

 0 x 0 0

 ̅ 1 0 0 x

Solution

1-SOP forms

𝑌 𝐶̅𝐷̅ 𝐵̅𝐷̅ 𝐴𝐵𝐶̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

63

Example

Design the logic circuit that can implement the truth table below using POS and

SOP forms.

Example

Design the logic circuit that can implement the truth table below using POS and

SOP forms.

2-POS forms

 ̅ ̅

 ̿ ̅ ̅̅ ̅̅ ̅

Inputs Output

A B C D Y

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 x

1 0 1 1 x

1 1 0 0 x

1 1 0 1 x

1 1 1 0 x

1 1 1 1 x

 ̅ ̅ ̅ ̅

 ̅ ̅ 1 1 x 1

 ̅ 0 0 x 0

 0 0 x x

 ̅ 1 1 0 x

Inputs Output

A B C Y

0 0 0 1

0 0 1 0

0 1 0 x

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 x

1 1 1 x

 A̅B̅ A̅B AB AB̅

C̅ 1 x x 1

C 0 1 x 0

 A̅B̅ A̅B AB AB̅

C̅ 1 x x 1

C 0 1 x 0

Solution

SOP and POS forms

∴ 𝑌 𝐷̅

1- SOP → 𝑌 𝐷̅

2- POS→ 𝑌̅ 𝐷

Solution

1-SOP forms

 𝑌 𝐵 𝐶̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

64

4-Function of Combinational Logic

4.1Adders and Subtractor:

In this section we'll consider the following

1- The Half-Adder (HA).

2- The Full-Adder (FA).

3- The Half-Subtractor (HS).

4- The Full- Subtractor (FS).

4.1.1 The Half-Adder (HA)

It can add two binary digits (bits) at time. As we know, binary addition of two bits

always produces a 2-bit output data, i.e. one for the SUM and one for the CARRY.

For example, (1+1) gives a sum 0 and a carry of 1. Also, (0+0) gives a sum 0 and a

carry of 1. That is why the adder has two outputs: one for the SUM and the other

for the CARRY.

The sum S output has the same logic pattern as when A XORed with B. Also the
C carry output has the same logic pattern as when A is ANDed with B as shown

below.

Logic circuit of a half- adder

The circuit is called a half-adder because it cannot accept a carry in from previous

additions. For this purpose, we need a 3-input adder called the full-adder.

Table 7

Half-Adder truth table.

inputs outputs

 S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Where:

𝑆 = sum

𝐶= output carry

A and B = input variables (operands)

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

65

4.1.2 The Full-Adder (FA).

As shown in the block diagram below, it has three inputs and two outputs. It can

add three bits at a time. The bits A and B are to be added and the third input

comes from the carry generated from pervious addition.

One of the outputs is a sum ∑ and the other is a carry-out . The truth table

gives all possible input / output relationships for the full-adder.

 ∑ ̅ ̅ ̅ ̅ ̅ ̅

  

 ̅ ̅ ̅

 (̅ ̅) (̅)

 ()

Table 8

Full-Adder truth table.

inputs outputs

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Complete logic circuit for a full-adder

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

66

The full-adder can be constructed from two half adder and one OR gate as shown

below.

Arrangement of two half-adders to form a full-adder

 Note: these adders can also perform subtraction by the method of 2's complement.

4.1.3Parallel Binary Adders

To add two binary numbers, a full-adder (FA) is required for each bit in the

numbers. So for 2-bit numbers, two adders are needed; for 4-bit numbers, four

adders are used; and so on. The carry output of each adder is connected to the carry

input of the next higher-order adder, as shown in Figure below for a 2-bit adder.

 Notice that either a half-adder can be used for the least significant position or the

carry input of a full-adder can be made 0 (grounded) because there is no carry

input to the least significant bit position.

Block diagram of a basic 2-bit parallel adder using two full-adders.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

67

 Block diagram for 4-bit parallel adder

4.1.4 The Half-Subtractor (HS)

It can subtract two bits at time and produce an output of a difference and another

for borrow.

The operation of a half-Subtractor is based on the rules of binary subtractions.

The difference (D) in the 3
rd

 column has the same logic pattern as when A is

XORed with B. The borrow output in the 4
th

 column (W) can be obtaining by

ANDing ̅ with B. therefore; the logic circuit for the HS is as shown below:

Table 9

Half- Subtractor truth table.

inputs outputs

 D W

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

𝐷 𝐴 𝐵
𝑊 𝐴̅𝐵

Logic circuit of a half- subtractor

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

68

4.1.5 The Full- Subtractor (FS).

A full subtractor performs subtraction operation on two bits, a minuend and a

subtrahend, and also takes into consideration whether a „1‟ has already been

borrowed by the previous adjacent lower minuend bit or not. As a result, there are

three bits to be handled at the input of a full subtractor, namely the two bits to be

subtracted and a borrow bit designated as . There are two outputs, namely the

DIFFERENCE output D and the BORROW output . The BORROW output bit

tells whether the minuend bit needs to borrow a „1‟ from the next possible higher

minuend bit. The truth table of a full subtractor is as shown in the table 10.

The Boolean expressions for the two output variables are given by the equations

 ̅ ̅ ̅ ̅ ̅ ̅

  

 ̅ ̅ ̅ ̅ ̅

 (̅ ̅) ̅ (̅)

 ( ̅̅ ̅̅ ̅̅ ̅) ̅

Complete logic circuit for a full-subtractor

Table 10

Full- subtractor truth table.

inputs outputs

Minuend

Subtrahend

Borrow In Difference

Borrow Out

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

69

As shown in figure below a full subtractor can be constructed from two HSs and an

OR gate.

Implementation of a full subtractor with half-subtractors

It may be remarked have that by cascading 4 full-subtractors, we can directly

subtract 4-bit number, i.e. we can from .

Four-bit subtractor

4.1.6 Controlled Inverter

A controlled inverter is needed when an adder is to be used as a subtractor. As

outlined earlier, subtraction is nothing but addition of the 2‟s complement of the

subtrahend to the minuend. Thus, the first step towards practical implementation of

a subtractor is to determine the 2‟s complement of the subtrahend. And for this,

one needs firstly to find 1‟s complement. A controlled inverter is used to find 1‟s

complement. A one-bit controlled inverter is nothing but a two-input XOR gate

with one of its inputs treated as a control input, as shown in Fig. below part (a).

When the control input is LOW, the input bit is passed as such to the output.

(Recall the truth table of an XOR gate.) When the control input is HIGH, the input

bit gets complemented at the output. Figure part(b) shows an eight-bit controlled

inverter of this type. When the control input is LOW, the output (Y7 Y6 Y5 Y4 Y3

Y2 Y1 Y0) is the same as the input (A7 A6 A5 A4 A3 A2 A1 A0). When the

control input is HIGH, the output is 1‟s complement

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

70

(a) One-bit controlled inverter and (b) eight-bit controlled inverter

Adder–Subtractor

Subtraction of two binary numbers can be accomplished by adding 2‟s

complement of the subtrahend to the minuend and disregarding the final carry, if

any. If the MSB bit in the result of addition is a „0‟, then the result of addition is

the correct answer. If the MSB bit is a „1‟, this implies that the answer has a

negative sign. The true magnitude in this case is given by 2‟s complement of the

result of addition.

Four-bit adder-subtractor

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

71

4.2 Magnitude Comparators

The basic function of a comparator is to compare the magnitudes of two binary

quantities to determine the relationship of those quantities. In its simplest form, a

comparator circuit determines whether two numbers are equal. The XNOR gate

can be used as a basic comparator because its output is a 0 if the two input bits are

not equal and a 1 if the input bits are equal. Figure below shows the XNOR gate as

a 2-bit comparator.

Basic comparator operation

In order to compare binary numbers containing two bits each, an additional

XNOR gate is necessary. The two least significant bits (LSBs) of the two numbers

are compared by gate G1, and the two most significant bits (MSBs) are compared

by gate G2, as shown in Figure below. If the two numbers are equal, their

corresponding bits are the same, and the output of each XNOR gate is a 1. If the

corresponding sets of bits are not equal, a 0 occurs on that XNOR gate output.

In order to produce a single output indicating an equality or inequality of two

numbers, an AND gate can be combined with XNOR gates. The output of each

XNOR gate is applied to the AND gate input. When the two input bits for each

XNOR are equal, the corresponding bits of the numbers are equal, producing a 1

on both inputs to the AND gate and thus a 1 on the output. When the two numbers

are not equal, one or both sets of corresponding bits are unequal, and a 0 appears

on at least one input to the AND gate to produce a 0 on its output. Thus, the output

of the AND gate indicates equality (1) or inequality (0) of the two numbers.

Logic diagram for equality comparison of two 2-bit numbers

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

72

Example

Design a complete magnitude comparator that compares two 2-bit binary numbers.

Solution

 1

 1
 1

For simplicity, let

For the output X

 ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅

For the output Y

 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

 ̅ ̅(̅ ̅) (̅ ̅)

 (̅ ̅) (̅ ̅)

 ( ̅̅ ̅̅ ̅̅ ̅) ( ̅̅ ̅̅ ̅̅ ̅)

 (
̅̅ ̅̅ ̅̅ ̅̅ ̅̅) (

̅̅ ̅̅ ̅̅ ̅̅ ̅)

Inputs
Output

A B C D

 X Y Z

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 1 1 1

 ̅ 0 0 1 1

 0 0 0 0

 ̅ 0 0 1 0

 ̅ ̅ ̅ ̅

 ̅ ̅ 1 0 0 0

 ̅ 0 1 0 0

 0 0 1 0

 ̅ 0 0 0 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

73

For the output Z

 ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅

The complete circuit as shown below

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 0 0

 ̅ 1 0 0 0

 1 1 0 1

 ̅ 1 1 0 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

74

General 4-bit comparator:

The logic circuit for a complete 4-bit comparator that indicates whether ,

 is given below:

A practical magnitude comparator IC is the 7485 4-bit comparator

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

75

4.3 Encoders and Decoders

4.3.1 Encoders:

An encoder is a combinational logic circuit that essentially assigns a binary code of

n-bits to an active input out of input lines. The inputs may represent octal or

decimal digits and/or alphabetic characters. Therefore, this of process of

converting from familiar symbols or numbers to a coded format is called encoding.

The simplest encoder is a binary encoder, where it has only one of

 inputs = 1 and the output is the n-bit binary number corresponding to the active

input. It can be built from OR gates

4-to-2 Bit Binary Encoder

Inputs Outputs

1 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 1 1

http://www.electronics-tutorials.ws/combination/comb_4.html
http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

76

Octal-to-Binary Encoder

Octal-to-Binary take 8 inputs and provides 3 outputs, thus doing the opposite of

what the 3-to-8 decoder does. At any one time, only one input line has a value of 1.

The figure below shows the truth table of an Octal-to-binary encoder.

Inputs Outputs

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

For an 8-to-3 binary encoder with inputs the logic expressions of the

outputs are:

Based on the above equations, we can draw the circuit as shown below

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

77

Priority Encoder

This is a special type of encoder. Priority is given to the input lines. If two or

more input line are 1 at the same time, then the input line with highest priority will

be considered. There are four inputs and two outputs . Out of

the four input has the highest priority and has the lowest priority. That

means if 1 then 11 irrespective of the other inputs. Similarly if

 and 1 then 1 irrespective of the other inputs.

4-to-2 Priority Encoder

In 4-to-2 Priority Encoder A has the highest priority and A has the lower priority

Inputs Outputs

 1 0 0 0 0 0

x 1 0 0 0 1

x x 1 0 1 0

x x x 1 1 1

 ̅

 ̅ ̅ ̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

78

8 – to – 3 Priority Encoder or Octal – to – Binary Priority Encoder

The truth table of an octal – to – binary priority encoder is shown below. This

type of encoder has 8 inputs and three outputs that generate corresponding binary

code. A priority is assigned to each input so that when two or more inputs are 1 at

a time, the input with highest priority is represented in the output.

Suppose if the input lines , and are logic 1 simultaneously irrespective

of the other inputs, only will be encoded and the output will be 111.Similarly, if

 = 1, the state of , and is irrelevant or don‟t care and the output is equal to

011.

Inputs Outputs

 1

1 0 0 0 0 0 0 0 0 0 0

x 1 0 0 0 0 0 0 0 0 1

x x 1 0 0 0 0 0 0 1 0

x x x 1 0 0 0 0 0 1 1

x x x x 1 0 0 0 1 0 0

x x x x x 1 0 0 1 0 1

x x x x x x 1 0 1 1 0

x x x x x x x 1 1 1 1

 is 1 when 1 1 and if we consider the priorities, we must say that:

 is 1 when













17

0615

06413

06,4,211

is

isandis

areandandis

areandandis

The logic circuit of the output as shown below:

Similarly,

and

 is 1 when













17

16

05413

05,412

is

is

areandandis

areandandis

And the logic circuit is:

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

79

Finally,

and

 is 1 when













17

16

15

14

is

is

is

is

And the logic circuit is:

Therefore, the complete logic diagram for the 8-3 priority encoder will be as

shown below:

Note

1- The zero input is not connected because the output represents (000) when

none of the other inputs are active.

2- The 74147 is a practical 16-4 priority encoder with active low signals.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

80

4.3.2 Decoder

A decoder performs the reverse operation of an encoder. That is, a code is returned

to the corresponding symbol or digit. In the general form, a decoder has input

lines (to handle bit) and output lines.. Only one output is active at any time

while the other outputs are maintained at logic 0.

Example

Design 1-to2 decoder without enable

Solution

Now, let's write the logic function for each output interms of the inputs:

 ̅

Therefore, the logic circuit is

A

0 1 0

1 0 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

81

Example

Design 3-to8 decoder without enable.

Solution

Now, let's write the logic function for each output interms of the inputs:

 ̅ ̅ ̅
 ̅ ̅

 ̅ ̅
 ̅

 ̅ ̅
 ̅

 ̅

Inputs Lines Outputs Lines

A

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

The logic circuit is as shown

beside

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

82

Example

Design 2-to-4 decoder without enable and active low output

Solution

Now, let's write the logic function for each output interms of the inputs:

 ̅ ̅ ̅̅̅ ̅̅

 ̅ ̅ ̅̅ ̅̅

 ̅ ̅̅̅ ̅̅

 ̅ ̅̅ ̅̅
The logic circuit is as shown below

Inputs

Lines
Outputs Lines

A ̅ ̅ ̅ ̅

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

83

Example

Design 2-to-4 decoder with enable and active high output

Solution

 2-to-4 decoder truth table

Now, let's write the logic function for each output interms of the inputs:
 ̅ ̅

 ̅

 ̅

The logic circuit is

E A B

0 x x 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

84

Example

Design 3-to-8 Decoder with Enable and active high output

Solution

Now, let's write the logic function for each output interms of the inputs:

 ̅ ̅ ̅
 ̅ ̅

 ̅ ̅
 ̅

 ̅ ̅
 ̅

 ̅

Enable

E

Inputs Lines Outputs Lines

A

0 x x x 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0

1 0 1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 0 0 1

The logic circuit is as shown

beside

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

85

Example

Design 3-to-8 Decoder with Enable and active low output

Solution

Now, let's write the logic function for each output interms of the inputs:

 ̅ ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅

 ̅ ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅

 ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅

 ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅

 ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅

 ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅

 ̅ ̅̅̅ ̅̅ ̅̅ ̅̅

 ̅ ̅̅ ̅̅ ̅̅ ̅̅

Enable

E

Inputs Lines Outputs Lines

A ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

0 x x x 1 1 1 1 1 1 1 1

1 0 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 0 1 1 1 1 1 1

1 0 1 0 1 1 0 1 1 1 1 1

1 0 1 1 1 1 1 0 1 1 1 1

1 1 0 0 1 1 1 1 0 1 1 1

1 1 0 1 1 1 1 1 1 0 1 1

1 1 1 0 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 0

The logic circuit is as shown

beside

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

86

Example

Design 3-to-8 Decoder with active low Enable and active high output

Solution

Now, let's write the logic function for each output interms of the inputs:

 ̅ ̅ ̅ ̅
 ̅ ̅ ̅

 ̅ ̅ ̅
 ̅ ̅

 ̅ ̅ ̅
 ̅ ̅

 ̅ ̅
 ̅

 Note: The 74154 is a practical decoder [(4-16) decoder].

Enable

E

Inputs Lines Outputs Lines

A

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 0 0 0 1 0

0 1 1 1 0 0 0 0 0 0 0 1

1 x x x 0 0 0 0 0 0 0 0

The logic circuit is as shown beside

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

87

Decoder Expansion
It is possible to combine or cascade two or more decoders to produce a decoder

with larger number of input bits with the use of enable input of decoder.

Example

Construct a 3-to-8 decoder using only 2-to-4 decoders with additional gates.

Solution

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

88

Example

Construct a 3-to-8 decoder using 2-to-4 decoders with one 1-to-2 decoder

Example

Construct a 4-to-16 decoder using only 3-to-8 decoders with additional gates.

Solution

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

89

Example

Construct a 4-to-16 decoder using only 2-to-4 decoders.

Solution

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

90

The BCD-to-Decimal Decoder

The BCD-to-decimal decoder converts each BCD code (8421 code) into one of ten

possible decimal digit indications. It is frequently referred as a 4-line-to-10-line

decoder or a 1-of-10 decoder. The method of implementation is the same as for the

4-of-16 decoder previously discussed, except that only ten decoding gates are

required because the BCD code represents only the ten decimal digits 0 through 9.

A list of the ten BCD codes and their corresponding decoding functions is given in

below Table. Each of these decoding functions is implemented with NAND gates

to provide active-LOW outputs. If an active-HIGH output is required, AND gates

are used for decoding.

E
BCD Code Decimal Output Decoding

Function A B C D 3 4 5 6 7 8 9

0 X X X X 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ̅ ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 ̅ ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

91

BCD to 7-Segment Display Decoders

7-segment LED (Light Emitting Diode) type display, provide a very convenient

way of displaying information or digital data in the form of numbers, letters or

even alpha-numerical characters.

A standard 7-segment LED display generally has 8 input connections, one for each

LED segment and one that acts as a common terminal or connection for all the

internal display segments. Some single displays have also have an additional input

pin to display a decimal point in their lower right or left hand corner.

In electronics there are two important types of 7-segment LED digital display.

1. The Common Cathode Display (CCD) – In the common cathode display,

all the cathode connections of the LED‟s are joined together to logic “0”

or ground. The individual segments are illuminated by application of a

“HIGH”, logic “1” signal to the individual Anode terminals.

2. The Common Anode Display (CAD) – In the common anode display, all

the anode connections of the LED‟s are joined together to logic “1” and

the individual segments are illuminated by connecting the individual

Cathode terminals to a “LOW”, logic “0” signal.

Electrical connection of the individual diodes for a common cathode display and a

common anode display and by illuminating each light emitting diode individually,

they can be made to display a variety of numbers or characters.

7-Segment Display Format

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

92

So in order to display the number 3 for example, segments a, b, c, d and g would

need to be illuminated. If we wanted to display a different number or letter then a

different set of segments would need to be illuminated. Then for a 7-segment

display, we can produce a truth table giving the segments that need to be

illuminated in order to produce the required character as shown below.

Table for a 7-segment display

BCD to 7-Segment Decoder

BCD to seven segment decoder is a circuit used to convert the input BCD into a

form suitable for the display. It has four input lines (A, B, C and D) and 7 output

lines (a, b, c, d, e, f and g) as shown in Figure below.

Individual Segments
Display

 A b c d e f g

x x x x x x 0

 x x 1

x x x x x 2

x x x x x 3

 x x x x 4

x x x x x 5

x x x x x x 6

x x x 7

x x x x x x x 8

x x x x x x 9

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

93

Truth table for BCD to seven segment decoder with common anode

Decimal

digit

Input lines Output lines Display

pattern A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

Segment Logic Function

A ∑ ()

B ∑ (1)

C ∑ (1)

D ∑ ()

E ∑ ()

F ∑ ()

G ∑ ()

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

94

Note

1- When common-anode 7-segment display is used active-low outputs are

required.

2- Other types of digital displays are:

a- LCDs (Liquid Crystal Displays).

b- The Dot Matrix.

3- A practical BCD-to-7segment decoder driver is the 7447

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

95

Decoder Application: Implementing Boolean Functions Using Decoders

Any combinational circuit can be constructed using decoders and OR gates.

The decoder generates the required minterms and an external OR gate is used to

produce the sum of minterms.

Example

Implement the following Boolean Functions Using Decoders.

 () ∑ (1)
Solution

Example

Implement a full adder circuit with a decoder and two OR gates.

Solution

Let

1- A, B, and C are inputs.

2- full adder equations are:

– () ∑ (1)
– () ∑ ()

Since there are 3 inputs and a total of 8 minterms, we need a 3-to-8 decoder.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

96

4.4Multiplexers (MUX) and Demultiplexer (DEMUX)

4.4.1Multiplexers (Data Selectors)

A multiplexer (MUX) is a device that allows digital information from several

sources to be routed onto a single line for transmission over that line to a common

destination. Then, it has several data-input lines and a single output line. It also has

data-select inputs that permit digital data on any one of the inputs to be switched to

the output line. Multiplexers are also known as data selectors.

A logic symbol for a 4-input multiplexer (MUX without enable) is shown in Figure

below. Notice that there are two data-select lines because with two select bits, any

one of the four data-input lines can be selected.

The logic expression for the output in terms of the input and the select inputs are:

The output is equal to only if ̅ ̅
The output is equal to only if ̅
The output is equal to only if ̅
The output is equal to only if
When these terms are ORed, the total expression for the data output is

 ̅ ̅ ̅ ̅

Data Select Output

data Y

0 0

0 1

1 0

1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

97

The logic circuit for a 4-to-1 multiplexer without enable is:

Example

Design 2-to-1 multiplexer with an enable input.

Solution

 ̅
The logic circuit for a 2-to-1 multiplexer with enable is:

Enable

Data

Select

S

Output

data Y

0 x

1 0

1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

98

Example

Design 4-to-1 multiplexer with an enable input.

Solution

 ̅ ̅ ̅ ̅

The logic circuit for a 4-to-1 multiplexer with enable is:

Enable

E

Data Select Output

data Y

0 x x 0

1 0 0

1 0 1

1 1 0

1 1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

99

Implementing Boolean Functions with Multiplexers

The Boolean function may be implemented in to 1 multiplexer.

 If we have a Boolean function of n variables, we take 1 of these variables

and connect them to the selection lines of a multiplexer (let's say these are

"select variables").

 The remaining single variable (MSB variable) of the function is used for the

inputs of the multiplexer (let's say these are "input variable").

 Now form the implementation table:

o First row lists all those minterms where "input variable" is complemented

(say 0).

o Second row lists all those minterms where "input variable" is in its normal

form (say 1).

 The minterms are circled as per the given Boolean function. Now use the

following steps to find out final multiplexer inputs.

o If the 2 minterms in a column are not circled, 0 is placed to the

corresponding multiplexer inputs.

o If the 2 minterms in a column are circled, 1 is placed to the corresponding

multiplexer inputs.

o If the minterms in the second row is circled and the first row is not circled,

apply second row of variable to the corresponding multiplexer inputs.

o If the minterms in the first row is circled and not the second row, apply first

row of the variable to the corresponding multiplexer inputs.

Example

Implement the following Boolean function using 8-to-1 multiplexer.

 () ∑ (1 11 1 1 1 1)
Solution

Total number of variable ()

Number of select lines: 1 ()

All the minterms are divided into 2 groups

The first group (0-7) minterms are entered in the first row (Variable A =0)

The second group (8-15) minterms are entered in the second row (Variable A= 1)

Circle the minterm number as per function.

 ̅ 0 1 2 3 4 5 6 7

 8 9 10 11 12 13 14 15

 0 ̅ 0 1 1 A A A

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

100

Example

Implement the following Boolean function using 8-to-1multiplexer

 () ∑ (1 1 1)

Solution

Total number of variable ()

Select lines: 1 ()

Example

Implement the following Boolean function using 8-to-1multiplexer

 () ∏ (1 1 1)

Solution

The given maxterms are inverted to obtain minterms. From minterms, we can

implement the above Boolean function using 8-to-1 multiplexer

 () ∑ (1 11 1 1)

Total number of variable ()

Select lines: 1 ()

Example

Implement the following Boolean function using 8-to-1multiplexer

 () ∑ (1 11 1 1) ∑ (1)
Solution

The Boolean function has three don‟t care conditions which can be treated as either

0's or 1's. We consider don't care conditions as1's.

Total number of variable ()

Select lines: 1 ()

 ̅ 0 1 2 3 4 5 6 7

 8 9 10 11 12 13 14 15

 ̅ 1 ̅ 0 1 0 1 0

 ̅ 0 1 2 3 4 5 6 7

 8 9 10 11 12 13 14 15

 0 ̅ ̅ ̅ 0 1

 ̅ 0 1 2 3 4 5 6 7

 8 9 10 11 12 13 14 15

 1 0 1 1 1 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

101

Example

Implement the following Boolean function using 4-to-1multiplexer

 ̅ ̅ ̅ ̅
Solution

 () ∑ ()

Total number of variable ()

Select lines: 1 ()

Or

Or

 ̅ 0 1 2 3

 4 5 6 7

 0 ̅

 ̅ 0 1 4 5

 2 3 6 7

 0 ̅

 ̅ 0 2 4 6

 1 3 5 7

 0 ̅ ̅

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

102

Example

Construct a 16-to-1 multiplexer using only 4-to-1 multiplexer.

Solution

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

103

Example

Construct a 16-to-1 multiplexer using only 2-to-1 multiplexer.

Solution

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

104

4.4.2Demultiplexer (DEMUX)

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes

digital information from one line and distributes it to a given number of output

lines. The demultiplexer is also known as a data distributor.

 A demultiplexer is a 1-to-N device where as the multiplexer is an N-to-1 device.

The figure below shows the block diagram of a demultiplexer or simply a

DEMUX.

It consists of 1 input line, n output lines and m select lines. In this, m selection

lines are required to produce 2m possible output lines (consider). For

example, a 1-to-4 demultiplexer requires select lines to control the 4 output lines.

There are several types of demultiplexers based on the output configurations such

as 1:4, 1:8 and 1:16.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

105

1-to-2 Demultiplexer

A 1-to-2 demultiplexer with enable consists of one input line, two output lines, one

input enable and one select line. The signal on the select line helps to switch the

input to one of the two outputs. The figure below shows the block diagram of a 1-

to-2 demultiplexer with additional enable input. In the figure, there are only two

possible ways to connect the input to output lines, thus only one select signal is

enough to do the demultiplexing operation. When the select input is low, then the

input will be passed to Y0 and if the select input is high then the input will be

passed to Y1.

The truth table of a 1-to-2 demultiplexer is shown below.

 ̅

E
Select Input Output

S D

0 X D 0 0

1 0 D D 0

1 1 D 0 D

http://www.electronicshub.org/wp-content/uploads/2015/07/1-to-2-demux.jpg
http://www.electronicshub.org/wp-content/uploads/2015/07/1-to-2-demux.jpg
http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

106

1-to-4 Demultiplexer

The block diagram of 1:4 DEMUX with additional enable is shown below.

The truth table of this type of demultiplexer is given below:

The output logic can be expressed as min terms and are given below.

 ̅ ̅ , ̅ , ̅ ,
Where: is the input data, to are outputs lines and & are select lines.

Enable

E

Select Inputs Input Output

 D

0 x x D 0 0 0 0

1 0 0 D D 0 0 0

1 0 1 D 0 D 0 0

1 1 0 D 0 0 D 0

1 1 1 D 0 0 0 D

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

107

1-to-8 Demultiplexer

The below figure shows the block diagram of a 1-to-8 demultiplexer without

enable

The truth table for this type of demultiplexer is shown below.

The Boolean expressions for all the outputs can be written as follows.

 ̅ ̅ ̅ ̅ ̅

 ̅ ̅ ̅

 ̅ ̅ ̅

 ̅

Select Inputs Input Output

 D

0 0 0 D D 0 0 0 0 0 0 0

0 0 1 D 0 D 0 0 0 0 0 0

0 1 0 D 0 0 D 0 0 0 0 0

0 1 1 D 0 0 0 D 0 0 0 0

1 0 0 D 0 0 0 0 D 0 0 0

1 0 1 D 0 0 0 0 0 D 0 0

1 1 0 D 0 0 0 0 0 0 D 0

1 1 1 D 0 0 0 0 0 0 0 D

http://www.electronicshub.org/wp-content/uploads/2015/07/1-to-8-Demux.jpg
http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

108

From these obtained equations, the logic diagram of this demultiplexer as shown in

below figure.

Example

Construct a 1-to-8 DEMUX using Two 1-to- 4 Demultiplexers.

Solution

http://www.electronicshub.org/wp-content/uploads/2015/07/Cascading-of-Demultiplexers.jpg
http://www.electronicshub.org/wp-content/uploads/2015/07/Cascading-of-Demultiplexers.jpg
http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

109

Example

Construct a 1-to-8 DEMUX using only 1-to- 2 Demultiplexers.

Solution

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

110

Implementation of Full Subtractor Using 1-to-8 DEMUX

As similar to the multiplexers, demultiplexers are also used for Boolean function

implementation as well as combinational circuit design. We can design the

demultiplexer to produce any truth table output by correspondingly controlling the

select lines.

 The truth table below shows the output of a full subtractor.

From the above table, the full subtractor output D can be written as

 () ∑ (1)
And the borrow output can be expressed as

 () ∑ (1)
From these Boolean functions, a demultiplexer for producing full subtractor output

can be built by properly configuring the 1-to-8 DEMUX such that with input D = 1

it gives the minterms at the output.

And by logically ORing these minterms, the outputs of difference and borrow can

be obtained as shown in figure.

Inputs outputs

Minuend

Subtrahend

Borrow In Difference

Borrow Out

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

111

Code Conversion

Binary-to-Gray and Gray-to-Binary Conversion

We will now see how XOR gates can be used for these conversions. Figure1 show

a 4-bit binary-to-gray code conversion, and figure2 illustrates 4-bit gray-to-binary

converter.

Figure (1): 4-bit binary-to-Gray conversion logic

Figure (2):4-bit Gray-to-binary conversion logic.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

112

5- Sequential circuits (Latches, Flip-Flops, and Timers)
In the same way that gates are the building blocks of combinatorial circuits,

latches and flip-flops are the building blocks of sequential circuits. Latches can be

built from gates, and flip-flops can be built from latches. This fact will make it

somewhat easier to understand latches and flip-flops.

5.1 Latches and Flip Flops

Latches and flip flops are the basic elements and these are used to store

information. One flip flop and latch can store one bit of data. The latch checks

input continuously and changes the output whenever there is a change in input.

But, flip flop is a combination of latch and clock that continuously checks input

and changes the output time adjusted by the clock. In this article, we are going to

look at the operations of the numerous latches and flip-flops.

Both Latches and flip flops are circuit elements wherein the output not only

depends on the current inputs, but also depends on the previous input and outputs.

The main difference between the latch and flip flop is that a flip flop has a clock

signal, whereas a latch does not. Basically, there are four types of latches and flip

flops: SR, D, JK and T. The major differences between these types of flip flops and

latches are the number of i/ps they have and how they change the states.

5.1.1 The S-R Latch

There are two types of S-R Latch which are () latch ()

latch. The diagrams below show the logic symbol and logic gate representation of S-R

NOR gates.

Truth table for S-R NOR latch (active-HIGH input)

Inputs Outputs Comments

𝑺 𝑹 𝑸 𝑸 ̅̅̅

0 0 N.C NC No change. Latch remains in present state.

1 0 1 0 Latch SET.

0 1 0 1 Latch RESET.

1 1 ? ? Invalid state

http://www.electronicsteacher.com/computer-architectures/digital-circuits/gates.php
http://www.electronicsteacher.com/computer-architectures/digital-circuits/combinatorial.php
http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

113

The diagrams below show the logic symbol and logic gate representation of S-R

NAND gates.

Truth table for an active-LOW input latch with NAND gates.

Inputs Outputs Comments

𝑺 𝑹 𝑸 𝑸 ̅̅̅

0 0 NC NC No change. Latch remains in present state.

1 0 1 0 Latch SET.

0 1 0 1 Latch RESET.

1 1 ? ? Invalid state

5.2 Flip Flops

A flip flops is a bistable logic circuit which has two stable states. It's capable of

residing in either of these two states (SET or RESET) until a new clock activation

trigger is applied.

1- Edge-Triggered Flip-Flops

An edge-triggered flip-flop changes states either at the positive edge (rising edge)

or at the negative edge (falling edge) of the clock pulse on the control input and is

sensitive to its inputs only at this transition of the clock.

 A- The edge-triggered S-R flip-flop:

The logic symbol and logic circuit for the SET-RESET flip-flop are shown

below:

It has the inputs (S and R) and the clock input terminal. The outputs are

and its complement ̅.

As illustrated in the truth table below, the output is fixed (unchanged) when

the input has the state (S=0 , R=0). The output in SET or RESET when the

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

114

input has the states (S=1 , R=0) or (S=0 , R=1), respectively. Finally, the

output is an invalid state when (S=1 , R=1)
Truth table for S-R flip-flop

Inputs Outputs Comments

𝑺 𝑹 CK 𝑸 𝑸 ̅̅̅

0 0 ↑ 𝑸𝒐 𝑸̅𝒐 No Change.

0 1 ↑ 0 1 RESET.

1 0 ↑ 1 0 SET.

1 1 ↑ ? ? Invalid

Where ↑ is the positive edge of a clock pulse, and and ̅ are old value of

 and ̅.

 B- The edge-triggered D flip-flop:

The addition of an inverter to an S-R flip-flop creates a D flip-flop as shown

below:

Notice that this flip-flop has only one input in addition to the clock. If D is

high (1) when a clock pulse is applied, then the flip-flop will SET. If D is

low (0) when a clock pulse is applied, the flip-flop will RESET, as shown in

the truth table.

Truth table for D flip-flop

Inputs Outputs Comments

𝑫 CK 𝑸 𝑸 ̅̅̅

0 ↑ 0 1 RESET (store 0)

1 ↑ 1 0 SET (store 1)

The 7474 IC is a dual edge triggered D flip-flop

The 7476 IC is a dual edge triggered JK flip-flop

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

115

 C- The edge- triggered JK flip-flop:

The functioning of the JK flip-flop is identical to that of the S-R flip-flop in

SET, RESET and (no-change) condition of operation. The difference is that

the JK flip-flop has no invalid state. The following truth table summarizes

the operation of an edge triggered JK flip-flop.

Truth table for J-K flip-flop

Inputs Outputs Comments

𝑱 𝑲 CK 𝑸 𝑸 ̅̅̅

0 0 ↑ 𝑸𝒐 𝑸̅𝒐 No Change.

0 1 ↑ 0 1 RESET.

1 0 ↑ 1 0 SET.

1 1 ↑ 𝑸̅𝒐 𝑸𝒐 Toggle

 D-The edge- triggered T flip-flop:

The J input and K input of the JK flip – flop are connected together and

provided with the T input. The logic circuit of a T flip – flop constructed

from a JK flip – flop is shown below.

Truth table for D flip-flop

Inputs Outputs Comments

𝑻 CK 𝑸 𝑸 ̅̅̅

0 ↑ 𝑸𝒐 𝑸̅𝒐 No Change.

1 ↑ 𝑸̅𝒐 𝑸𝒐 Toggle

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

116

 E- Pulse-triggered (master-slave) flip-flops

The term pulse-triggered means that data are entered into the flip-flop on the

leading edge of the clock pulse, but the output does not reflect the input state

until the trailing edge of the clock pulse. Therefore, the data must not while

the clock pulse is HIGH.

The logic symbols of pulse triggered (master-slave) flip-flops are given

below:

The three basic types of pulse-triggered flip-flops are S-R, J-K and D. Their

logic symbols are shown below.

The truth tables for the above pulse-triggered flip-flops are all the same as

that for the edge-triggered flip-flops, except for the way they are clocked.

These flip-flops are also called Master-Slave flip-flops simply because their

internal construction is divided into two sections. The slave section is

basically the same as the master section except that it is clocked on the

inverted clock pulse and is controlled by the outputs of the master section

rather than by the external inputs. The logic diagram for a basic master-slave

S-R flip-flop is shown below.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

117

5.3 CLOCK GENERATOR CIRCUITS

Flip-flops have two stable states; therefore, we can say that they are bistable

multivibrators. One-shots have one stable state, and so we call them monostable

multivibrators. A third type of multivibrator has no stable states; it is called an

astable or free-running multivibrator. This type of logic circuit switches back and

forth (oscillates) between two unstable output states. It is useful for generating

clock signals for synchronous digital circuits. Several types of astable

multivibrators are in common use. We will present three of them without any

attempt to analyze their operation. They are presented here so that you can

construct a clock generator circuit if needed for a project or for testing digital

circuits in the lab.

1-The Astable Multivibrator

An astable multivibrator is a device that has no stable states; it changes back and

forth (oscillates) between two unstable states without any external triggering. The

resulting out-put is typically a square wave that is used as a clock signal in many

types of sequential logic circuits. Astable multivibrators are also known as pulse

oscillators. Figure below shows a simple form of astable multivibrator using an

inverter with hysteresis (Schmitt trigger) and an RC circuit connected in a

feedback arrangement. When power is first applied, the capacitor has no charge; so

the input to the Schmitt trigger inverter is LOW and the output is HIGH. The

capacitor charges through R until the inverter input voltage reaches the upper

trigger point (UTP. At this point, the inverter output goes LOW, causing the

capacitor to discharge back through R. When the inverter input voltage decreases

to the lower trigger point (LTP), its output goes HIGH and the capacitor charges

again. This charging/discharging cycle continues to repeat as long as power is

applied to the circuit, and the resulting output is a pulse waveform, as indicated.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

118

2-Monostable Multivibrator (One-Shots)

 The monostable multivibrator or one-shot, is a device with only one stable state. A

monostable multivibrator is normally in its stable state and will change to its

unstable state only when triggered. Once it is triggered, the monostable

multivibrator remains in its unstable state for a predetermined length of time and

then automatically returns to its stable state. The time that the device stays in its

unstable state determines the pulse width of its output.

Figure below shows a basic monostable multivibrator (one-shot) that is composed

of a logic gate and an inverter. When a pulse is applied to the trigger input, the

output of gate G1 goes LOW. This HIGH-to-LOW transition is coupled through

the capacitor to the input of inverter G2. The apparent LOW on G2 makes its

output go HIGH. This HIGH is connected back into G1, keeping its output LOW.

Up to this point the trigger pulse has caused the output of the monostable

multivibrator, Q, to go HIGH.

The capacitor immediately begins to charge through R toward the high voltage

level. The rate at which it charges is determined by the RC time constant. When

the capacitor charges to a certain level, which appears as a HIGH to G2, the output

goes back LOW. To summarize, the output of inverter G2 goes HIGH in response

to the trigger input. It remains HIGH for a time set by the RC time constant. At the

end of this time, it goes LOW. A single narrow trigger pulse produces a single

output pulse whose time duration is controlled by the RC time constant.

3-The 555 Timer:

The 555 timer is a versatile and widely used IC device because it can be configured

in two different modes as either a monostable multivibrator (one-shot) or as an

astable multivibrator (pulse oscillator).

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

119

The 555 Timer Operations:

A functional diagram showing the internal components of a 555 timer is shown in

Figure below. The comparators are devices whose outputs are HIGH when the

voltage on the positive (+) input is greater than the voltage on the negative (-) input

and LOW when the - input voltage is greater than the + input voltage. The voltage

divider consisting of three resistors provides a trigger level of
3

1
CCV and a

threshold level of
3

2
CCV . The control voltage input (pin 5) can be used to

externally adjust the trigger and threshold levels to other values if necessary. When

the normally HIGH trigger input momentarily goes below
3

1
CCV , the output of

comparator B switches from LOW to HIGH and sets the S-R latch, causing the

output (pin 3) to go HIGH and turning the discharge transistor off. The output

will stay HIGH until the normally LOW threshold input goes above
3

2
CCV and

causes the output of comparator A to switch from LOW to HIGH. This resets the

latch, causing the output to go back LOW and turning the discharge transistor on.

The external reset input can be used to reset the latch independent of the threshold

circuit. The trigger and threshold inputs (pins 2 and 6) are controlled by external

components connected to produce either monostable or astable action.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

120

A-The 555 Timer as an Astable Multivibrator

A 555 timer connected to operate as an astable multivibrator is shown in Figure

below. Notice that the threshold input (THRESH) is now connected to the trigger

input (TRIG). The external components R1, R2, and C1 form the timing network

that sets the frequency of oscillation. The 0.01 µF capacitor, C2, connected to the

control (CONT) input is strictly for decoupling and has no effect on the operation;

in some cases it can be left off.

Initially, when the power is turned on, the capacitor (C1) is uncharged and thus the

trigger voltage (pin 2) is at 0 V. This causes the output of comparator B to be

HIGH and the output of comparator A to be LOW, forcing the output of the latch,

and thus the base of Q1, LOW and keeping the transistor off. Now, C1 begins

charging through R1 and R2, as indicated in Figure below. When the capacitor

voltage reaches

3
1

CCV , comparator B switches to its LOW output state; and when the capacitor

voltage reaches
3

2
CCV , comparator A switches to its HIGH output state. This resets

the latch, causing the base of Q1 to go HIGH and turning on the transistor. This

sequence creates a discharge path for the capacitor through R2 and the transistor,

as indicated. The capacitor now begins to discharge, causing comparator A to go

LOW. At the point where the capacitor discharges down to
3

1
CCV , comparator B

switches HIGH; this sets the latch, making the base of Q1 LOW and turning off the

transistor. Another charging cycle begins, and the entire process repeats.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

121

1

()

 () Where: Is the time that the output is HIGH.

 Where: Is the time that the output is HIGH.

The period, T, of the output waveform is the sum of and

 ()

1

1

()

Finally, the duty cycle is

 (

)1

 (

) 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

122

B-The 555 Timer as a monostable

An external resistor and capacitor connected as shown in Figure below are used to

set up the 555 timer as a monostable. The pulse width of the output is determined

by the time constant of R1 and C1 according to the following formula:

 1 1
The control voltage input is not used and is connected to a decoupling capacitor C2

to prevent noise from affecting the trigger and threshold levels.

Before a trigger pulse is applied, the output is LOW and the discharge transistor

Q1 is on, keeping C1 discharged as shown in Figure below part (a). When a

negative-going trigger pulse is applied at , the output goes HIGH and the

discharge transistor turns off, allowing capacitor C1 to begin charging through R1

as shown in part (b). When C1 charges to
3

1
CCV , the output goes back LOW at t1

and Q1 turns on immediately, discharging C1 as shown in part (c). As you can see,

the charging rate of C1 determines how long the output is HIGH.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

123

5.4Basic flip-flop Applications:

 1- Parallel data storage (Simple memory)

In order to store a 4-bit binary word, we can use the arrangement below:

 The 4-bit register (flip-flop) is first cleared by putting ̅̅ ̅̅ ̅̅

 When is ↑ , the 4-bit word applied on is stored in the flip-

flops.

 The stored data can be read from the outputs .

 2- Frequency Division

The frequency of the clock signal is divided by 2 at the output () of a flip-

flop connected in the toggling condition (1 1)

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

124

Further division of a clock frequency can be achieved by using the output of

one flip-flop as the clock input to a second flip-flop, as shown below:

 The frequency of

 The frequency of

By connecting flip-flops in this way, a frequency is division of is a

achieved, where is the number of flip-flops. For example three flip-flops

divide the clock frequency by ; four flip-flops divide the clock

frequency by 1 .

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

125

 3- Counters

1. Asynchronous counter(Ripple counters)

An asynchronous counter is a sequential logic system in which the clock is

applied at one end of the counter. With respect to counter operation,

asynchronous means that the flip-flops within the counter are not made to

change states at exactly the same time, because the clock pulses are not

connected directly to the CK input of each flip-flop in the counter.

Asynchronous counters are commonly referred to as ripple counters since the

flip-flops are triggered one after the other separated by same delay time. Thus

the effect of an input clock pulse "ripples" through the counter to reach the

last flip-flop.

a) Two-Bit Asynchronous Binary Counter.

The following figure shows a 2-bit asynchronous binary counter.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

126

 The JK flip-flops are connected for toggle operation (J=1 , K=1).
 Assuming that the flip-flops are initially RESET.
 When the 1

st
 falling (-ve going) edge of the clock CK comes, toggles to

become HIGH. This has no effect on flip-flop B.
 When the 2

nd
 falling (-ve going) edge of the clock CK comes, toggles to

become LOW. This falling edge of is connected to the clock input of

flip-flop B, therefore, will toggle to become HIGH, and so on
 The counter will complete a cycle each four clock pulse, and then recycles to

the original state.
 The number of states is given by , where is the number of flip-flops

(1).

Note that:

The counter described above is an up-counter, i.e., it starts counting from 00-to11

(regardless whether the flip-flops are initially SET or RESET).

If it's required to implement a down-counter, we may connect the output ̅ to the

clock input of flip-flop B, as shown below:

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

127

If we wish to implement ripple (asynchronous) counters using positive edge

triggered flip-flops, we must note that:

 For an up-counter, the output ̅ is connected to the clock input of flip-flop

B, as shown in figure below:

 For a down-counter, the output is connected to the clock input of flip-

flop B, as shown in figure below:

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

128

b) Three-Bit Asynchronous Binary Counter.

 Here we have three flip-flops, and therefore, eight different states.

 The same basic operation principles of a 2-bit counter are connect here.

 The logic diagram of a 3-bit ripple up counter together with its timing

diagram are shown in the figure below:

The output is the number

CK

pulse

0 1 2 3 4 5 6 7 8 9→

Output 000 001 010 011 100 101 110 111 000 001→

 H.W

1. Design a 3-bit asynchronous binary down counter with +ve edge clock.

2. Design a 3-bit asynchronous binary up counter with +ve edge clock.

3. Design a 3-bit asynchronous binary down counter with -ve edge clock.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

129

c) Four-Bit Asynchronous Binary Counter.

The logic timing diagrams for a 4-bit asynchronous down counter using (+ve

edge clock) JK flip-flops are shown below:

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

130


H

.W

1
)

D
esig

n
 a 4

-b
it asy

n
ch

ro
n
o
u

s b
in

ary
 u

p
 co

u
n

ter w
ith

 -v
e ed

g
e clo

ck
.

2
)

D
esig

n
 a 4

-b
it asy

n
ch

ro
n
o
u

s b
in

ary
 d

o
w

n
 co

u
n
ter w

ith
 -v

e ed
g

e clo
ck

.

3
)

D
esig

n
 a 4

-b
it asy

n
ch

ro
n
o
u

s b
in

ary
 u

p
 co

u
n

ter w
ith

 +
v

e ed
g

e clo
ck

.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

131

d) Asynchronous Decade Counter

 Regular binary counters have maximum possible the number of flip-flops

in the counter.

 Counters can also be designed to have a number of states in their sequence

less than . The resulting sequence is called a truncated sequence.

 Counters with ten states their sequence are called decade counters. A

decade counter with a sequence of 0 to 9 (0000 to 1001) is a BCD decade

counter because its ten states sequence is the BCD code.

 To do that it is necessary to force the counter to recycle before completing

all of its normal state. For example, the BCD decade counter must recycle

back to the 0000 state after 1001 state.

 A logic circuit (NAND) must be added such that its output is LOW when the

code 1001 appears on the s of the counter, in order to bring the counter

back to the 0000 state using the ̅̅ ̅̅ ̅̅ line as shown in figure below:

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

132

2. synchronous counters:

The term synchronous, as applied to counter operations, means that the

counter is clocked such that each flip-flop in the counter is triggered at the

same time. This is accomplished by connecting the clock line to each of the

counter. Unlike asynchronous counters, synchronous counters have different

arrangements for the J and K inputs in order to achieve a binary sequence.

A procedure for the design of synchronous counters:

1- Determine the type and the number of flip-flops needed.

2- Write a truth table containing the present state and the next state

according to required sequence.

3- Find an expression for each flip-flop input using the k-map according

to the type of flip-flops used.

4- Implement these expressions with combinational logic and combine

with flip-flops.

Example:

Design a 2-bit synchronous up counter using edge-triggered JK flip-flops (modulus

4 or mod 4 or divide by 4).

Solution

Here we need 2JK flip-flops.

CK

Present state Next state Output

 1

 J K J K

0 0 0 0 1 0 x 1 x

1 0 1 1 0 1 x x 1

2 1 0 1 1 x 0 1 x

3 1 1 0 0 x 1 x 1

Now, the state transition table of a JK flip-flops is:

 → 1 J K

 → 0 x

 → 1 1 x

1 → x 1

1 → 1 x 0

 →

 → 1

1 →

1 → 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

133

1- For FFA, use the k-map to find and :

2- For FFB, use the k-map to find and :

∴The logic diagram of the counter is:

Note that the design is independent from the way of flip-flop triggering.

 ̅

 ̅ 0 x

 1 x

 ̅

 ̅ x 0

 x 1

 ̅

 ̅ x x

 1 1

 ̅

 ̅ 1 1

 x x

 𝐽𝐴 𝐵 𝑄𝐵 𝐾𝐴 𝐵 𝑄𝐵

 𝐽𝐵 1 𝐾𝐵 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

134

Example:

Design a 2-bit synchronous up counter using edge-triggered D flip-flops.

Solution

 The state transition table of D flip-flop is:

 → 1 D

 → 0

 → 1 1

1 → 0

1 → 1 1

CK

Present state Next state Out put

 1

0 0 0 0 1 0 1

1 0 1 1 0 1 0

2 1 0 1 1 1 1

3 1 1 0 0 0 0

1- For FFA, use the k-map to

find :

 ̅

 ̅ 0 1

 1 0

2- For FFB, use the k-map to

find :

 ̅

 ̅ 1 1

 0 0

∴The logic diagram of the counter is:

 𝐷𝐴 𝐴̅𝐵 𝐴𝐵̅
 𝑄𝐴 𝑄𝐵 𝐷𝐵 𝐵̅ 𝑄̅𝐵

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

135

Example:

Design a mod-4(divide by 4) (2-bit) binary synchronous down- counter using JK

flip-flops.

Solution

As we saw before, two flip-flops are needed.

CK

Present

state

Next

state

Input of F.FS

 1

 J K J K

0 0 0 1 1 1 x 1 x

1 0 1 0 0 0 x x 1

2 1 0 0 1 x 1 1 x

3 1 1 1 0 x 0 x 1

 → 1 J K

 → 0 x

 → 1 1 x

1 → x 1

1 → 1 x 0

1- For FFA, use the k-map to find and :

2- For FFB, use the k-map to find and :

∴The logic diagram of the counter is:

 ̅

 ̅ 1 x

 0 x

 ̅

 ̅ x 1

 x 0

 ̅

 ̅ x x

 1 1

 ̅

 ̅ 1 1

 x x

 𝐽𝐴 𝐵̅ 𝑄̅𝐵 𝐾𝐴 𝐵 𝑄𝐵

 𝐽𝐵 1 𝐾𝐵 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

136

Example:

Design a 3-bit synchronous up counter using edge-triggered JK flip-flops.

Solution

Here we need 3JK flip-flops.

CK

Present

state
Next state Input of F.FS

 1

 J K J K J K

0 0 0 0 0 0 1 0 x 0 x 1 x

1 0 0 1 0 1 0 0 x 1 x x 1

2 0 1 0 0 1 1 0 x x 0 1 x

3 0 1 1 1 0 0 1 x x 1 x 1

4 1 0 0 1 0 1 x 0 0 x 1 x

5 1 0 1 1 1 0 x 0 1 x x 1

6 1 1 0 1 1 1 x 0 x 0 1 x

7 1 1 1 0 0 0 x 1 x 1 x 1

 → 1 J K

 → 0 x

 → 1 1 x

1 → x 1

1 → 1 x 0

1- For FFA, use the k-map to find and :

 ̅ ̅ ̅ ̅

 ̅ 0 0 x x

 0 1 x x

 ̅ ̅ ̅ ̅

 ̅ x x 0 0

 x x 1 0

 𝐽𝐴 𝑄𝐵𝑄𝐶 𝐾𝐴 𝑄𝐵𝑄𝐶

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

137

2- For FFB, use the k-map to find and :

3- For FFC, use the k-map to find and :

∴The logic diagram of the counter is:

 ̅ ̅ ̅ ̅

 ̅ 0 x x 0

 1 x x 1

 ̅ ̅ ̅ ̅

 ̅ 0 x x 0

 1 x x 1

 ̅ ̅ ̅ ̅

 ̅ 1 1 1 1

 x x x x

 ̅ ̅ ̅ ̅

 ̅ x x x x

 1 1 1 1

 𝐽𝐵 𝑄𝐶 𝐾𝐵 𝑄𝐶 𝐽𝐵 𝑄𝐶

 𝐽𝐶 1 𝐾𝐶 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

138

Example:

Design a 3-bit synchronous down counter using edge-triggered JK flip-flops.

Solution

Here we need 3JK flip-flops.

CK

Present state Next state

0 0 0 0 1 1 1

1 0 0 1 0 0 0

2 0 1 0 0 0 1

3 0 1 1 0 1 0

4 1 0 0 0 1 1

5 1 0 1 1 0 0

6 1 1 0 1 0 1

7 1 1 1 1 1 0

 ̅ ̅ , ̅ ̅ , ̅ , ̅ , 1, 1

∴The logic diagram of the counter is:

 H.W.:

Design a mod 8 synchronous counter using edge triggered D flip-flops:

a- An up-counter.

b- A down counter.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

139

Example:

Draw a logic diagram for an up/down 3-bit synchronous counter using edge-

triggered JK flip-flops.

Solution

Example:

Design a BCD (mod-10) synchronous up counter using edge-triggered JK flip-

flops.

Solution

CK

Present state Next state Input of F.FS

 1

 J K J K J K J K

0 0 0 0 0 0 0 0 1 0 x 0 x 0 x 1 x

1 0 0 0 1 0 0 1 0 0 x 0 x 1 x x 1

2 0 0 1 0 0 0 1 1 0 x 0 x x 0 1 x

3 0 0 1 1 0 1 0 0 0 x 1 x x 1 x 1

4 0 1 0 0 0 1 0 1 0 x x 0 0 x 1 x

5 0 1 0 1 0 1 1 0 0 x x 0 1 x x 1

6 0 1 1 0 0 1 1 1 0 x x 0 x 0 1 x

7 0 1 1 1 1 0 0 0 1 x x 1 x 1 x 1

8 1 0 0 0 1 0 0 1 x 0 x 0 0 x 1 x

9 1 0 0 1 0 0 0 0 x 1 x 0 0 x x 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

140

1- For FFA, use the k-map to find and :

2- For FFB, use the k-map to find and :

3- For FFC, use the k-map to find and :

 ̅ ̅

4- For FFD, use the k-map to find and :

 1 1

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 x x

 ̅ 0 0 x x

 0 1 x x

 ̅ 0 0 x x

 ̅ ̅ ̅ ̅

 ̅ ̅ x x x 0

 ̅ x x x 1

 x x x x

 ̅ x x x x

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 x x x

 ̅ 0 x x x

 1 x x x

 ̅ 0 x x x

 ̅ ̅ ̅ ̅

 ̅ ̅ x 0 x 0

 ̅ x 0 x 0

 x 1 x x

 ̅ x 0 x x

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 x 0

 ̅ 1 1 x 0

 x x x x

 ̅ x x x x

 ̅ ̅ ̅ ̅

 ̅ ̅ x x x x

 ̅ x x x x

 1 1 x x

 ̅ 0 0 x x

 ̅ ̅ ̅ ̅

 ̅ ̅ x x x x

 ̅ 1 1 x 1

 1 1 x x

 ̅ x x x x

 ̅ ̅ ̅ ̅

 ̅ ̅ 1 1 x 1

 ̅ x x x x

 x x x x

 ̅ 1 1 x x

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

141

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

142

Example:

Design a synchronous 3-bit up counter with a Gray code sequence using JK flip-

flops.

Solution

Here we need 3JK flip-flops.

CK

Present state

Next state

 1

Input of F.FS

 J K J K J K

0 0 0 0 0 0 1 0 x 0 x 1 x

1 0 0 1 0 1 1 0 x 1 x x 0

2 0 1 1 0 1 0 0 x x 0 x 1

3 0 1 0 1 1 0 1 x x 0 0 x

4 1 1 0 1 1 1 x 0 x 0 1 x

5 1 1 1 1 0 1 x 0 x 1 x 0

6 1 0 1 1 0 0 x 0 0 x x 1

7 1 0 0 0 0 0 x 1 0 x 0 x

1- For FFA, use the k-map to find and :

2- For FFB, use the k-map to find and :

 ̅ ̅ ̅ ̅

 ̅ 0 0 x X

 0 1 x X

 ̅ ̅ ̅ ̅

 ̅ x x 0 0

 x x 1 0

 ̅ ̅ ̅ ̅

 ̅ x 0 x 0

 x 0 x 1

 ̅ ̅ ̅ ̅

 ̅ 0 x 0 X

 1 x 0 X

 𝐽𝐴 𝑄𝐵𝑄𝐶
 𝐾𝐴 𝑄𝐵𝑄𝐶

𝐽𝐵 𝑄̅𝐴𝑄𝐶 𝐾𝐵 𝑄𝐴𝑄𝐶

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

143

3- For FFC, use the k-map to find and :

 The implementation of the counter is shown in Figure below:

Example:

Design a counter with the irregular binary count sequence shown in the state

diagram of Figure below. Use D flip-flops.

Solution

We have only four states, a 3-bit counter is require 3 flip-flops to implement this

sequence because the maximum binary count is seven.

 ̅ ̅ ̅ ̅

 ̅ 1 x x 1

 x 0 0 x

 ̅ ̅ ̅ ̅

 ̅ x 1 1 x

 0 x x 0

𝐽𝐶 𝑄̅𝐶 𝐽𝐶 𝑄̅𝐶 𝐾𝐶 𝑄̅𝐶

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

144

CK

Present state

Next state

 1
Input of F.FS

1 0 0 1 0 1 0 0 1 0

2 0 1 0 1 0 1 1 0 1

5 1 0 1 1 1 1 1 1 1

7 1 1 1 0 0 1 0 0 1

1- For FFA, use the k-map to find :

 ̅ ̅ ̅ ̅

 ̅ x 1 x x

 0 x 0 1

2- For FFB, use the k-map to find :

 ̅ ̅ ̅ ̅

 ̅ x 0 x x

 1 x 0 1

3- For FFC, use the k-map to find :

The implementation of the counter is shown in Figure below:

 ̅ ̅ ̅ ̅

 ̅ x 1 x x

 0 x 1 1

 𝐷𝐴 𝐶̅ 𝐴𝐵̅ 𝑄̅𝐶 𝑄𝐴𝑄̅𝐵
 𝐷𝐵 𝐵̅ 𝑄̅𝐵

 𝐷𝐶 𝐶̅ 𝐴 𝑄̅𝐶 𝑄𝐴

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

145

Example:

Design an up/down 3-bit synchronous counter using T flip-flops.

Solution

Here we need 3T flip-flops.

M

Present state

Next state

Input of F.FS

 T T T

0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 1 0 0 1 1

0 0 1 0 0 1 1 0 0 1

0 0 1 1 1 0 0 1 1 1

0 1 0 0 1 0 1 0 0 1

0 1 0 1 1 1 0 0 1 1

0 1 1 0 1 1 1 0 0 1

0 1 1 1 0 0 0 1 1 1

1 0 0 0 1 1 1 1 1 1

1 0 0 1 0 0 0 0 0 1

1 0 1 0 0 0 1 0 1 1

1 0 1 1 0 1 0 0 0 1

1 1 0 0 0 1 1 1 1 1

1 1 0 1 1 0 0 0 0 1

1 1 1 0 1 0 1 0 1 1

1 1 1 1 1 1 0 0 0 1

 → 1 T

 → 0

 → 1 1

1 → 1

1 → 1 0

The state transition table of T flip-flop is:

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 1 1

 ̅ 0 0 0 0

 1 1 0 0

 ̅ 0 0 0 0

1- For FFA, use the k-map to find

2- For FFB, use the k-map to find :

 ̅ ̅ ̅ ̅

 ̅ ̅ 0 0 1 1

 ̅ 1 1 0 0

 1 1 0 0

 ̅ 0 0 1 1

3- For FFC, use the k-map to find :

 ̅ ̅ ̅ ̅

 ̅ ̅ 1 1 1 1

 ̅ 1 1 1 1

 1 1 1 1

 ̅ 1 1 1 1

 𝑻𝑪 𝟏

 𝑻𝑨 𝑴𝑩̅𝑪̅ 𝑴̅𝑩𝑪 𝑴𝑸̅𝑩𝑸̅𝑪 𝑴̅𝑸𝑩𝑸𝑪

 𝑻𝑩 𝑴𝑪̅ 𝑴̅𝑪 𝑴𝑸̅𝑪 𝑴̅𝑸𝑪

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

146

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

147

 4- Shift register

Shift registers are a type of sequential logic circuit, mainly for storage of digital

data. They are a group of flip-flops connected in a chain so that the output from

one flip-flop becomes the input of the next flip-flop. Most of the registers

possess no characteristic internal sequence of states. All flip-flops are driven by

a common clock, and all are set or reset simultaneously.

The basic types of shift registers are studied, such as Serial In - Serial Out,

Serial In - Parallel Out, Parallel In – Serial Out, Parallel In - Parallel Out, and

bidirectional shift registers.

Register:

 A set of n flip-flops.

 Each flip-flop stores one bit.

 Two basic functions: data storage and data movement.

Shift Register:

 A register that allows each of the flip-flops to pass the stored information to

its adjacent neighbour.

The figure below shows the basic data movement in shift registers.

Basic data movement in shift registers. (Four bits are used for illustration. The bits move in the direction of the arrows.)

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

148

A. Serial In - Serial Out Shift Registers

 The serial in/serial out shift register accepts data serially – that is, one bit at

a time on a single line. It produces the stored information on its output also

in serial form.

A basic four-bit shift register can be constructed using four D flip-flops, as

shown in figure below:

The operation of the circuit is as follows:

 The register is first cleared, forcing all four outputs to zero.

 The input data is then applied sequentially to the D input of the first flip-

flop on the left (FF0).

 During each clock pulse, one bit is transmitted from left to right.

Assume a data word to be 1010. The least significant bit of the data has to be

shifted through the register from FF0 to FF3. In order to get the data out of the

register, they must be shifted out serially. This can be done destructively or

non-destructively. For destructive readout, the original data is lost and at the

end of the read cycle, all flip-flops are reset to zero.

The following table shows shifting a 4-bit code into the shift register.

The following table shows shifting a 4-bit code out of the shift register

CLK FF0() FF1() FF2() FF3()

Initial 0 0 0 0

1 0 0 0 0

2 1 0 0 0

3 0 1 0 0

4 1 0 1 0

CLK FF0() FF1() FF2() FF3()

Initial 1 0 1 0

5 0 1 0 1

6 0 0 1 0

7 0 0 0 1

8 0 0 0 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

149

Example:

Show the states of the 5-bit register in Figure below for the specified data input and

clock waveforms. Assume that the register is initially cleared (all 0s).

Solution

The first data bit (1) is entered into the register on the first clock pulse and then

shifted from left to right as the remaining bits are entered and shifted. The register

contains Q4Q3Q2Q1Q0 = 11010 after five clock pulses.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

150

B. Serial In/Parallel out Shift Registers

For this kind of register, data bits are entered serially in the same manner as

discussed in the last section. The difference is the way in which the data bits

are taken out of the register. Once the data are stored, each bit appears on its

respective output line, and all bits are available simultaneously.

A construction of a four-bit serial in - parallel out register is shown below.

In the table below, we can see how the four-bit binary number 1001 is shifted to

the Q outputs of the register.

CLK FF0() FF1() FF2() FF3()

Initial 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 1 0 0 1

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

151

Example:

Show the states of the 4-bit register (SRG 4) for the data input and clock

waveforms in Figure below. The register initially contains all 1s.

Solution

The register contains 0110 after four clock pulses.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

152

C. Parallel In - Serial out Shift Registers

For a register with parallel data inputs, the bits are entered simultaneously

into their respective stages on parallel lines rather than on a bit-by-bit basis

on one line as with serial data inputs. The serial output is the same as in

serial in/serial out shift registers, once the data are completely stored in the

register. For parallel data, multiple bits are transferred at one time.

A logic diagram for a four-bit parallel in - serial out shift register is shown

below.

Logic symbol

The circuit uses D flip-flops and gates for entering data to the register. D0,

D1, D2 and D3 are the parallel inputs, where D0 is the MSB and D3 is the

LSB. To load data in, the mode control line is taken to LOW (̅̅ ̅̅ ̅̅ ̅̅) and

the data is clocked in. The data can be shifted when the mode control line is

HIGH as SHIFT is active high. The register performs right shift operation on

the application of a clock pulse.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

153

Example:

Show the data-output waveform for a 4-bit register with the parallel input

data and the clock and SHIFT/LOAD waveforms given in Figure below.

Solution

On clock pulse 1, the parallel data (D0D1D2D3 = 1010) are loaded into the

register, making Q3 a 0. On clock pulse 2 the 1 from Q2 is shifted onto Q3;

on clock pulse 3 the 0 is shifted onto Q3; on clock pulse 4 the last data bit

(1) is shifted onto Q3; and on clock pulse 5, all data bits have been shifted

out, and only 1s remain in the register (assuming the D0 input remains a 1).

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

154

D. Parallel In/Parallel out Shift Registers

For parallel in - parallel out shift registers, all data bits appear on the parallel

outputs immediately following the simultaneous entry of the data bits. The

following circuit is a four-bit parallel in - parallel out shift register

constructed by D flip-flops.

The D's are the parallel inputs and the Q's are the parallel outputs. Once the

register is clocked, all the data at the D inputs appear at the corresponding Q

outputs simultaneously.

E. Bidirectional Shift Registers

The registers discussed so far involved only right shift operations. Each right

shift operation has the effect of successively dividing the binary number by

two. If the operation is reversed (left shift), this has the effect of multiplying

the number by two. With suitable gating arrangement a serial shift register

can perform both operations. A bidirectional, or reversible, shift register is

one in which the data can be shift either left or right. A four-bit bidirectional

shift register using D flip-flops is shown below.

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

155

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

156

Shift Register Counters

Two of the most common types of shift register counters are introduced here: the

Ring counter and the Johnson counter. They are basically shift registers with the

serial outputs connected back to the serial inputs in order to produce particular

sequences. These registers are classified as counters because they exhibit a

specified sequence of states.

1- Ring Counters :

A ring counter is basically a circulating shift register in which the output of the

most significant stage is fed back to the input of the least significant stage. The

following is a 4-bit ring counter constructed from D flip-flops. The output of

each stage is shifted into the next stage on the positive edge of a clock pulse. If

the CLEAR signal is high, all the flip-flops except the first one FF0 are reset to

0. FF0 is preset to 1 instead.

Since the count sequence has 4 distinct states, the counter can be considered as

a mod-4 counter. Only 4 of the maximum 16 states are used, making ring

counters very inefficient in terms of state usage. But the major advantage of a

ring counter over a binary counter is that it is self-decoding. No extra decoding

circuit is needed to determine what state the counter is in.

Clock pulse

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 1 0 0 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

2018-2019
DIGITAL ELECTRONICS

ELECTRONIC & CONTROL DEPT. SECOND YEAR

157

2- Johnson Counters

Johnson counters are a variation of standard ring counters, with the inverted

output of the last stage fed back to the input of the first stage. They are also

known as twisted ring counters. An n-stage Johnson counter yields a count

sequence of length 2n, so it may be considered to be amod-2n counter. The

circuit below shows a 4-bit Johnson counter.

The state sequence for the counter is given in the table below as well as the

animation on the left.

Again, the apparent disadvantage of this counter is that the maximum

available states are not fully utilized. Only eight of the sixteen states are

being used.

Clock pulse

0 0 0 0 0

1 0 0 0 1

2 0 0 1 1

3 0 1 1 1

4 1 1 1 1

5 1 1 1 0

6 1 1 0 0

7 1 0 0 0

http://cbs.wondershare.com/go.php?pid=5261&m=db

