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1-Number Systems 

1.1 Decimal Numbers  

You are familiar with the decimal number system because you use decimal 

numbers every day. Although decimal numbers are commonplace, their weighted 

structure is often not understood. The decimal number system has ten digits. Each 

of the ten digits, 0 through 9, represents a certain quantity

 

1.2 Binary Number 

The binary number system is another way to represent quantities. It is less 

complicated than the decimal system because it has only two digits. The decimal 

system with its ten digits is a base-ten system; the binary system with its two digits 

is a base-two system. The two binary digits (bits) are 1 and 0. The weights in a 

binary number are based on powers of two. 

 
Table 1 

Decimal Number Binary Number 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

2  

 

As you have seen in Table1, four bits are required to count from zero to 15. In 

general, with n bits you can count up to a number equal to 12 n . The weight or 

value of a bit increases from right to left in a binary number. 

1.2.1 Binary-to-Decimal Conversion 

The decimal value of any binary number can be found by adding the weights of all 

bits that are 1 and discarding the weights of all bits that are 0. 

 

Example: 

Convert the binary number 1101101 to decimal. 

Solution 

1091483264

22222221101101

1011011:

2222222:

0123456

0123456





numberbinary

weight

 

 

Example: 

Convert the fractional binary number 0.1011 to decimal. 

Solution 

6875.00625.0125.05.0

2221011.0

1101.0:

2222:

431

4321



 



numberbinary

weight

 

1.2.2 Decimal-to-Binary Conversion 

1- Sum-of-Weights Method 

To get the binary number for a given decimal number, find the binary 

weights that adds up to the decimal number. 

 

Example: 

Convert the following decimal numbers to binary:  

(a) 12        (b) 25            (c) 58       (d) 82 

Solution 

10100102222166482)

111010222228163258)

11001222181625)

1100224812)

146

1345

034

23









d

c

b

a
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2- Repeated Division-by-2 Method 

To get the binary number for a given decimal number, divide the decimal 

number by 2 until the quotient is 0. Remainders form the binary number. 

 

Example: 

Convert the following decimal numbers to binary: 

 a) 12        b)  19        c)  45 

 

Solution 

a) 

 
 

b) 

 

c) 

 
MSB: Most Significant Bit.  

LSB: Least Significant Bit 
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1.2.3 Converting Decimal Fractions to Binary 

1- Sum-of-Weights 

The sum-of-weights method can be applied to fractional decimal numbers, 

as shown in the following example: 

101.022125.05.0625.0 31    
There is a 1 in the 12 position, a 0 in the 22  position, and a 1 in the 32

position. 

 

2- Repeated Multiplication by 2 

Decimal fractions can be converted to binary by repeated multiplication by 

2. 

 

Example  

Convert the decimal fraction 0.3125 to binary. 

 
 

 

 H.W 

1. Convert each decimal number to binary by using the sum-of-weights method: 

(a)  23     (b) 57     (c) 45.5 

2. Convert each decimal number to binary by using the repeated division-by-2 

method (repeated multiplication-by-2 for fractions): 

(a)  14          (b) 21      (c) 0.375  
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1.2.4 Binary Arithmetic 

Binary arithmetic is essential in all digital computers and in many other types of 

digital systems. To understand digital systems, you must know the basics of binary 

addition, subtraction, multiplication, and division. 

 

1- Binary Addition 

The four basic rules for adding binary digits (bits) are as follows: 

1 ofcarry  with 0 of Sum

0 ofcarry  with 1 of Sum

0 ofcarry  with 1 of Sum

0 ofcarry  with 0 of Sum

1011

101

110

000









 
 

When there is a carry of 1, you have a situation in which three bits are being 

added (a bit in each of the two numbers and a carry bit). This situation is 

illustrated as follows: 

 

1 ofcarry  with 1 of Sum

1 ofcarry  with 1 of Sum

1 ofcarry  with 0 of Sum

0 ofcarry  with 1 of Sum

1111

1010

1001

0100

1

1

1

1



















bits

carry

 
 

Example 

Add the following binary numbers: 

(a)  11 + 11      (b)   100 + 10 

(c)  111 + 11    (d)   110 + 100 

 

Solution 

The equivalent decimal addition is also shown for reference. 

10

4

1010

100
            

10

3

1010

11
        

6

2

110

10
       

6

3

110

11
      

6   110 )7     111 )4   100 )3   11 )



dcba
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2- Binary Subtraction 

The four basic rules for subtracting bits are as follows: 

 

 

Example 

Perform the following binary subtractions: 

(a)  11 - 01      (b) 11 – 10 

Solution 

1   

2

01   

10
       

2  

1

10  

01
      

3   11  )3   11  )



ba

 

 

Example 

Subtract 011 from 101. 

Solution 

                                         

2  

3

010  

011
   

5   101  

  

 
 

 

 

 H.W 

1- Perform the following binary subtractions. 

a) 111 - 100. 

b) 110-001 

2- Subtract 101 from 110. 

 

 

 

 

 

 

 

 

1 of borrow a  with 101110

101

011

000








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3- Binary Multiplication 

The four basic rules for multiplying bits are as follows: 

111

001

010

000









 

 

Example  

Perform the following binary multiplications: 

(a)  1111           (b)  111101   

Solution  

100011  

11100 
0000     

1001

110

35   

5

111   

101
          

9  

3

11  

11
        

7   111     )3   11    )






ba

 

4- Binary Division 

Division in binary follows the same procedure as division in decimal. 

Example  

Perform the following binary divisions: 

(a)  11110           (b) 10110         (c) 111001       (d) 10010100   

  

 

Solution  

000

110

10

11011

     

)



a

       
0  

6
 

3

62

00      

10   
10      

10    

11

11010

    

)







b

  

0  

9
 

3

93

00      

`11   
110      

11    

11

100111

    

)







c

 

0  

20
 

5

204

00      

`100   
01000      

100    

101

10100100

    

)







d

 

 H.W 

1. Perform the following binary additions: 

a) 10101101    (b) 0110110111   

2. Perform the following binary subtractions: 

a) 01001101  (b) 01111001   

3. Perform the indicated binary operations: 

a) 111110  (b) 0111100   (c)  10101101      (d) 1011111    

.نأخذ الاعداد من الٍسار 

 العدد أصغز ٌضاف صفز الى فً حالت ناتج الطزح لٍس صفز

 الناتج ثم ٌتم إنزال العدد الذي ٌلٍه

 فً حالت بقاء اصفار فقط وناتج الطزح اصفار فقط ٌتم وضعها

 مباشزة فً الناتج
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1.2.5 Signed Binary Numbers 

Positive Signed Binary Numbers 

 
 

Negative Signed Binary Numbers 

 
 

unsigned numbers can have a wide range of representation. But whereas, in case of 

signed numbers, we can represent their range only from 

   1212 11   nn to  

Where n is the number of bits (including sign bit). 

Example:  

For a 5 bit signed binary number (including 4 magnitude bits & 1 sign bit), the 

range will be 

– (2
(5-1) 

– 1)  to  + (2
(5-1)

 – 1) 

-(2
(4)

 – 1 )  to  + (2
(4)

 – 1) 

-15  to  +15 

Unsigned 8- bit binary numbers will have range from 0-255. The 8 – bit signed 

binary number will have maximum and minimum values as shown below. 

The maximum positive number  is     0111 1111    +127 

The maximum negative number is   1000 0000  -127 

  

There are three common ways to represent negative numbers within the 

computer. They are 

1) Signed magnitude representation. 

2) 1‟s compliment representation. 

3) 2‟s complement representation. 
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1- Signed magnitude representation 

The binary numbers which can be identified by their MSB (Most Significant Bit), 

whether they are positive or negative are called “Signed binary numbers”. 

Ex:       )(11001,)(91001 negativepositive                  

This is the simplest way of representing the both positive and negative numbers in 

binary system. In the signed magnitude representation, 

 Positive number is represented with „0‟ at its most significant bit (MSB). 

 Negative number is represented with „1‟ at its most significant bit (MSB). 

2- One’s Complement of a Signed Binary Number 

1‟s complement is another way of feeding the negative binary number to the 

computer. In one‟s complement method , the positive binary numbers are 

unchanged. But the negative numbers are represented by taking 1‟s complement of 

unsigned positive number. 

A positive number always starts with 0, at its MSB while a negative number 

always starts with 1, at its MSB. 

 

Finding the 1’s Complement 

The 1‟s complement of a binary number is found by changing all 1s to 0s and all 

0s to 1s, as illustrated below: 

 complement s1'

number Binary 

   

1

0

  

0

1

  

1

0

  

1

0

  

0

1

  

0

1

  

1

0

  

0

1

    

Ex:If a binary number is 01101001=(105)10, 

then its one‟s complement is 10010110 =(-105)10 

Ex: -33 =? 

33 is represented as (100001)2 

In 8 bit notation, it is represented as (0010 0001)2 

Now, -33 is represented in one‟s compliment as (1101 1110)2 

Ex : -127 =? 

In 8 bit notation, 127 is represented as (0111 1111)2 

Now, -127 is represented in one‟s compliment as (1000 0000)2 

Ex : -1 =? 

1 is represented as (001)2 

In 8 bit notation, it is represented as (0000 0001)2 

Now, -1 is represented in one‟s compliment as (1111 1110)2 
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Subtraction using 1’s compliment 

To subtract a number from another binary number, first it has to be converted into 

its one‟s compliment. 

There are 3 possible cases for subtracting the negatives numbers by using 1‟s 

compliment. 

Case 1 :  Negative number smaller than positive number. 

Ex: (28)10 & (-15)10 

We know 28 is represented in binary number system as (011100)2 

15 is represented in binary number system as (01111)2 

1‟s compliment of 15 is (10000)2 i.e. -15 

 
(13)10 is same as 0 01101 in binary system. 

 

Case 2:  Negative number greater than positive number. 

Ex: (15)10(-28)10  

We know 28 is represented in binary number system as (011100)2 

15 is represented in binary number system as (01111)2 

1‟s compliment of 28 is (100011)2 i.e. -28 

 
(-13)10 is same as 1 10010 in binary system. 

 

Case 3: both are negative. 

Ex: (-28)10 & (-15)10 

We know 28 is represented in binary number system as (011100)2 

1‟s compliment of 28 is (100011)2i.e. -28 

15 is represented in binary number system as (01111)2 

1‟s compliment of 15 is (10000)2 i.e. -15 

 
(-43)10 is same as 1010100 in binary system. 
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3- Two’s Complement of a Signed Binary Number 

Finding the 2’s Complement 

The 2‟s complement of a binary number is found by adding 1 to the LSB of the 1‟s 

complement. 

2‟s complement = (1‟s complement) + 1 

 

Ex Find the 2‟s complement of 10110010. 

complement s2'

               1 Add

complement s1'

number  Binary 

01001110

1           
01001101

10110010

  

Ex: -33 =? 

33 is represented as (100001)2 

In 8 bit notation, it is represented as (0010 0001)2 

Now, -33 is represented in one‟s compliment as (1101 1110)2 

Adding 1 (0000 0001) to it, 

The result is (1101 1111)2 

Therefore, the two‟s complement of the number – 33 is (1101 1111)2. 

Ex: -127 =? 

In 8 bit notation, 127 is represented as (0111 1111)2 

Now, -127 is represented in one‟s compliment as (1000 0000)2 

Adding 1 (0000 0001) to it, 

The result is (1000 0001)2 

Therefore, the two‟s complement of the number -127 is (1000 0001)2 

Ex: -1 =? 

1 is represented as (001)2 

In 8 bit notation, it is represented as (0000 0001)2 

Now, -1 is represented in one‟s compliment as (1111 1110)2 

Adding 1 (0000 0001) to it, 

The result is (0000 0010)2 

Therefore, the two‟s complement of the number -1 is (0000 0010)2 

2's complement subtraction 

For subtracting a smaller number from a larger number, the 2's complement 

method is as follows: 

1. Determine the 2's complement of the smaller number. 

2. Add the 2's complement to the larger number. 

3. Discard the final carry (there is always one in this case). 
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Example  

Use 2‟s complement to subtract the 11001-10011. 

Solution 

          
                      result    

carry  final  theDiscard

                   number    larger 

                    
complement s2'

               1 Add

                     complement s1'

                   number    smaller 

000110

100110

11001
01101  

1      
01100

10011





 

 

 

For subtracting a larger number from a smaller number, the 2's complement 

method is as follows: 

1. Determine the 2's complement of the larger number. 

2. Add the 2's complement to the smaller number. 

3. There is no carry from the left-most column. The result is in 2's complement 

form and is negative. 

4. Change the sign and take the 2's complement of the result to get the final 

answer. 

 

Example  

Subtract 11100 from 10011 Using 2‟s complement. 

Solution 

 

answer final get the sign  to change

                  sign      out h result wit

                                           1 Add

complement s1'

resultfirst 

                          number    smaller 

                             
complement s2'

               1 Add

                              complement s1'

                              number    larger 

01001-

01001  

1        

01000   

10111   

00111
00100  

1      
00011

11100






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1.3 Octal Number  

The octal number system is composed of eight digits, which are 0, 1,2,3,4,5,6,7. To 

count above 7, begin another column and start over 10, 11, 12……etc. 

The octal number system has a base of 8  

  

Decimal Octal Decimal Octal 

0 0 8 10 

1 1 9 11 

2 2 10 12 

3 3 11 13 

4 4 12 14 

5 5 13 15 

6 6 14 16 

7 7 15 17 

 

1.3.1 Octal-to-Decimal Conversion 

The conversion of an octal number to its decimal equivalent is accomplished by 

multiplying each digit by its weight and summing the products, as illustrated here 

for  82374 . 

         
       

 10

0123

8

0123

1276            

4561921024            

14876435122            

848783822374

4732:

8888:









numberbinary

weight

 

 H.W / Determine the decimal value of  8325.0  
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1.3.2 Decimal-to-Octal Conversion 

A method of converting a decimal number to an octal number is the repeated 
division-by-8 method.  

Example  

Convert the following decimal number to octal number 359. 

Solution  

 
 

1.3.3 Octal-to-Binary Conversion 

Because each octal digit can be represented by a 3-bit binary number, it is very 

easy to convert from octal to binary. Each octal digit is represented by three bits as 

shown in Table 2. 

Table 2 

Octal/binary conversion. 

Octal Digit 0 1 2 3 4 5 6 7 

Binary 000 001 010 011 100 101 110 111 

To convert an octal number to a binary number, simply replace each octal digit 

with the appropriate three bits. 

Example  

Convert each of the following octal numbers to binary: 

a) 
813               b)

825              c)
8140                d)

87526  

Solution  

 



31

011001

                          )

numberbinary

a

                      



52

101010

                          )

numberbinary

b

       

 





041

000100001

                          )

numberbinary

c

                  



6257

110010101111

                          )

numberbinary

d
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1.3.4 Binary-to-Octal Conversion 

To convert a binary number to an octal number simply break the binary number to 

groups of three bits and convert each group in to the appropriate octal digit. 

 

Example  

Convert each of the following binary numbers to octal: 

a) 110101   (b)  101111001   (c)  100110011010      (d)  11010000100   

Solution 



8

56

65number  octal

101110)





a

             


8

175

571number  octal

001111101)





b

 

 



8

2364

6324number  octal

010011110100)





c

         


8

4023

3204number  octal

100000010011)





d

 

 

 H.W 

1. Convert the following octal numbers to decimal: 

a) 
873           (b)  

8125  

2. Convert the following decimal numbers to octal: 

a) 
1098          (b) 

10163   

3. Convert the following octal numbers to binary: 

a) 
846           (b) 

8723         (c)  
85624  

4. Convert the following binary numbers to octal: 

a) 110101111         (b) 1001100010              (c) 10111111001 
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1.4 Hexadecimal Numbers 

The hexadecimal number system has sixteen characters; it is used primarily as a 

compact way of displaying or writing binary numbers because it is very easy to 

convert between binary and hexadecimal. 

The hexadecimal number system consists of digits 0–9 and letters A–F. 

Each hexadecimal digit represents a 4-bit binary number (as listed in Table 3). 

Table 3 

Decimal Binary Hexadecimal 

0 0000 0 

1 0001 1 

2 0010 2 

3 0011 3 

4 0100 4 

5 0101 5 

6 0110 6 

7 0111 7 

8 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 

12 1100 C 

13 1101 D 

14 1110 E 

15 1111 F 

1.4.1 Binary-to-Hexadecimal Conversion 

Converting a binary number to hexadecimal is a straightforward procedure. Simply 

breaks the binary numbers into 4-bit groups, starting at the right-most bit and 

replace each 4-bit group with the equivalent hexadecimal symbol. 

 

Example 

Convert the following binary numbers to hexadecimal:  

a) 1100101001010111    (b)  111111000101101001 

Solution  



16

75

57number  lhexadecima

0111010110101100)

CA

a

AC



                 


16

9613

1693number  lhexadecima

10010110000111110011)

F

b

F



  

Two zeros have been added in part (b) to complete a 4-bit group at the left. 

 

 H.W/ Convert the binary number 1001111011110011100 to hexadecimal. 
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1.4.2 Hexadecimal-to-Binary Conversion 

To convert from a hexadecimal number to a binary number, reverse the process 

and replace each hexadecimal symbol with the appropriate four bits. 

 

Example 

Determine the binary numbers for the following hexadecimal numbers:  

a) 
16410A        b)  

168ECF      c) 
169742  

Solution 

 



401

0100101000001

                          )
A

numberbinary

a

     



EFC

numberbinary

b

1110100011111100

                          )
8

 

 





2479

0010010001111001

                          )

numberbinary

c

 

In part (a), the MSB is understood to have three zeros preceding it, thus forming a 

4-bit group. 

 

 H.W/ Convert the hexadecimal number 6BD3 to binary. 

 

1.4.3 Hexadecimal-to-Decimal Conversion 

One way to find the decimal equivalent of a hexadecimal number is to first convert 

the hexadecimal number to binary and then convert from binary to decimal. 

 

Example  

Convert the following hexadecimal numbers to decimal: 

(a)  
161C     (b) 

1685A   

Solution 

Remember; convert the hexadecimal number to binary first, then to decimal. 


10

234

1

284816222

     

11001

                          )





C

numberbinary

a

 

 


10

027911

58

269314128512204822222

     

010110001010

                          )





A

numberbinary

b
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Or using the sum of weights method 

Example  

Convert the following hexadecimal numbers to decimal: 

(a)  
165E     (b) 

1682FB   

Solution 

Recall from Table 3 that letters A through F represent decimal numbers 10 through 

15, respectively. 

10

01

16 2295224)15()1614()165()16(5)  EEa  

)168()16()162()16(82) 0123

16  FBFBb  

                  )18()1615()2562()409611(   

                  
1045816

824021545056




 

 H.W: Convert the following hexadecimal numbers to decimal. 

a) 
166BD         b) 

1660A  

 

1.4.4Decimal-to-Hexadecimal Conversion 

Repeated division of a decimal number by 16 will produce the equivalent 

hexadecimal number, formed by the remainders of the divisions. 

 

Example  

Convert the decimal number 650 to hexadecimal by repeated division by 16. 

Solution 

 
 

 

 H.W: Convert decimal 2591 to hexadecimal. 
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1.5 Binary Coded Decimal (BCD) 

Binary coded decimal (BCD) is a way to express each of the decimal digits with a 

binary code. There are only ten code groups in the BCD system, so it is very easy 

to convert between decimal and BCD. 

 

1.5.1 The 8421 BCD Code 

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded 

decimal means that each decimal digit, 0 through 9, is represented by a binary code 

of four bits. The designation 8421 indicates the binary weights of the four bits
1123 2,2,2,2 . The ease of conversion between 8421 code numbers and the 

familiar decimal numbers is the main advantage of this code. The 8421 code is the 

predominant BCD code, and when we refer to BCD, we always mean the 8421 

code unless otherwise stated.  

You should realize that, with four bits, sixteen numbers (0000 through 1111) can 

be represented but that, in the 8421 code, only ten of these are used. The six code 

combinations that are not used (1010, 1011, 1100, 1101, 1110, and 1111) are 

invalid in the 8421 BCD code. 

 

  

To express any decimal number in BCD, simply replace each decimal digit with 

the appropriate 4-bit code. 

 

 Example 

Convert each of the following decimal numbers to BCD: 

a) 35        (b)  98         (c)170         (d)  2469 

Solution  


   

01010011

)
53



BCD

a

        
   

10001001

)
89



BCD

b

 

 


   

000001110001

)
071



BCD

c

        
   

1001011001000010

 )
9642



BCD

d

 

 

 H.W: Convert the decimal number 9673 to BCD. 

Table 4   
Decimal /BCD conversion.   
decimal Digit 0 1 2 3 4 5 6 7 8 9 

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 
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It is equally easy to determine a decimal number from a BCD number. Start at the  

right-most bit and break the code into groups of four bits. Then write the decimal 

digit represented by each 4-bit group. 

 

Example 

Convert each of the following BCD codes to decimal: 

a) 10000110       (b)  001101010001           (c)  1001010001110000 

Solution 



86number  decimal

01101000)

68





a

   


351number  decimal

000101010011)

153





b

   


9470number  decimal

0000011101001001)

0749





c

 

 

 H.W: Convert the BCD code 10000010001001110110 to decimal. 

 

1.6 BCD Addition 

BCD is a numerical code and can be used in arithmetic operations. Addition is the 

most important operation because the other three operations (subtraction, 

multiplication, and division) can be accomplished by the use of addition. Here is 

how to add two BCD numbers: 

 

Step 1-   Add the two BCD numbers, using the rules for binary addition. 

Step 2:  If a 4-bit sum is equal to or less than 9, it is a valid BCD number. 

Step 3:  If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is 

generated, it is an invalid result. Add 6 (0110) to the 4-bit sum in order to 

skip the six invalid states and return the code to 8421. If a carry results 

when 6 is added, simply add the carry to the next 4-bit group. 

 

Example  

Add the following BCD numbers: 

a) 0011 + 0100      (b)  00100011 + 00010101         (c)  10000110 + 00010011 

    (d)  010001010000 + 010000010111 

Solution 

The decimal number additions are shown for comparison. 

7

4

0111  

0100
      

3     0011 )



a

       
38  

15
23    

      

1000    0011     

0101    0001 

   0011   0010      )


b

     
99  

13
68    

1001      1001     

0011      0001 

   0110     1000      )


c

  

 

867  

417
504    

 0111   0110     0010     

 0111   0001     0010 

   0000   0101     0010      )


d

 

 

 H.W: Add the BCD numbers: 1001000001000011 + 0000100100100101. 
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Example  

Add the following BCD numbers: 

(a)  1001 + 0100             (b)  1001 + 1001          (c)  00010110 + 00010101          

(d)   01100111 + 01010011 

Solution  

The decimal number additions are shown for comparison. 

13  

4
9    

           

number BCD valid

6 Add

9)(number  BCD Invalid     

0011   0001  

0110           
1101              

0100          

1001             )






a

 

 

18  

9
9    

           

number BCD valid

6 Add

carry of because Invalid     

1000   0001  

0110           
0010           1   

1001          

1001             )







b

 

 

31  

15
61    

           

number BCD valid

group.next   to0001carry  Add code, invalid  to6 Add

  valid.is groupleft ),9( invalid is groupRight      

0001        0011  

0110   1           
1011      0010   

1010      0001 

1100      0001    )






c

 

 

120  

53
76    

           

number BCD valid

. groupsboth  6 Add

)9( invalid  are groupsBoth      

0000      0010   0001 

0110   0110         
1010       1011            

0110      0101         
          

1110      0110                     )






d

 

 

 H.W 

1- Add the BCD numbers: 01001000 + 00110100. 

2- Convert the following decimal numbers to BCD: 

(a)  6          (b) 15              (c) 273            (d) 849 

3- What decimal numbers are represented by each BCD code? 

(a)  10001001      (b) 001001111000        (c) 000101010111 
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1.7 Digital Codes 

1.7.1 The Gray Code 

The Gray code is unweighted and is not an arithmetic code; that is, there are 

no specific weights assigned to the bit positions. The important feature of the Gray 

code is that it exhibits only a single bit change from one code word to the next in 

sequence. This property is important in many applications, such as shaft position 

encoders, where error susceptibility increases with the number of bit changes 

between adjacent numbers in a sequence. Table 5 is a listing of the 4-bit Gray code 

for decimal numbers 0 through 15. Binary numbers are shown in the table for 

reference. Like binary numbers, the Gray code can have any number of bits. Notice 

the single-bit change between successive Gray code words. For instance, in going 

from decimal 3 to decimal 4, the Gray code changes from 0010 to 0110, while the 

binary code changes from 0011 to 0100, a change of three bits. The only bit change 

in the Gray code is in the third bit from the right: the other bits remain the same. 

Table 5 

Decimal Binary Gray code 

0 0000 0000 

1 0001 0001 

2 0010 0011 

3 0011 0010 

4 0100 0110 

5 0101 0111 

6 0110 0101 

7 0111 0100 

8 1000 1100 

9 1001 1101 

10 1010 1111 

11 1011 1110 

12 1100 1010 

13 1101 1011 

14 1110 1001 

15 1111 1000 

 

 

 

 

 

 

 

 

 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

23  

 

1.7.2Binary-to-Gray Code Conversion 

Conversion between binary code and Gray code is sometimes useful. The 

following rules explain how to convert from a binary number to a Gray code word: 

1. The most significant bit (left-most) in the Gray code is the same as the 

corresponding MSB in the binary number. 

2. Going from left to right, add each adjacent pair of binary code bits to get the 

next Gray code bit. Discard carries. 

 

Example 

Convert the following binary number 10110 to Gray code. 

Solution  

 
The Gray code is 11101. 

 

1.7.3Gray-to-Binary Code Conversion 

To convert from Gray code to binary, use a similar method; however, there are 

some differences. The following rules apply: 

1. The most significant bit (left-most) in the binary code is the same as the 

corresponding bit in the Gray code. 

2. Add each binary code bit generated to the Gray code bit in the next adjacent 

position. Discard carries. 

 

Example 

Convert the following Gray code word 11011 to binary. 

Solution 

  
The binary number is 10010 
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Example 

a) Convert the binary number 11000110 to Gray code. 

b) Convert the Gray code 10101111 to binary 

 

Solution 

(a) Binary to Gray code: 

 
 

(b) Gray code to binary: 

 
 

 H.W 

a. Convert binary 101101 to Gray code. 

b. Convert Gray code 100111 to binary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

25  

 

2-Logic Gates  
A logic gate is an electronic circuit which makes logic decisions. It has one 

output and one or more inputs. The output signal appears only for certain 

combinations of input signals. Logic gates are the basic building blocks from 

which most of the digital systems.  

 

2.1 Types of Logic Gates 

1-The NOT Gate (Inverter). 

It's so called because its output is NOT the same as its input. It is also called an 

inverter because it inverts the input signal. This is the simplest form of logic gate 

and has only 1 input and 1 output. Simply the purpose of this gate is to invert the 

input signal so if a 0 is at the input, the output will be at 1 and vice versa. The 

symbol for a NOT gate is as follows. 

 
The output of a logic gate can also be summarised in the form of a table, called a 

„Truth Table‟. The truth table for a NOT gate is the simplest of all Truth Tables 

and is shown below. 

 
Input Output 

A Y 

0 1 

1 0 

 

The Boolean expression for a NOT gate is 

AY   
The „bar‟ over the A indicates that the output Y is the opposite of A. 
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2-The AND gate. 

The AND gate is one of the basic gates that can be combined to form any logic 

function. An AND gate can have two or more inputs and performs what is known 

as logical multiplication. The symbol is:  

 
AND gate produces a 1 output only when all of the inputs are 1. When any of the 

inputs is 0, the output is 0.  

 

AND Gate Truth Table 

The logical operation of a gate can be expressed with a truth table that lists all 

input combinations with the corresponding outputs, as illustrated in Table for a 2-

input AND gate. The truth table can be expanded to any number of inputs.  
nN 2  

Where N is the number of possible input combinations and n is the number of 

input variables. To illustrate, 

For two input variables:  22N  = 4 combinations 

For three input variables: 32N = 8 combinations 

For four input variables:  42N = 16 combinations 

 
The truth table for the 2 input AND gate is shown below. 

Inputs Output 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

The Boolean expression for a 2 input AND gate is 

BAY   
Where: „.‟ between the A and B means AND in Boolean algebra. 

 

 

 

 

 

 

 

 

 

 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

27  

 

The AND gate with 3 inputs. 

The symbol is: 

 
 

CBAY   
The truth table for the 3 input AND gate is shown below. 

 

 

 

 

 

 

Example  

If two waveforms, A and B, are applied to the AND gate inputs as in Figure1, what 

is the resulting output waveform? 

 

Figure 1 

 

 

 

 

Inputs Output 

A B C Y 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 
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3-The OR gate. 

The OR gate is another of the basic gates from which all logic functions are 

constructed. An OR gate can have two or more inputs and performs what is known 

as logical addition. The symbol is: 

 

 
The truth table for the 2 input OR gate is shown below. 

Inputs Output 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

An OR gate produces a 1 on the output when any of the inputs is 1. The output is 0 

only when all of the inputs are 0. The Boolean expression for a 2 input OR gate is 

BAY   
Where: „+‟ between the A and B means OR in Boolean algebra. 

 

The OR gate with 3 inputs. 

The symbol is: 

 

CBAY   
 

The truth table for the 3 input OR gate is shown below. 

Inputs Output 
A B C Y 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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Example  

If the two input waveforms, A and B, in Figure2 are applied to the OR gate, what 

is the resulting output waveform? 

Solution  

 
Figure 2 

When either or both input waveforms are 1, the output is 1 as shown by the output 

waveform Y in the timing diagram. 

 

Example  

If the 3-input OR gate waveforms, A, B and C, in Figure3, what is the resulting 

output waveform? 

Solution  

 

Figure 3 

The output is 1 when one or more of the input waveforms are 1 as indicated by the 

output waveform Y in the timing diagram. 
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4 The NAND gate. 

The NAND gate is a popular logic element because it can be used as a universal 

gate; that is, NAND gates can be used in combination to perform the AND, OR, 

and inverter operations. The symbol is: 

 

 
  

The truth table for the 2 input NAND gate is shown below. 

Inputs Output 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

A NAND gate produces a 0 output only when all the inputs are 1. When any of the 

inputs is 0, the output will be 1.The Boolean expression for a 2 input NAND gate 

is 

BAY   
Where:  „.‟ between the A and B means AND, and the „bar‟ means invert the 

output in Boolean algebra. 

The NAND gate with 3 inputs. 

The symbol is: 

 

CBAY   
The truth table for the 3 input NAND gate is shown below. 

 

Inputs Output 
A B C Y 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 
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Example  

If the two waveforms A and B shown in Figure4 below are applied to the NAND 

gate inputs, determine the resulting output waveform. 

 
Figure 4 

Output waveform Y is 0 only during the four time intervals when both input wave-

forms A and B are 1 as shown in the timing diagram. 

 

Example  

Show the output waveform for the 3-input NAND gate in Figure 5 with its proper 

time relationship to the inputs. 

 
Figure 5 

The output waveform Y is 0 only when all three input waveforms are 1 as shown 

in the timing diagram. 
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5-The NOR gate. 

The NOR gate, like the NAND gate, is a useful logic element because it can also 

be used as a universal gate; that is, NOR gates can be used in combination to 

perform the AND, OR, and inverter operations. The symbol is: 

 
The truth table for the 2 input NOR gate is shown below. 

Inputs Output 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

 
A NOR gate produces a 0 output when any of its inputs is 1. Only when all of its 

inputs are 0 is the output HIGH. The Boolean expression for a 2 input NOR gate is 

BAY   
Where: „+‟ between the A and B means OR and the „bar‟ means invert the result in 

Boolean Algebra. 

 

The NOR gate with 3 input. 

The symbol is: 

 

CBAY   
The truth table for the 3 input NOR gate is shown below. 

 

Inputs Output 

A B C Y 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 0 
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Example  

If the two waveforms shown in Figure 3–36 are applied to a NOR gate, what is the 

resulting output waveform? 

 
Figure 6 

Whenever any input of the NOR gate is 1, the output is 0 as shown by the output 

waveform Y in the timing diagram. 

 

Example  

Show the output waveform for the 3-input NOR gate in Figure 7 with the proper 

time relation to the inputs. 

 
Figure 7 

 

 

The output Y is 0 when any input is 1 as shown by the output waveform Y in the 

timing diagram. 
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6- The XOR gate "Exclusive-OR". 

The XOR gate has 2 inputs and is a specialized version of the OR gate. The 

symbol for a 2 input XOR gate is as follows. 

 
 

The truth table for the 2 input XOR gate is shown below. 

 

Inputs Output 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

For an XOR gate, output Y is 1 when input A is 0 and input B is 1, or when input 

A is 1 and input B is 0; Y is 0 when A and B are both 1 or both 0. 

The Boolean expression for a 2 input XOR gate is 

BABABAY   
The „ ‟ between the A and B means Exclusive –OR. 
 

7- The XNOR gate. 

The XNOR gate has 2 inputs and is the inverted form of the EXOR gate. The 

symbol for a 2 input XNOR gate is as follows. 

 
The truth table for the 2 input XNOR gate is shown below. 

 

Inputs Output 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 1 
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For an XNOR gate, output Y is 0 when input A is 0 and input B is 1, or when A is 

1 and B is 0; Y is 1 when A and B are both 1 or both 0. 

 

The Boolean expression for a 2 input XNOR gate is 

 

ABBABAY   
 

The „ ‟ between the A and B means Exclusive OR, and the „bar‟ means that the 

result is inverted.  

 

Example  

Determine the output waveforms for the XOR gate and for the XNOR gate, given 

the input waveforms, A and B, in Figure 8. 

 
Figure 8 
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3-Boolean Algebra and Combinational Logic 
 

Boolean algebra is a mathematical system based on logic. It has its own set of 

fundamental laws which are necessary for manipulating different Boolean 

expressions:  

3.1-Basic rules of Boolean algebra. 

Table 6 

Basic rules of Boolean algebra 

1       7        

2 
        or 

1 A B …   1 
8     ̅    

3        9  ̿    

4        10        

5       11    ̅      

6    ̅    12 (   )(   )       

 

Example  

Prove the following Boolean identities. 

1- AC  ABC  AC 

2- (A  B)(A  C)  A  BC 
3- A  A̅B  A  B 
4- (A  B)(A  B̅)(A̅  C)  AC 
5- ABC  AB̅C  ABC̅  A(B  C) 

 
Solution 

4- AC  ABC  AC  

         (1   )  
                      
 

5- (A  B)(A  C)  A  BC 

(   )(   )                     
                                              
                                  (1       )     
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6- A  A̅B  A  B 

        ̅     1   ̅  
                 (1   )   ̅  
                       ̅  
                    (   ̅) 
                      

 

7- (A  B)(A  B̅)(A̅  C)  AC  

(   )(   ̅)( ̅   )  (         ̅           ̅)( ̅   ) 
                                                   (    ̅      )( ̅   ) 
                                                    (1   ̅   )( ̅   ) 
                                                    (1)( ̅   ) 
                                                      ̅    ) 
                                                     ) 
8- ABC  AB̅C  ABC̅  A(B  C) 

                                            (   ̅)     ̅  
                                               ̅  
                                          (    ̅)  
                                          (   )  
                                          (   )  
 

Example  

Simplify the following Boolean expression          (     )     (     ) 

Solution  

        (     )     (     ) 
                            
                      
      (   1    )       
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Example  

Simplify the following Boolean expression:   AB̅(C   BD)   A̅ B̅ C 

Solution  

     ̅(      )    ̅  ̅   
     (  ̅      ̅      ̅  ̅)  
     (  ̅         ̅  ̅)  
       ̅      ̅  ̅  
      ̅ (      ̅ ) 
    ̅  

 

 

Example  

Simplify the following Boolean expression and show the minimum logic gate 

implementation.          ̅    ̅ ̅   ̅         ̅  

Solution  

     ̅    ̅ ̅   ̅         ̅  

        ̅        ̅ ̅    ̅   ̅   

       ( ̅   )    ̅( ̅   )   ̅   

      (   ̅)   ̅   

        ̅   

        

 

 

 

 

Example  

Simplify the following Boolean expression and show the minimum logic gate 

implementation.        ̅  ̅ ̅     ̅ ̅    ̅  

Solution  

   ̅  ̅ ̅     ̅ ̅    ̅  

       ̅ ̅( ̅   )    ̅  

       ̅( ̅   ) 

    ̅ 
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Example  

Simplify the following Boolean expression and show the minimum logic gate 

implementation.        ̅(   )   ( ̅   )     

Solution  

   ̅(   )   ( ̅   )     

       ̅   ̅   ̅        

       ̅   ( ̅     ̅   ) 

     ̅    
 

 

 

 

 

 

 

Example  

Simplify the expression  (    )(    ) 

Solution 

  (    )(    ) 

                   

       (1     )     

           

 
 

 

Example  

Prove that    ̅      by using truth table. 

Solution  
     ̅  ̅     ̅      

0 0 1 0 0 0 

0 1 1 1 1 1 

1 0 0 0 1 1 

1 1 0 0 1 1 
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Example  

Determine the logic expression for the output Y from the following truth table. 

Simplify and sketch the logic circuit for the simplified expression.  

Solution  

1-  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 0 

        

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

𝐴̅𝐵̅𝐶 

𝐴𝐵̅𝐶 

𝑌  𝐴̅𝐵̅𝐶  𝐴𝐵̅𝐶 

𝑌  𝐵̅𝐶(𝐴̅  𝐴) 

𝑌  𝐵̅𝐶 
 

𝐴̅𝐵𝐶 

𝐴𝐵𝐶 

𝐴𝐵̅𝐶 

𝐴𝐵𝐶̅ 

𝑌  𝐴̅𝐵𝐶  𝐴𝐵̅𝐶  𝐴𝐵𝐶̅  𝐴𝐵𝐶 

𝑌  𝐴̅𝐵𝐶  𝐴𝐵̅𝐶  𝐴𝐵(𝐶̅  𝐶) 

𝑌  𝐴̅𝐵𝐶  𝐴𝐵̅𝐶  𝐴𝐵 

𝑌  𝐵(𝐴̅𝐶  𝐴)  𝐴𝐵̅𝐶 

𝑌  𝐵𝐶  𝐴𝐵  𝐴𝐵̅𝐶 

𝑌  𝐵𝐶  𝐴(𝐵  𝐵̅𝐶) 

𝑌  𝐵𝐶  𝐴𝐵  𝐴𝐶) 

𝑌  𝐶(𝐴  𝐵)  𝐴𝐵 
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Example: 

 State the logic functions performed by the circuits below 

a-  

 
 

b-  

  
 

c-  

 
 

d-  

 
 

e-  

 
 

f-  

 
 

 

𝑌  (𝐴  𝐵) (𝐵  𝐶) 
 

𝑌  𝐴  (𝐵 𝐶 𝐷) 
 

𝑌  (𝐴̅𝐵  𝐴𝐵̅)(𝐴  𝐵̅) 

      (𝐴̅𝐵  𝐴𝐵̅)(𝐴  𝐵̅) 

      (    𝐴𝐵̅  𝐴𝐵̅) 

𝑌  𝐴𝐵̅ 

𝑌  (𝐴̅  𝐵̅)(𝐴  𝐵) 

      (  𝐴̅𝐵  𝐴𝐵̅   ) 

      𝐴̅𝐵  𝐴𝐵̅ 

𝑌  𝐴 𝐵 

𝐹  𝑊̅  𝑊̅𝑍  𝑋𝑌𝑍̅ 

𝐹  𝑊̅(1  𝑍)  𝑋𝑌𝑍̅ 

    𝐹  𝑊̅  𝑋𝑌𝑍̅ 
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3.2-DeMorgan’s Theorems 

These theorems consist of two rules of a great help in simplifying complicated 

logical expression. It can be stated as follows. 

1-    ̅̅ ̅̅ ̅̅ ̅̅   ̅  ̅ 

2-    ̅̅ ̅̅ ̅   ̅   ̅ 

The first statement says that the complement of a sum equals the product of 

complements. The second statement says that the complement of a product equals 

the sum of the complements.   In fact, it allows transformation from a sum-of-

products from to a product-of-sum from. 

These rules are illustrated by the gate equivalencies and truth tables in the 

following figure. 

 

 

       ̅̅ ̅̅ ̅  ̅   ̅ 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 0 0 

 

 

       ̅̅ ̅̅ ̅̅ ̅̅   ̅  ̅ 

0 0 1 1 

0 1 0 0 

1 0 0 0 

1 1 0 0 
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Example  

Simplify the following Boolean expression      ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (   ̅̅̅ ̅̅ ̅̅ ̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

 Solution  

      ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (   ̅̅̅ ̅̅ ̅̅ ̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

  (    ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)   (   ̅̅̅ ̅̅ ̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

  (    ̅) ( ̅     ̅) 

 

Example  

Determine the Boolean expression for the logic circuit shown below.  Simplify the 

Boolean expression using Boolean Laws and De Morgan‟s theorem. Redraw the 

logic circuit using the simplified Boolean expression. 

Solution  

 

 

 

 

 

 

 

 

 

 

  (  ) (    ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

  (  ) (  ̅̅ ̅̅  ̅̅) 

  (  ) ( ̅   ̅)  

  (  ) ( ̅   ̅ ) 

  (  ) ( ̅   ̅ ) 

   ̅   
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Example  

Determine the output of the logic circuit shown in Fig. below.  Simplify the output 

Boolean expression and sketch the logic circuit. 

Solution  

 

 
 

The output of the circuit can be obtained by determining the output of each logic 

gate while working from left to right. 

 
 

  (  ̅)  (  ̅̅ ̅̅ ) 

    ̅   ̅   ̅ 

   ̅(  1)  ̅ 

   ̅   ̅ 
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3.2.1The Universal Property of NAND and NOR Gates 

The universality of the NAND gate means that it can be used as an inverter and 

that combinations of NAND gates can be used to implement the AND, OR, and 

NOR operations. Similarly, the NOR gate can be used to implement the inverter 

(NOT), AND, OR, and NAND operations. 

The NAND Gate as a Universal Logic Element 

The NAND gate is a universal gate because it can be used to produce the NOT, the 

AND, the OR, and the NOR functions. An inverter can be made from a NAND 

gate by connecting all of the inputs together and creating, in effect, a single input, 

as shown in Figure below part(a) for a 2-input gate. An AND function can be 

generated by the use of NAND gates alone, as shown in Figure below part (b). An 

OR function can be produced with only NAND gates, as illustrated in part (c). 

Finally, a NOR function is produced as shown in part (d).  

Combinations of NAND gates can be used to produce any logic function. 
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The NOR Gate as a Universal Logic Element 

Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR, 

and NAND functions. A NOT circuit, or inverter, can be made from a NOR gate 

by connecting all of the inputs together to effectively create a single input, as 

shown in Figure below part (a) with a 2-input example. Also, an OR gate can be 

produced from NOR gates, as illustrated in Figure below part (b). An AND gate 

can be constructed by the use of NOR gates, as shown below  
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3.3Standard Forms of Boolean Expressions 

All Boolean expressions, regardless of their form, can be converted into either of 

two standard forms: the sum-of-products form or the product-of-sums form. 

Standardization makes the evaluation, simplification, and implementation of 

Boolean expressions much more systematic and easier. 

3.3.1 The Sum-of-Products (SOP) Form  

A product term was defined as a term consisting of the product (Boolean 

multiplication) of literals (variables or their complements). When two or more 

product terms are summed by Boolean addition, the resulting expression is a sum-

of-products (SOP). Some examples are 

         
             ̅  ̅ 
 ̅     ̅  ̅       
Also, an SOP expression can contain a single-variable term, as in 

        ̅       ̅.  

In an SOP expression a single overbar cannot extend over more than one variable; 

however, more than one variable in a term can have an overbar. For example, an 

SOP expression can have the term  ̅  ̅  ̅ but not    ̅̅ ̅̅ ̅̅   
 

Implementing an SOP expression simply requires ORing the outputs of two or 

more AND gates. A product term is produced by an AND operation, and the sum 

(addition) of two or more product terms is produced by an OR operation. 

Therefore, an SOP expression can be implemented by AND-OR logic in which the 

outputs of a number as shown below for the expression             . The 

output X of the OR gate equals the SOP expression. 
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Converting Product Terms to Standard SOP:  

Each product term in an SOP expression that does not contain all the variables 

in the domain can be expanded to standard SOP to include all variables in the 

domain and their complements. As stated in the following steps, a nonstandard 

SOP expression is converted into standard form using Boolean algebra rule 

(     ̅    1) from Table 6: A variable added to its complement equals 1.  

Step 1: Multiply each nonstandard product term by a term made up of the sum 

of a missing variable and its complement. This results in two product 

terms. 

As you know, you can multiply anything by 1 without changing its 

value. 

 Step 2: Repeat Step 1 until all resulting product terms contain all variables in 

the domain in either complemented or uncomplemented form. In 

converting a product term to standard form, the number of product 

terms is doubled for each missing variable. 

 

Example  

Convert the following Boolean expression into standard SOP form:  

  ̅     ̅ ̅       ̅  
 Solution 

The domain of this SOP expression           
The first term:  

  ̅      ̅ (     ̅)      ̅       ̅  ̅ 

In this case, two standard product terms are the result.  

The second term,  

 ̅ ̅     ̅ ̅(     ̅)     ̅ ̅     ̅ ̅ ̅ 
 ̅ ̅ (   ̅)    ̅ ̅ ̅(   ̅)   ̅ ̅    ̅ ̅  ̅   ̅ ̅ ̅   ̅ ̅ ̅ ̅ 

In this case, four standard product terms are the result.  

The third term,    ̅ , is already in standard form.  

The complete standard SOP form of the original expression is as follows:  

  ̅       ̅  ̅   ̅ ̅    ̅ ̅  ̅   ̅ ̅ ̅   ̅ ̅ ̅ ̅     ̅  
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3.3.2 Product of Sums (POS) Form 

A sum term was defined before as a term consisting of the sum (Boolean addition) 

of literals (variables or their complements). When two or more sum terms are 

multiplied, the resulting expression is a product-of-sums (POS). Some examples 

are  

( ̅     )(      ̅    ) 
(     ̅     ̅)(      ̅     )(         ) 
(     ̅)(    ̅     )(     ) 
A POS expression can contain a single-variable term, as in  

A(A   B   C)(B   C   D)   
In a POS expression, a single overbar cannot extend over more than one variable; 

however, more than one variable in a term can have an overbar. 

For example, a POS expression can have the term A̅    B ̅   C̅ but not 

A   B  C ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.  

Implementation of a POS Expression simply requires ANDing the outputs of two 

or more OR gates. A sum term is produced by an OR operation and the product of 

two or more sum terms is produced by an AND operation. Figure below shows for 

the expression(   )(     )(   ). The output X of the AND gate equals 

the POS expression.  

 
 

The Standard POS Form 

 So far, you have seen POS expressions in which some of the sum terms do not 

contain all of the variables in the domain of the expression. For example, the 

expression 

(     ̅     ) (         ̅) (      ̅     ̅    ) 
has a domain made up of the variables A, B, C, and D. Notice that the complete set 

of variables in the domain is not represented in e first two terms of the expression; 

that is,   or  ̅ is missing from the first term and   or  ̅ is missing from the second 

term.  

A standard POS expression is one in which all the variables in the domain appear 

in each sum term in the expression. For example, 
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 ( ̅     ̅         )(     ̅         )(             )  
is a standard POS expression. Any nonstandard POS expression (referred to simply 

as POS) can be converted to the standard form using Boolean algebra.  

 

Converting a Sum Term to Standard  

POS Each sum term in a POS expression that does not contain all the 

variables in the domain can be expanded to standard form to include all variables 

in the domain and their complements. As stated in the following steps, a 

nonstandard POS expression is converted into standard form using Boolean 

algebra rule  (    ̅   ) from Table 6: 

Step 1: Add to each nonstandard product term a term made up of the product 

of the missing variable and its complement. This results in two sum 

terms.  

As you know, you can add 0 to anything without changing its value. 

Step 2: Apply the rule from Table 6:          (     )(     )  
Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the 

domain in either complemented or noncomplemented form.  

 

Example  

Convert the following Boolean expression into standard POS form: 

 (      ̅    )( ̅         ̅)(     ̅     ̅     )  
Solution  

The domain of this POS expression is A, B, C, D. 

 The first term, 

      ̅             ̅           ̅ 
  (      ̅        )(      ̅        )  

The second term,  

 ̅         ̅     ̅         ̅      ̅  
  (     ̅         ̅)(  ̅    ̅         ̅)  

The third term,(     ̅     ̅     ), is already in standard form.  

The standard POS form of the original expression is as follows:  
(    ̅      )(   ̅     )(   ̅     ̅)(  ̅   ̅     ̅)(     ̅     ̅     )   
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3.4 Minterms and Maxterms 

3.4.1 Minterms 

Each row of a truth table can be associated with a minterm, which is a product 

(AND) of all variables in the function, in direct or complemented form. A minterm 

has the property that it is equal to 1 on exactly one row of the truth table. 

Here is the three-variable truth table and the corresponding minterms: 

      minterm 

0 0 0  ̅ ̅ ̅     

0 0 1  ̅ ̅     

0 1 0  ̅  ̅     

0 1 1  ̅      

1 0 0   ̅ ̅     

1 0 1   ̅     

1 1 0    ̅     

1 1 1        

The subscript on the minterm is the number of the row on which it equals 1. 

(The row numbers are obtained by reading the values of the variables on that row 

as a binary number). 

Minterms provide a way to represent any Boolean function algebraically, 

once its truth table is specified. The function is given by the sum (OR) of those 

minterms corresponding to rows where the function is 1. By the minterm property, 

the OR will contain a term equal to 1 (making the function 1) on exactly those 

rows where the function is supposed to be 1. 
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Example:  

Suppose a function   is defined by the following truth table: 

        

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

Since   1 on rows 1, 2, 4, and 7, we obtain 

               
   ̅ ̅   ̅  ̅    ̅ ̅      

 

A compact notation is to write only the numbers of the minterms included in 

 , using the Greek letter capital sigma to indicate a sum:  

  ∑(1      ) 

This form can be written down immediately by inspection of the truth table. 

 

3.4.2 Maxterm 

Each row of a truth table is also associated with a maxterm, which is a sum 

(OR) of all the variables in the function, in direct or complemented form. A 

maxterm has the property that it is equal to 0 on exactly one row of the truth table. 

Here is the three-variable truth table and the corresponding maxterms: 

      maxterms 

0 0 0          

0 0 1      ̅     

0 1 0    ̅       

0 1 1    ̅   ̅     

1 0 0  ̅         

1 0 1  ̅     ̅     

1 1 0  ̅   ̅       

1 1 1  ̅   ̅   ̅     
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Like minterms, maxterms also provide a way to represent any Boolean 

function algebraically once its truth table is specified. The function is given by the 

product (AND) of those maxterms corresponding to rows where the function is 0. 

By the maxterm property, the AND will contain a term equal to 0 (making the 

function 0) on exactly those rows where the function is supposed to be 0. 

Example: 

 For the same function as previously, we observe that it is 0 on rows 0, 3, 5, and 6. 

Solution 

        

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 

               
  (     )(   ̅   ̅)( ̅     ̅)( ̅   ̅   ) 

 
 

 

This form also lends itself to a compact notation: using the Greek letter capital pi 

to denote a product, we write only the numbers of the maxterms included in  :  

  ∏(       ) 

Two Boolean functions are equivalent if their   forms are the same. 

 Note that each maxterm is the complement of its corresponding minterm and vice 

versa. 
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3.5 KARNAUGH MAP MINIMIZATION 

A Karnaugh map provides a systematic method for simplifying Boolean 

expressions and, if properly used, will produce the simplest SOP or POS 

expression possible. 

The map format:- the k-map is composed of an arrangement of adjacent cells each 

representing are particular combination of variables in product form. Since the 

total number of combination of     variables and their complement is    , the k-

map consist of     cells. For example, there are four combinations of the products 

of two variables (A and B) and their complements  ̅ ̅  ̅    ̅  and   , therefore, 

the k-map must have four cells, with each cell representing one of the variables 

combinations , as illustrated below. 
 

  ̅   

 ̅  ̅ ̅   ̅ 

   ̅     

 

  ̅   

 ̅ 0 2 

  1 3 

Extensions of the k-map to three and four variables are shown below 

  
 

  ̅ ̅  ̅       ̅ 

 ̅ 0 2 6 4 

  
1 3 7 5 

 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 4 12 8 

 ̅  1 5 13 9 

   3 7 15 11 

  ̅ 2 6 14 10 

Notice that the cells are arranged such that there is only a single variable change 

between any adjacent cells. 

K-maps of five, six or more variables can be constructed, but they are quite 

impractical except when implemented a computer. 

  

 Plotting a Boolean expression:- Once a Boolean expression is in the sum-of-

product form, you can plot it on the k-map by placing a 1 in each cell 

corresponding to a term in the sum-of-products expression. For example, the 3-

variable expression  ̅      ̅      is plotted in the k-map below. 
 
 
 
 
 
 
 
 
 

  ̅ ̅  ̅       ̅ 

 ̅ 0 0 1 0 

  0 1 1 0 
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 Grouping cells for simplification:- You can group 1's that are in adjacent cells 

according to the following rules by drawing  a loop around those cells: 

1- Adjacent cells are cells that differ by only one variable (for example      

and    ̅. 

2- The 1's in adjacent cells must be command in groups of 1, 2, 4, 8, 16, and so 

on.  

3- Each group of 1's should be maximized to include the largest number of 

adjacent cells as possible in accordance with rule 2. 

4- Every 1's in the map must be included in at least one group. There can be 

overlapping groups if they include non common 1's. 

For example   

 

  
 
 
 
 
 
 
 
 
 
 
 
 

 Simplifying the expression:- In order to write the simplified Boolean expression, 

follow the rules: 

1- Each group of 1's creates a product term composed of all variables that appear 

in only one form (complemented or uncomplemented) within the group 

variables that appear both uncomplemented and complemented are eliminated. 

2- The final simplified expression is formed by summing the product terms of all 

the groups. for example  

 
 

 

 

 

 

 

 

 

 

 

 

 

The simplified expression:- 

 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 1 1 

 ̅  1 1 1 1 

   1 1 1 1 

  ̅ 0 1 0 0 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 1 1 

 ̅  1 1 1 1 

   1 1 1 1 

  ̅ 0 1 0 0 

𝐹  𝐴𝐶̅  𝐷  𝐴̅𝐵𝐶 

𝐴𝐶̅ 

𝐷 

𝐴̅𝐵𝐶 
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 Summary of using the k-map 

1- Construct a   -cell k-map for the   variables  

2- Put 1's in the cells corresponding to the terms of the Boolean expression to be 

simplified, and put 0's elsewhere. 

3- Combine the cells containing 1's as you have learned before. 

4- Write the simplified expression. 

 

Example 

Minimize the expression:-      ̅   ̅    ̅ ̅   ̅ ̅ ̅    ̅ ̅  
Solution 

 

   ̅   ̅ 

 

 

 

 

 

 

Example  

Reduce the following 4-variables function to its minimum sum-of-product form:- 
   ̅ ̅ ̅ ̅   ̅  ̅ ̅     ̅ ̅    ̅ ̅ ̅   ̅ ̅     ̅    ̅ ̅  ̅   ̅   ̅      ̅    ̅  ̅ 

Solution  

   ̅   ̅ 
 

We have simplified X from ten 4-inputs ANDs and one 10-input OR to one 2-input 

AND and one 2-input OR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ 1 0 0 1 

  1 1 0 1 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 1 1 1 1 

 ̅  0 0 0 0 

   1  0 1 

  ̅ 1 1 1 1 
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Example 

Minimize the expression:-   

   ̅ ̅ ̅ ̅   ̅ ̅  ̅    ̅ ̅ ̅   ̅     ̅  ̅ 

Solution  

The term  ̅   must be expanded into  ̅    and  ̅ ̅   to get the standard  

SOP expression, which is then mapped; the cells are grouped as shown below 

 ̅  (   ̅)   ̅     ̅ ̅   

   ̅ ̅ ̅ ̅   ̅ ̅  ̅    ̅ ̅ ̅   ̅     ̅ ̅     ̅  ̅ 

  ∑(          1 ) 

The corner of the map can be grouped together when they are 1's 

 

 

 

 

 

 

 

 

 

   ̅ ̅   ̅   

 

Example  

Use a Karnaugh map to minimize the following standard POS expression: 

  (         )(         ̅)(     ̅     )(     ̅     ̅)( ̅     ̅     ) 
Solution 

  ∏(  1      )  

 ̅   ̅    ̅ 

   ̅    ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

   ( ̅   ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 1 0 0 1 

 ̅  0 0 0 0 

   1 1 0 0 

  ̅ 1 0 0 1 

 A̅B̅ A̅B AB AB̅ 

C̅ 0 0 0 1 

C 0 0 1 1 
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Example  

Use a Karnaugh map to minimize the following POS expression: 
  (     )( ̅       )(     ̅   )( ̅       ̅)(   ̅     )( ̅   ̅     ) 

Solution 

The term (B  C  D)must be expanded into         and  ̅        

to get a standard POS expression, which is then mapped; and the cells are grouped 

as shown in Figure below. 

  ∏(          1 )  

 ̅   ̅ ̅    ̅ ̅   ̅ ̅ ̅ 
  (   )( ̅     )(     ) 
 

 

 

 

 

 

 

 

Don't-Care  

In some situations, we don't care about the value of a logic function. For example, 

if we use         to represent a number from 0 to 9, we need not worry about the 

function value produced for           1    1    
For these situations, the function can be assigned an output in order to make the 

resulting circuit as simple as possible.  

Suppose we wish to implement the function  

 (       )  ∑(       )  

And we have the don't-care condition of 

  ∑(1  11 1  1  1  1 )  

The sum-of-products implementation: 

 

           
 

 

 

 

 

 

 

 

 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 0 0 

 ̅  1 1 1 0 

   1 1 1 1 

  ̅ 0 1 1 1 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 x 0 

 ̅  0 1 x 0 

   1 1 x x 

  ̅ 0 1 x x 
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Example 

Simplify the following Boolean function, with the don‟t-care conditions d 

: (       )  ∑(1   1  11 1 )  ∑ (  1 ) 

Solution  
      ̅ ̅    ̅  
 

 

 

 

 

 

 

 

 

Example 

Simplify the following Boolean function, with the don‟t-care conditions d: 
  (       )  ∑(  1      )  ∑ (     ) 
Solution  

  1 

 

 

 

 

 

 

 

Example 

Simplify the following Boolean function, with the don‟t-care conditions d: 

 (       )  ∑ (      1  1 )   ∑  (    1 ) 
 
 

Solution   

    ̅   ̅ ̅     ̅  
 

 

 

 

 

 

 

 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 0 0 

 ̅  1 x 1 0 

   0 1 x 1 

  ̅ 0 0 0 1 

 A̅B̅ A̅B AB AB̅ 

C̅ 1 1 X 1 

C 1 X X 1 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 1 x 0 1 

 ̅  0 0 1 0 

   0 0 0 0 

  ̅ x 1 1 x 
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3.6 Designing combinational logic circuits 

In this section we start with an equation or truth table that describes algebraic 

function and from it we will determine the circuit required to implement the 

function. For example, the Boolean expression:           by inspection we 

can tell that this function is composed of two terms    and     the first term 

could be implemented by ANDing  A with B and similarly , that second term could 

be implemented by ANDing C,D and E together. Next, the output forms the first 

and the second AND gates are ORed to give the final value of the function   as 

shown below. 

 
Sometimes, we'll begin with the truth table for algebraic function. In such case we 

can write the Boolean expression form the truth table, simplify it when possible, 

and then implement the simplified logic circuit. 

  

A General design procedure: 

1- The number of variables, input variables and variables in determined. 

2- The input and output variables are assigned letters (symbols). 

3- The truth table that defines the required relationships between input and 

output variables is derived. 

4- The simplified Boolean functions for each output are obtained. 

5- The logic diagram is drawn. 

The following examples will make the design procedure of logic circuit clear and 

easy. 

Example  

Design logic circuit for the following expression. 

1-   (   ̅̅ ̅̅ ̅)(   ̅̅ ̅̅ ̅)( ̅  ̅̅̅ ̅̅ ̅) 

2-       ̅    ̅  ̅   ̅     ̅   ̅   ̅    

 
Solution 

1-  

  (   ̅̅ ̅̅ ̅)(   ̅̅ ̅̅ ̅)( ̅  ̅̅̅ ̅̅ ̅) 

  (  ̅̅ ̅̅ )( ̅ ̅̅̅ ̅̅ ) 

  (  ̅̅ ̅̅ )(   ) 

The logic cct is as shown beside  

2-       ̅    ̅  ̅   ̅    
 ̅   ̅   ̅    
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      ̅    ̅  ̅   ̅     ̅   ̅ 

     ̅(   ̅)   ̅  (   ̅) 

     ̅   ̅   

 

 

 

 

 

 

 

 

 

 

Example  

Design the logic circuit that can implement the truth table below using NAND 

gates only. 

 

 

 

 

 

 

 

 

 

 

Solution 

    ̅   ̅ ̅ 
By using NAND 

    ̅   ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

  (  ̅̅̅ ̅̅ ) ( ̅ ̅̅̅ ̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

 
 

 

 

        

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 0 

 A̅B̅ A̅B AB AB̅ 

C̅ 1 0 0 1 

C 0 0 0 1 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

62  

 

Example  

Design the logic circuit that can implement the truth table below using POS and 

SOP forms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-POS forms  

 

 

 

 

 

 

 

 

 

 

 ̅   ̅      ̅  

   ̅̅   ̅      ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

  ( ̅ ̅̅ ̅̅ )(  ̅̅ ̅̅ )( ̅ ̅̅ ̅̅ ) 

  (   ̅)( ̅   ̅)(   ̅) 
 

 

 

 

Inputs Output 

A B C D Y 

0 0 0 0 1 

0 0 0 1 0 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 x 

1 0 0 0 1 

1 0 0 1 0 

1 0 1 0 x 

1 0 1 1 0 

1 1 0 0 x 

1 1 0 1 1 

1 1 1 0 0 

1 1 1 1 0 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 1 1 x 1 

 ̅  0 0 1 0 

   0 x 0 0 

  ̅ 1 0 0 x 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 1 1 x 1 

 ̅  0 0 1 0 

   0 x 0 0 

  ̅ 1 0 0 x 

Solution  

1-SOP forms 

𝑌  𝐶̅𝐷̅  𝐵̅𝐷̅  𝐴𝐵𝐶̅ 
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Example  

Design the logic circuit that can implement the truth table below using POS and 

SOP forms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example  

Design the logic circuit that can implement the truth table below using POS and 

SOP forms. 

 

 

 

 

 

 

 

 

 

 

 

 

2-POS forms 

 

 
          ̅   ̅  

             ̿   ̅ ̅̅ ̅̅     ̅ 

Inputs Output 

A B C D Y 

0 0 0 0 1 

0 0 0 1 0 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 0 1 0 

1 0 1 0 x 

1 0 1 1 x 

1 1 0 0 x 

1 1 0 1 x 

1 1 1 0 x 

1 1 1 1 x 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 1 1 x 1 

 ̅  0 0 x 0 

   0 0 x x 

  ̅ 1 1 0 x 

Inputs Output 

A B C Y 

0 0 0 1 

0 0 1 0 

0 1 0 x 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 x 

1 1 1 x 

 A̅B̅ A̅B AB AB̅ 

C̅ 1 x x 1 

C 0 1 x 0 

 A̅B̅ A̅B AB AB̅ 

C̅ 1 x x 1 

C 0 1 x 0 

Solution  

SOP and POS forms 

∴ 𝑌  𝐷̅ 

1- SOP → 𝑌  𝐷̅ 

2- POS→ 𝑌̅  𝐷 

Solution  

1-SOP forms 

 𝑌  𝐵  𝐶̅ 
 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

64  

 

4-Function of Combinational Logic 
 

4.1Adders and Subtractor:  

In this section we'll consider the following 

1- The Half-Adder (HA). 

2- The Full-Adder (FA). 

3- The Half-Subtractor (HS). 

4- The Full- Subtractor (FS). 

 

4.1.1 The Half-Adder (HA) 

It can add two binary digits (bits) at time. As we know, binary addition of two bits 

always produces a 2-bit output data, i.e. one for the SUM and one for the CARRY. 

For example, (1+1) gives a sum 0 and a carry of 1. Also, (0+0) gives a sum 0 and a 

carry of 1. That is why the adder has two outputs: one for the SUM and the other 

for the CARRY.  

    

 

 

 

 

 

 

 

 

 

The sum S output has the same logic pattern as when A XORed with B. Also the  
C carry output has the same logic pattern as when A is ANDed with B as shown 

below.  

 
Logic circuit of a half- adder 

 

The circuit is called a half-adder because it cannot accept a carry in from previous 

additions. For this purpose, we need a 3-input adder called the full-adder. 

 

 

 

Table 7 

Half-Adder truth table. 

inputs outputs 

    S C 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

Where: 

𝑆 = sum 

𝐶= output carry 

A and B = input variables (operands) 
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4.1.2 The Full-Adder (FA). 

As shown in the block diagram below, it has three inputs and two outputs. It can 

add three bits at a time. The bits A and B are to be added and the third input     

comes from the carry generated from pervious addition. 

 
 

One of the outputs is a sum ∑ and the other is a carry-out    . The truth table 

gives all possible input / output relationships for the full-adder.  

 

  ∑    ̅ ̅     ̅   ̅    ̅  ̅      

 

         

      ̅       ̅        ̅        

     (  ̅    ̅)       (  ̅     ) 

     (   )        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Table 8 

Full-Adder truth table. 

inputs outputs 

               

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Complete logic circuit for a full-adder  
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The full-adder can be constructed from two half adder and one OR gate as shown 

below. 

 
Arrangement of two half-adders to form a full-adder 

 Note: these adders can also perform subtraction by the method of 2's complement. 
 

 

4.1.3Parallel Binary Adders 

To add two binary numbers, a full-adder (FA) is required for each bit in the 

numbers. So for 2-bit numbers, two adders are needed; for 4-bit numbers, four 

adders are used; and so on. The carry output of each adder is connected to the carry 

input of the next higher-order adder, as shown in Figure below for a 2-bit adder. 

 

 Notice that either a half-adder can be used for the least significant position or the 

carry input of a full-adder can be made 0 (grounded) because there is no carry 

input to the least significant bit position. 

 
Block diagram of a basic 2-bit parallel adder using two full-adders. 

 

 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

67  

 

 
 Block diagram for 4-bit parallel adder  

 

4.1.4 The Half-Subtractor (HS) 

It can subtract two bits at time and produce an output of a difference and another 

for borrow. 

 

 

 

 

 

 

The operation of a half-Subtractor is based on the rules of binary subtractions.  

The difference (D) in the 3
rd

 column has the same logic pattern as when A is 

XORed with B. The borrow output in the 4
th

 column (W) can be obtaining by 

ANDing  ̅ with B. therefore; the logic circuit for the HS is as shown below:    
 

 

 

 

 

 

 

 

 

 

 

Table 9 

Half- Subtractor  truth table. 

inputs outputs 

    D W 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

𝐷   𝐴 𝐵 
𝑊   𝐴̅𝐵 
 

Logic circuit of a half- subtractor 
 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

68  

 

4.1.5 The Full- Subtractor (FS). 

A full subtractor performs subtraction operation on two bits, a minuend and a 

subtrahend, and also takes into consideration whether a „1‟ has already been 

borrowed by the previous adjacent lower minuend bit or not. As a result, there are 

three bits to be handled at the input of a full subtractor, namely the two bits to be 

subtracted and a borrow bit designated as    . There are two outputs, namely the 

DIFFERENCE output D and the BORROW output  . The BORROW output bit 

tells whether the minuend bit needs to borrow a „1‟ from the next possible higher 

minuend bit. The truth table of a full subtractor is as shown in the table 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Boolean expressions for the two output variables are given by the equations 

   ̅ ̅     ̅  ̅     ̅ ̅         

        

    ̅ ̅     ̅  ̅    ̅           

      ( ̅ ̅    )   ̅ ( ̅      ) 

      (  ̅̅ ̅̅ ̅̅ ̅)   ̅  

 

 
Complete logic circuit for a full-subtractor  

 

Table 10 

Full- subtractor truth table. 

inputs outputs 

Minuend 

   

Subtrahend 

                 

Borrow In Difference 

                 

Borrow Out 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 
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As shown in figure below a full subtractor can be constructed from two HSs and an 

OR gate. 

 

 
Implementation of a full subtractor with half-subtractors 

 

It may be remarked have that by cascading 4 full-subtractors, we can directly 

subtract 4-bit number, i.e. we can                from              . 

 
Four-bit subtractor 

 

 

4.1.6 Controlled Inverter 

A controlled inverter is needed when an adder is to be used as a subtractor. As 

outlined earlier, subtraction is nothing but addition of the 2‟s complement of the 

subtrahend to the minuend. Thus, the first step towards practical implementation of 

a subtractor is to determine the 2‟s complement of the subtrahend. And for this, 

one needs firstly to find 1‟s complement. A controlled inverter is used to find 1‟s 

complement. A one-bit controlled inverter is nothing but a two-input XOR gate 

with one of its inputs treated as a control input, as shown in Fig. below part (a). 

When the control input is LOW, the input bit is passed as such to the output. 

(Recall the truth table of an XOR gate.) When the control input is HIGH, the input 

bit gets complemented at the output. Figure part(b) shows an eight-bit controlled 

inverter of this type. When the control input is LOW, the output (Y7 Y6 Y5 Y4 Y3 

Y2 Y1 Y0) is the same as the input (A7 A6 A5 A4 A3 A2 A1 A0). When the 

control input is HIGH, the output is 1‟s complement 
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(a) One-bit controlled inverter and (b) eight-bit controlled inverter 

 

 

Adder–Subtractor 

Subtraction of two binary numbers can be accomplished by adding 2‟s 

complement of the subtrahend to the minuend and disregarding the final carry, if 

any. If the MSB bit in the result of addition is a „0‟, then the result of addition is 

the correct answer. If the MSB bit is a „1‟, this implies that the answer has a 

negative sign. The true magnitude in this case is given by 2‟s complement of the 

result of addition. 

 
Four-bit adder-subtractor 
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4.2 Magnitude Comparators 

The basic function of a comparator is to compare the magnitudes of two binary 

quantities to determine the relationship of those quantities. In its simplest form, a 

comparator circuit determines whether two numbers are equal. The XNOR gate 

can be used as a basic comparator because its output is a 0 if the two input bits are 

not equal and a 1 if the input bits are equal. Figure below shows the XNOR gate as 

a 2-bit comparator. 

 
Basic comparator operation 

In order to compare binary numbers containing two bits each, an additional 

XNOR gate is necessary. The two least significant bits (LSBs) of the two numbers 

are compared by gate G1, and the two most significant bits (MSBs) are compared 

by gate G2, as shown in Figure below. If the two numbers are equal, their 

corresponding bits are the same, and the output of each XNOR gate is a 1. If the 

corresponding sets of bits are not equal, a 0 occurs on that XNOR gate output. 

 

In order to produce a single output indicating an equality or inequality of two 

numbers, an AND gate can be combined with XNOR gates. The output of each 

XNOR gate is applied to the AND gate input. When the two input bits for each 

XNOR are equal, the corresponding bits of the numbers are equal, producing a 1 

on both inputs to the AND gate and thus a 1 on the output. When the two numbers 

are not equal, one or both sets of corresponding bits are unequal, and a 0 appears 

on at least one input to the AND gate to produce a 0 on its output. Thus, the output 

of the AND gate indicates equality (1) or inequality (0) of the two numbers. 

 
Logic diagram for equality comparison of two 2-bit numbers 
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Example  

Design a complete magnitude comparator that compares two 2-bit binary numbers. 

Solution  

  

              1  

              1 
              1 
 

For simplicity, let                                
 

 

 

 

 

 

 

 

For the output X 
 

 

 

 

 

 

 

 

 

 

 

    ̅    ̅ ̅     ̅ 

     ̅     ̅  ̅       ̅  
 

 

 

 

For the output Y 

   ̅ ̅ ̅ ̅   ̅  ̅         ̅  ̅ 

   ̅ ̅( ̅ ̅    )    ( ̅ ̅    ) 

  ( ̅ ̅    ) ( ̅ ̅    ) 

  (  ̅̅ ̅̅ ̅̅ ̅) (  ̅̅ ̅̅ ̅̅ ̅) 

  (    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) (    

̅̅ ̅̅ ̅̅ ̅̅ ̅) 

 
 

 

 

 

 

 

Inputs 
Output 

A B C D 

            X Y Z 

0 0 0 0 0 1 0 

0 0 0 1 0 0 1 

0 0 1 0 0 0 1 

0 0 1 1 0 0 1 

0 1 0 0 1 0 0 

0 1 0 1 0 1 0 

0 1 1 0 0 0 1 

0 1 1 1 0 0 1 

1 0 0 0 1 0 0 

1 0 0 1 1 0 0 

1 0 1 0 0 1 0 

1 0 1 1 0 0 1 

1 1 0 0 1 0 0 

1 1 0 1 1 0 0 

1 1 1 0 1 0 0 

1 1 1 1 0 1 0 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 1 1 1 

 ̅  0 0 1 1 

   0 0 0 0 

  ̅ 0 0 1 0 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 1 0 0 0 

 ̅  0 1 0 0 

   0 0 1 0 

  ̅ 0 0 0 1 
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For the output Z 

   ̅   ̅    ̅ ̅  

   ̅     ̅       ̅  ̅    
 

The complete circuit as shown below 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 0 0 

 ̅  1 0 0 0 

   1 1 0 1 

  ̅ 1 1 0 0 
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General 4-bit comparator:  
 

The logic circuit for a complete 4-bit comparator that indicates whether    , 

            is given below: 

 

 
 

A practical magnitude comparator IC is the 7485 4-bit comparator 
 

 

 

 

 

 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

75  

 

4.3 Encoders and Decoders 

4.3.1 Encoders: 

An encoder is a combinational logic circuit that essentially assigns a binary code of 

n-bits to an active input out of    input lines. The inputs may represent octal or 

decimal digits and/or alphabetic characters. Therefore, this of process of 

converting from familiar symbols or numbers to a coded format is called encoding. 

The simplest encoder is a         binary encoder, where it has only one of 

   inputs = 1 and the output is the n-bit binary number corresponding to the active 

input. It can be built from OR gates 

 

 
 

4-to-2 Bit Binary Encoder 
 

 

 

 

Inputs Outputs 

                  

1 0 0 0 0 0 

0 1 0 0 0 1 

0 0 1 0 1 0 

0 0 0 1 1 1 
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Octal-to-Binary Encoder 

Octal-to-Binary take 8 inputs and provides 3 outputs, thus doing the opposite of 

what the 3-to-8 decoder does. At any one time, only one input line has a value of 1. 

The figure below shows the truth table of an Octal-to-binary encoder. 

Inputs Outputs 

                                 

1 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 1 1 

0 0 0 0 1 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 1 0 1 

0 0 0 0 0 0 1 0 1 1 0 

0 0 0 0 0 0 0 1 1 1 1 

 

For an 8-to-3 binary encoder with inputs       the logic expressions of the 

outputs       are: 

               

 

               

 

               

 

Based on the above equations, we can draw the circuit as shown below 
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Priority Encoder 

This is a special type of encoder. Priority is given to the input lines. If two or 

more input line are 1 at the same time, then the input line with highest priority will 

be considered. There are four inputs                and two outputs     . Out of 

the four input    has the highest priority and    has the lowest priority. That 

means if      1 then      11 irrespective of the other inputs. Similarly if 

      and    1 then       1  irrespective of the other inputs. 

 

4-to-2 Priority Encoder 

In 4-to-2 Priority Encoder A has the highest priority and A has the lower priority 

Inputs Outputs 

                   

 1 0 0 0 0 0 

x 1 0 0 0 1 

x x 1 0 1 0 

x x x 1 1 1 

 

         ̅        

      ̅  ̅        ̅     
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8 – to – 3 Priority Encoder or Octal – to – Binary Priority Encoder 

The truth table of an octal – to – binary priority encoder is shown below. This 

type of encoder has 8 inputs and three outputs that generate corresponding binary 

code. A priority is assigned to each input so that when two or more inputs are 1 at 

a time, the input with highest priority is represented in the output. 

Suppose if the input lines   ,    and   are logic 1 simultaneously irrespective 

of the other inputs, only    will be encoded and the output will be 111.Similarly, if 

   = 1, the state of   ,    and    is irrelevant or don‟t care and the output is equal to 

011. 

 

Inputs Outputs 

  1                   

1 0 0 0 0 0 0 0 0 0 0 

x 1 0 0 0 0 0 0 0 0 1 

x x 1 0 0 0 0 0 0 1 0 

x x x 1 0 0 0 0 0 1 1 

x x x x 1 0 0 0 1 0 0 

x x x x x 1 0 0 1 0 1 

x x x x x x 1 0 1 1 0 

x x x x x x x 1 1 1 1 

 

  is 1 when 1             1 and if we consider the priorities, we must say that: 

  is 1 when 













17

0615

06413

06,4,211

is

isandis

areandandis

areandandis

 

The logic circuit of the output   as shown below: 

 
Similarly,            

and 

  is 1 when 













17

16

05413

05,412

is

is

areandandis

areandandis

 

And the logic circuit is: 
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Finally,            

and 

  is 1 when 













17

16

15

14

is

is

is

is

 

And the logic circuit is: 

 
Therefore, the complete logic diagram for the 8-3 priority encoder will be as 

shown below:  

 
Note  

1- The zero input is not connected because the output represents (000) when 

none of the other inputs are active. 

2- The 74147 is a practical 16-4 priority encoder with active low signals. 
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4.3.2 Decoder  

A decoder performs the reverse operation of an encoder. That is, a code is returned 

to the corresponding symbol or digit. In the general form, a decoder has   input 

lines (to handle   bit) and    output lines.. Only one output is active at any time 

while the other outputs are maintained at logic 0. 

 

  
 

Example  

Design 1-to2 decoder without enable 

Solution 

 

 

 

 

 

 

 

 

Now, let's write the logic function for each output interms of the inputs: 

    ̅ 

     

 

Therefore, the logic circuit is 

 

 

 

 

 

 

 

 

 

 

 

 

 

A       

0 1 0 

1 0 1 
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Example  

Design 3-to8 decoder without enable. 

Solution 

 
 

 

 

 

 

 

 

 

 

 

Now, let's write the logic function for each output interms of the inputs: 

    ̅ ̅ ̅ 
    ̅ ̅  

    ̅  ̅ 
    ̅   

     ̅ ̅ 
     ̅  

      ̅ 
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inputs Lines Outputs Lines 

A                             

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 

The logic circuit is as shown 

beside 
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Example  

Design 2-to-4 decoder without enable and active low output  

Solution 

 
 

 

 

 

 

 

 

Now, let's write the logic function for each output interms of the inputs:  

 ̅   ̅ ̅̅̅ ̅̅  

 ̅   ̅ ̅̅ ̅̅  

 ̅    ̅̅̅ ̅̅  

 ̅    ̅̅ ̅̅  
The logic circuit is as shown below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inputs 

Lines 
Outputs Lines 

A    ̅   ̅   ̅   ̅  

0 0 0 1 1 1 

0 1 1 0 1 1 

1 0 1 1 0 1 

1 1 1 1 1 0 
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Example  

Design 2-to-4 decoder with enable and active high output  

Solution 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
                              2-to-4 decoder truth table 

 

Now, let's write the logic function for each output interms of the inputs: 
      ̅ ̅ 

      ̅  

       ̅ 

        

 

The logic circuit is 

 

 
 

 

 

E A B             

0 x x 0 0 0 0 

1 0 0 1 0 0 0 

1 0 1 0 1 0 0 

1 1 0 0 0 1 0 

1 1 1 0 0 0 1 
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Example  

Design 3-to-8 Decoder with Enable and active high output  

Solution 

 
 

 

 

 

 

 

 

 

 

 

 

Now, let's write the logic function for each output interms of the inputs: 

     ̅ ̅ ̅ 
     ̅ ̅  

     ̅  ̅ 
     ̅   

      ̅ ̅ 
      ̅  

       ̅ 
         

 

 

 

 

 

 

 

 

 

 

 

 

 

Enable 

E  

Inputs Lines Outputs Lines 

A                             

0 x x x 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 0 0 0 

1 0 0 1 0 1 0 0 0 0 0 0 

1 0 1 0 0 0 1 0 0 0 0 0 

1 0 1 1 0 0 0 1 0 0 0 0 

1 1 0 0 0 0 0 0 1 0 0 0 

1 1 0 1 0 0 0 0 0 1 0 0 

1 1 1 0 0 0 0 0 0 0 1 0 

1 1 1 1 0 0 0 0 0 0 0 1 

The logic circuit is as shown 

beside 
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Example  

Design 3-to-8 Decoder with Enable and active low output  

Solution 

 
 

 

 

 

 

 

 

 

 

 

 

Now, let's write the logic function for each output interms of the inputs: 

 ̅    ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅  

 ̅    ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅  

 ̅    ̅  ̅̅̅ ̅̅ ̅̅ ̅̅  

 ̅    ̅  ̅̅ ̅̅ ̅̅ ̅̅  

 ̅     ̅ ̅̅̅ ̅̅ ̅̅ ̅̅  

 ̅     ̅ ̅̅ ̅̅ ̅̅ ̅̅  

 ̅      ̅̅̅ ̅̅ ̅̅ ̅̅  

 ̅      ̅̅ ̅̅ ̅̅ ̅̅   

 

 

 

 

 

 

 

 

 

 

 

Enable 

E  

Inputs Lines Outputs Lines 

A      ̅   ̅   ̅   ̅   ̅   ̅   ̅   ̅  

0 x x x 1 1 1 1 1 1 1 1 

1 0 0 0 0 1 1 1 1 1 1 1 

1 0 0 1 1 0 1 1 1 1 1 1 

1 0 1 0 1 1 0 1 1 1 1 1 

1 0 1 1 1 1 1 0 1 1 1 1 

1 1 0 0 1 1 1 1 0 1 1 1 

1 1 0 1 1 1 1 1 1 0 1 1 

1 1 1 0 1 1 1 1 1 1 0 1 

1 1 1 1 1 1 1 1 1 1 1 0 

The logic circuit is as shown 

beside 
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Example  

Design 3-to-8 Decoder with active low Enable and active high output  

Solution 

 
 

 

 

 

 

 

 

 

 

 

 

Now, let's write the logic function for each output interms of the inputs: 

    ̅ ̅ ̅ ̅ 
    ̅ ̅ ̅  

    ̅ ̅  ̅ 
    ̅ ̅   

    ̅  ̅ ̅ 
    ̅  ̅  

    ̅   ̅ 
    ̅     

 

 

 

 

 

 

 

 

 Note: The 74154 is a practical decoder [(4-16) decoder]. 

 

Enable 

E  

Inputs Lines Outputs Lines 

A                             

0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 1 0 1 0 0 0 0 0 0 

0 0 1 0 0 0 1 0 0 0 0 0 

0 0 1 1 0 0 0 1 0 0 0 0 

0 1 0 0 0 0 0 0 1 0 0 0 

0 1 0 1 0 0 0 0 0 1 0 0 

0 1 1 0 0 0 0 0 0 0 1 0 

0 1 1 1 0 0 0 0 0 0 0 1 

1 x x x 0 0 0 0 0 0 0 0 

The logic circuit is as shown beside 
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Decoder Expansion  
It is possible to combine or cascade two or more decoders to produce a decoder 

with larger number of input bits with the use of enable input of decoder.  

Example  

Construct a 3-to-8 decoder using only 2-to-4 decoders with additional gates. 

Solution 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

                              

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 
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Example  

Construct a 3-to-8 decoder using 2-to-4 decoders with one 1-to-2 decoder  

 
Example  

Construct a 4-to-16 decoder using only 3-to-8 decoders with additional gates. 

Solution 
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Example  

Construct a 4-to-16 decoder using only 2-to-4 decoders. 

Solution 
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The BCD-to-Decimal Decoder 

The BCD-to-decimal decoder converts each BCD code (8421 code) into one of ten 

possible decimal digit indications. It is frequently referred as a 4-line-to-10-line 

decoder or a 1-of-10 decoder. The method of implementation is the same as for the 

4-of-16 decoder previously discussed, except that only ten decoding gates are 

required because the BCD code represents only the ten decimal digits 0 through 9. 

A list of the ten BCD codes and their corresponding decoding functions is given in 

below Table. Each of these decoding functions is implemented with NAND gates 

to provide active-LOW outputs. If an active-HIGH output is required, AND gates 

are used for decoding. 

 

 

 

 

E 
BCD Code Decimal Output Decoding 

Function A B C D       3 4 5 6 7 8 9 

0 X X X X 1 1 1 1 1 1 1 1 1 1  

1 0 0 0 0 0 1 1 1 1 1 1 1 1 1   ̅ ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1 0 0 0 1 1 0 1 1 1 1 1 1 1 1   ̅ ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1 0 0 1 0 1 1 0 1 1 1 1 1 1 1   ̅ ̅  ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1 0 0 1 1 1 1 1 0 1 1 1 1 1 1   ̅ ̅  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1 0 1 0 0 1 1 1 1 0 1 1 1 1 1   ̅  ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1 0 1 0 1 1 1 1 1 1 0 1 1 1 1   ̅  ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1 0 1 1 0 1 1 1 1 1 1 0 1 1 1   ̅   ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1   ̅   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1 1 0 0 0 1 1 1 1 1 1 1 1 0 1    ̅ ̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1 1 0 0 1 1 1 1 1 1 1 1 1 1 0    ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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BCD to 7-Segment Display Decoders 

7-segment LED (Light Emitting Diode) type display, provide a very convenient 

way of displaying information or digital data in the form of numbers, letters or 

even alpha-numerical characters. 

A standard 7-segment LED display generally has 8 input connections, one for each 

LED segment and one that acts as a common terminal or connection for all the 

internal display segments. Some single displays have also have an additional input 

pin to display a decimal point in their lower right or left hand corner. 

In electronics there are two important types of 7-segment LED digital display. 

1.  The Common Cathode Display (CCD) – In the common cathode display, 

all the cathode connections of the LED‟s are joined together to logic “0” 

or ground. The individual segments are illuminated by application of a 

“HIGH”, logic “1” signal to the individual Anode terminals. 

2. The Common Anode Display (CAD) – In the common anode display, all 

the anode connections of the LED‟s are joined together to logic “1” and 

the individual segments are illuminated by connecting the individual 

Cathode terminals to a “LOW”, logic “0” signal. 

 

Electrical connection of the individual diodes for a common cathode display and a 

common anode display and by illuminating each light emitting diode individually, 

they can be made to display a variety of numbers or characters. 

7-Segment Display Format 
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So in order to display the number 3 for example, segments a, b, c, d and g would 

need to be illuminated. If we wanted to display a different number or letter then a 

different set of segments would need to be illuminated. Then for a 7-segment 

display, we can produce a truth table giving the segments that need to be 

illuminated in order to produce the required character as shown below. 

Table for a 7-segment display  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

BCD to 7-Segment Decoder 

BCD to seven segment decoder is a circuit used to convert the input BCD into a 

form suitable for the display. It has four input lines (A, B, C and D) and 7 output 

lines (a, b, c, d, e, f and g) as shown in Figure below. 

 
 

 

 

 

 

Individual Segments 
Display 

 A b c d e f g 

x x x x x x  0 

 x x     1 

x x  x x  x 2 

x x x x   x 3 

 x x   x x 4 

x  x x  x x 5 

x  x x x x x 6 

x x x     7 

x x x x x x x 8 

x x x x  x x 9 
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Truth table for BCD to seven segment decoder with common anode 
 

 
 

 

 

Decimal 

digit 

Input lines Output lines Display 

pattern A B C D a b c d e f g 

0 0 0 0 0 1 1 1 1 1 1 0 
 

1 0 0 0 1 0 1 1 0 0 0 0  

2 0 0 1 0 1 1 0 1 1 0 1  

3 0 0 1 1 1 1 1 1 0 0 1 
 

4 0 1 0 0 0 1 1 0 0 1 1  

5 0 1 0 1 1 0 1 1 0 1 1  

6 0 1 1 0 1 0 1 1 1 1 1  

7 0 1 1 1 1 1 1 0 0 0 0 
 

8 1 0 0 0 1 1 1 1 1 1 1 
 

9 1 0 0 1 1 1 1 1 0 1 1 
 

Segment Logic Function 

A ∑ (               ) 

B ∑ (  1             ) 

C ∑ (  1              ) 

D ∑ (             ) 

E ∑ (       ) 

F ∑ (           ) 

G ∑ (             ) 
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Note  

1- When common-anode 7-segment display is used active-low outputs are 

required. 

2- Other types of digital displays are: 

a- LCDs (Liquid Crystal Displays). 

b- The Dot Matrix. 

3- A practical BCD-to-7segment decoder driver is the 7447 
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Decoder Application: Implementing Boolean Functions Using Decoders 

Any combinational circuit can be constructed using decoders and OR gates. 

The decoder generates the required minterms and an external OR gate is used to 

produce the sum of minterms. 

Example  

Implement the following Boolean Functions Using Decoders. 

  (     )    ∑ (  1      )  
Solution  

 
 

Example  

Implement a full adder circuit with a decoder and two OR gates.  

Solution  

Let  

1- A, B, and C are inputs. 

2- full adder equations are:   

–  (     )   ∑  (1      )    
–   (     )   ∑  (       )  

 

Since there are 3 inputs and a total of 8 minterms, we need a 3-to-8 decoder. 
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4.4Multiplexers (MUX) and Demultiplexer (DEMUX) 

4.4.1Multiplexers (Data Selectors) 

A multiplexer (MUX) is a device that allows digital information from several 

sources to be routed onto a single line for transmission over that line to a common 

destination. Then, it has several data-input lines and a single output line. It also has 

data-select inputs that permit digital data on any one of the inputs to be switched to 

the output line. Multiplexers are also known as data selectors. 

 
A logic symbol for a 4-input multiplexer (MUX without enable) is shown in Figure 

below. Notice that there are two data-select lines because with two select bits, any 

one of the four data-input lines can be selected. 

 

 

 

 

 

The logic expression for the output in terms of the input and the select inputs are:  

The output is equal to    only if                           ̅  ̅  
The output is equal to    only if                           ̅    
The output is equal to    only if                             ̅  
The output is equal to    only if                               
When these terms are ORed, the total expression for the data output is 

        ̅  ̅        ̅           ̅           
 

 

 

 

Data Select Output 

data Y       

0 0    

0 1    

1 0    

1 1    
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The logic circuit for a 4-to-1 multiplexer without enable is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example  

Design 2-to-1 multiplexer with an enable input. 

Solution  

 

 

 

 

 

 

 

 

        ̅           
The logic circuit for a 2-to-1 multiplexer with enable is: 

 
 

 

 

 

Enable  

Data 

Select 

S 

Output 

data Y 

0 x   

1 0    

1 1    
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Example  

Design 4-to-1 multiplexer with an enable input. 

Solution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         ̅  ̅         ̅            ̅           

 

The logic circuit for a 4-to-1 multiplexer with enable is: 

 
 

Enable  

E 

Data Select Output 

data Y       

0 x x 0 

1 0 0    

1 0 1    

1 1 0    

1 1 1    
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Implementing Boolean Functions with Multiplexers  

The Boolean function may be implemented in    to 1 multiplexer. 

 If we have a Boolean function of n variables, we take   1 of these variables 

and connect them to the selection lines of a multiplexer (let's say these are 

"select variables"). 

 The remaining single variable (MSB variable) of the function is used for the 

inputs of the multiplexer (let's say these are "input variable"). 

 Now form the implementation table:  

o First row lists all those minterms where "input variable" is complemented 

(say 0). 

o Second row lists all those minterms where "input variable" is in its normal 

form (say 1). 

 The minterms are circled as per the given Boolean function. Now use the 

following steps to find out final multiplexer inputs. 

o If the 2 minterms in a column are not circled, 0 is placed to the 

corresponding multiplexer inputs. 

o If the 2 minterms in a column are circled, 1 is placed to the corresponding 

multiplexer inputs. 

o  If the minterms in the second row is circled and the first row is not circled, 

apply second row of variable to the corresponding multiplexer inputs. 

o If the minterms in the first row is circled and not the second row, apply first 

row of the variable to the corresponding multiplexer inputs. 

 

Example 

Implement the following Boolean function using 8-to-1 multiplexer. 

 (       )    ∑ (1     11 1  1  1  1 )  
Solution  

Total number of variable       (       )  

Number of select lines:   1     (     )  

All the minterms are divided into 2 groups  

The first group (0-7) minterms are entered in the first row (Variable A =0) 

The second group (8-15) minterms are entered in the second row (Variable A= 1)  

 

 

 

 

 

 

Circle the minterm number as per function. 

 

 

 

 

 

                         

 ̅ 0 1 2 3 4 5 6 7 

  8 9 10 11 12 13 14 15 

 0  ̅ 0 1 1 A A A 
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Example 

Implement the following Boolean function using 8-to-1multiplexer 

 (       )    ∑ (  1           1  1 )  

 

Solution  

Total number of variable       (       )  

Select lines:   1     (     )  

 

Example 

Implement the following Boolean function using 8-to-1multiplexer 

 (       )    ∏ (            1  1  1 )  

Solution  

The given maxterms are inverted to obtain minterms. From minterms, we can 

implement the above Boolean function using 8-to-1 multiplexer 

 (       )    ∑ (1       11 1  1 )  

Total number of variable       (       )  

Select lines:   1     (     )  

 

 

 

 

 

 

Example 

Implement the following Boolean function using 8-to-1multiplexer  

 (       )   ∑ (      1  11 1  1 )  ∑ (    1 )  
Solution  

The Boolean function has three don‟t care conditions which can be treated as either 

0's or 1's. We consider don't care conditions as1's.  

Total number of variable       (       )  

Select lines:   1     (     )  

 

 

 

 

 

 

 

 

                         

 ̅ 0 1 2 3 4 5 6 7 

  8 9 10 11 12 13 14 15 

  ̅ 1  ̅ 0 1 0 1 0 

                         

 ̅ 0 1 2 3 4 5 6 7 

  8 9 10 11 12 13 14 15 

 0  ̅  ̅    ̅   0 1 

                         

 ̅ 0 1 2 3 4 5 6 7 

  8 9 10 11 12 13 14 15 

 1 0 1 1     1 0 
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Example 

Implement the following Boolean function using 4-to-1multiplexer   

     ̅   ̅    ̅  ̅      
Solution  

 (     )   ∑ (     )  

Total number of variable       (     ) 

Select lines:   1    (   )  

 

 

 

 

 

 

 

 

 

 

Or 

 

 

 

 

 

 

 

 

 

 

 

 

Or 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

 ̅ 0 1 2 3 

  4 5 6 7 

   0  ̅   

             

 ̅ 0 1 4 5 

  2 3 6 7 

   0  ̅   

             

 ̅ 0 2 4 6 

  1 3 5 7 

 0  ̅  ̅   
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Example  

Construct a 16-to-1 multiplexer using only 4-to-1 multiplexer. 

Solution 
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Example  

Construct a 16-to-1 multiplexer using only 2-to-1 multiplexer. 

Solution 
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4.4.2Demultiplexer (DEMUX) 

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes 

digital information from one line and distributes it to a given number of output 

lines. The demultiplexer is also known as a data distributor.  

 

 A demultiplexer is a 1-to-N device where as the multiplexer is an N-to-1 device. 

The figure below shows the block diagram of a demultiplexer or simply a 

DEMUX. 

It consists of 1 input line, n output lines and m select lines. In this, m selection 

lines are required to produce 2m possible output lines (consider       ). For 

example, a 1-to-4 demultiplexer requires   select lines to control the 4 output lines. 

 

There are several types of demultiplexers based on the output configurations such 

as 1:4, 1:8 and 1:16. 
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1-to-2 Demultiplexer 

A 1-to-2 demultiplexer with enable consists of one input line, two output lines, one 

input enable and one select line. The signal on the select line helps to switch the 

input to one of the two outputs. The figure below shows the block diagram of a 1-

to-2 demultiplexer with additional enable input. In the figure, there are only two 

possible ways to connect the input to output lines, thus only one select signal is 

enough to do the demultiplexing operation. When the select input is low, then the 

input will be passed to Y0 and if the select input is high then the input will be 

passed to Y1. 

 

The truth table of a 1-to-2 demultiplexer is shown below. 

 

 

 
 
 

     ̅  
       
 

 

 

 

 

 

E 
Select Input Output 

S D       

0 X D 0 0 

1 0 D D 0 

1 1 D 0 D 

http://www.electronicshub.org/wp-content/uploads/2015/07/1-to-2-demux.jpg
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1-to-4 Demultiplexer 

The block diagram of 1:4 DEMUX with additional enable is shown below. 

 

The truth table of this type of demultiplexer is given below: 

 

 

 

 

The output logic can be expressed as min terms and are given below. 

      ̅  ̅     ,            ̅       ,             ̅      ,                 
Where:   is the input data,    to    are outputs lines and    &    are select lines. 

 

 

Enable  

E 

Select Inputs Input Output 

      D             

0 x x D 0 0 0 0 

1 0 0 D D 0 0 0 

1 0 1 D 0 D 0 0 

1 1 0 D 0 0 D 0 

1 1 1 D 0 0 0 D 
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1-to-8 Demultiplexer 

The below figure shows the block diagram of a 1-to-8 demultiplexer without 

enable  

 

The truth table for this type of demultiplexer is shown below. 

 

The Boolean expressions for all the outputs can be written as follows. 

     ̅  ̅  ̅             ̅  ̅      

     ̅   ̅                ̅    

     ̅     ̅                 ̅  

     ̅                   

 

 

 

 

Select Inputs Input Output 

         D                         

0 0 0 D D 0 0 0 0 0 0 0 

0 0 1 D 0 D 0 0 0 0 0 0 

0 1 0 D 0 0 D 0 0 0 0 0 

0 1 1 D 0 0 0 D 0 0 0 0 

1 0 0 D 0 0 0 0 D 0 0 0 

1 0 1 D 0 0 0 0 0 D 0 0 

1 1 0 D 0 0 0 0 0 0 D 0 

1 1 1 D 0 0 0 0 0 0 0 D 

http://www.electronicshub.org/wp-content/uploads/2015/07/1-to-8-Demux.jpg
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From these obtained equations, the logic diagram of this demultiplexer as shown in 

below figure.  

 

Example  

Construct a 1-to-8 DEMUX using Two 1-to- 4 Demultiplexers. 

Solution 

 

http://www.electronicshub.org/wp-content/uploads/2015/07/Cascading-of-Demultiplexers.jpg
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Example  

Construct a 1-to-8 DEMUX using only 1-to- 2 Demultiplexers. 

Solution 
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Implementation of Full Subtractor Using 1-to-8 DEMUX 

As similar to the multiplexers, demultiplexers are also used for Boolean function 

implementation as well as combinational circuit design. We can design the 

demultiplexer to produce any truth table output by correspondingly controlling the 

select lines. 

 The truth table below shows the output of a full subtractor. 
 

 

 

 

 

 

 

 

From the above table, the full subtractor output D can be written as 

      (     )   ∑  (1      ) 
And the borrow output can be expressed as 

         (     )    ∑  (1      ) 
From these Boolean functions, a demultiplexer for producing full subtractor output 

can be built by properly configuring the 1-to-8 DEMUX such that with input D = 1 

it gives the minterms at the output. 

And by logically ORing these minterms, the outputs of difference and borrow can 

be obtained as shown in figure. 

 

Inputs outputs 

Minuend 

   

Subtrahend 

                 

Borrow In Difference 

                 

Borrow Out 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 
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Code Conversion 

Binary-to-Gray and Gray-to-Binary Conversion 

We will now see how XOR gates can be used for these conversions. Figure1 show 

a 4-bit binary-to-gray code conversion, and figure2 illustrates 4-bit gray-to-binary 

converter.   

 

Figure (1): 4-bit binary-to-Gray conversion logic 

 

 

Figure (2):4-bit Gray-to-binary conversion logic. 
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5- Sequential circuits (Latches, Flip-Flops, and Timers) 
In the same way that gates are the building blocks of combinatorial circuits, 

latches and flip-flops are the building blocks of sequential circuits. Latches can be 

built from gates, and flip-flops can be built from latches. This fact will make it 

somewhat easier to understand latches and flip-flops. 

5.1 Latches and Flip Flops 

Latches and flip flops are the basic elements and these are used to store 

information. One flip flop and latch can store one bit of data. The latch checks 

input continuously and changes the output whenever there is a change in input. 

But, flip flop is a combination of latch and clock that continuously checks input 

and changes the output time adjusted by the clock. In this article, we are going to 

look at the operations of the numerous latches and flip-flops.  
 

Both Latches and flip flops are circuit elements wherein the output not only 

depends on the current inputs, but also depends on the previous input and outputs. 

The main difference between the latch and flip flop is that a flip flop has a clock 

signal, whereas a latch does not. Basically, there are four types of latches and flip 

flops: SR, D, JK and T. The major differences between these types of flip flops and 

latches are the number of i/ps they have and how they change the states. 

5.1.1 The S-R Latch 

There are two types of S-R Latch which are (     )     latch     (    )    

latch. The diagrams below show the logic symbol and logic gate representation of S-R 

NOR gates. 

  

Truth table for S-R NOR latch (active-HIGH input)  

Inputs Outputs Comments 

𝑺 𝑹 𝑸 𝑸 ̅̅̅ 

0 0 N.C NC No change. Latch remains in present state. 

1 0 1 0 Latch SET. 

0 1 0 1 Latch RESET. 

1 1 ? ? Invalid state 

http://www.electronicsteacher.com/computer-architectures/digital-circuits/gates.php
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The diagrams below show the logic symbol and logic gate representation of S-R 

NAND gates. 

 

Truth table for an active-LOW input latch with NAND gates. 

Inputs Outputs Comments 

𝑺 𝑹 𝑸 𝑸 ̅̅̅ 

0 0 NC NC No change. Latch remains in present state. 

1 0 1 0 Latch SET. 

0 1 0 1 Latch RESET. 

1 1 ? ? Invalid state 

5.2 Flip Flops 

A flip flops is a bistable logic circuit which has two stable states. It's capable of 

residing in either of these two states (SET or RESET) until a new clock activation 

trigger is applied. 

1- Edge-Triggered Flip-Flops  

An edge-triggered flip-flop changes states either at the positive edge (rising edge) 

or at the negative edge (falling edge) of the clock pulse on the control input and is 

sensitive to its inputs only at this transition of the clock. 

 A- The edge-triggered S-R flip-flop: 

The logic symbol and logic circuit for the SET-RESET flip-flop are shown 

below: 

 
It has the inputs (S and R) and the clock input terminal. The outputs are   

and its complement ̅. 

As illustrated in the truth table below, the output is fixed (unchanged) when 

the input has the state (S=0 , R=0). The output in SET or RESET when the 
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input has the states (S=1 , R=0) or (S=0 , R=1), respectively. Finally, the 

output is an invalid state when (S=1 , R=1) 
Truth table for S-R flip-flop 

Inputs Outputs Comments 

𝑺 𝑹 CK 𝑸 𝑸 ̅̅̅ 

0 0 ↑ 𝑸𝒐 𝑸̅𝒐 No Change. 

0 1 ↑ 0 1 RESET. 

1 0 ↑ 1 0 SET. 

1 1 ↑ ? ? Invalid  

Where ↑ is the positive edge of a clock pulse, and    and  ̅  are old value of 

  and   ̅. 

 B- The edge-triggered D flip-flop: 

The addition of an inverter to an S-R flip-flop creates a D flip-flop as shown 

below: 

 
 

 
Notice that this flip-flop has only one input in addition to the clock. If D is 

high (1) when a clock pulse is applied, then the flip-flop will SET. If D is 

low (0) when a clock pulse is applied, the flip-flop will RESET, as shown in 

the truth table.   

 
Truth table for D flip-flop 

Inputs Outputs Comments 

𝑫 CK 𝑸 𝑸 ̅̅̅ 

0 ↑ 0 1 RESET (store 0) 

1 ↑ 1 0 SET (store 1) 

 

The 7474 IC is a dual edge triggered D flip-flop 

The 7476 IC is a dual edge triggered JK flip-flop 
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 C- The edge- triggered JK flip-flop: 

The functioning of the JK flip-flop is identical to that of the S-R flip-flop in 

SET, RESET and (no-change) condition of operation. The difference is that 

the JK flip-flop has no invalid state. The following truth table summarizes 

the operation of an edge triggered JK flip-flop. 

 
 

Truth table for J-K flip-flop 

Inputs Outputs Comments 

𝑱 𝑲 CK 𝑸 𝑸 ̅̅̅ 

0 0 ↑ 𝑸𝒐 𝑸̅𝒐 No Change. 

0 1 ↑ 0 1 RESET. 

1 0 ↑ 1 0 SET. 

1 1 ↑ 𝑸̅𝒐 𝑸𝒐 Toggle  

 D-The edge- triggered T flip-flop: 

The J input and K input of the JK flip – flop are connected together and 

provided with the T input. The logic circuit of a T flip – flop constructed 

from a JK flip – flop is shown below. 

 

 
 
Truth table for D flip-flop 

Inputs Outputs Comments 

𝑻 CK 𝑸 𝑸 ̅̅̅ 

0 ↑ 𝑸𝒐 𝑸̅𝒐 No Change. 

1 ↑ 𝑸̅𝒐 𝑸𝒐 Toggle 
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 E- Pulse-triggered (master-slave) flip-flops 

The term pulse-triggered means that data are entered into the flip-flop on the 

leading edge of the clock pulse, but the output does not reflect the input state 

until the trailing edge of the clock pulse. Therefore, the data must not while 

the clock pulse is HIGH. 

 

 
 

The logic symbols of pulse triggered (master-slave) flip-flops are given 

below: 

The three basic types of pulse-triggered flip-flops are S-R, J-K and D. Their 

logic symbols are shown below. 

 
The truth tables for the above pulse-triggered flip-flops are all the same as 

that for the edge-triggered flip-flops, except for the way they are clocked. 

These flip-flops are also called Master-Slave flip-flops simply because their 

internal construction is divided into two sections. The slave section is 

basically the same as the master section except that it is clocked on the 

inverted clock pulse and is controlled by the outputs of the master section 

rather than by the external inputs. The logic diagram for a basic master-slave 

S-R flip-flop is shown below. 

 
 

 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

117  

 

5.3 CLOCK GENERATOR CIRCUITS 

Flip-flops have two stable states; therefore, we can say that they are bistable 

multivibrators. One-shots have one stable state, and so we call them monostable 

multivibrators. A third type of multivibrator has no stable states; it is called an 

astable or free-running multivibrator. This type of logic circuit switches back and 

forth (oscillates) between two unstable output states. It is useful for generating 

clock signals for synchronous digital circuits. Several types of astable 

multivibrators are in common use. We will present three of them without any 

attempt to analyze their operation. They are presented here so that you can 

construct a clock generator circuit if needed for a project or for testing digital 

circuits in the lab. 

 

1-The Astable Multivibrator 

An astable multivibrator is a device that has no stable states; it changes back and 

forth (oscillates) between two unstable states without any external triggering. The 

resulting out-put is typically a square wave that is used as a clock signal in many 

types of sequential logic circuits. Astable multivibrators are also known as pulse 

oscillators. Figure below shows a simple form of astable multivibrator using an 

inverter with hysteresis (Schmitt trigger) and an RC circuit connected in a 

feedback arrangement. When power is first applied, the capacitor has no charge; so 

the input to the Schmitt trigger inverter is LOW and the output is HIGH. The 

capacitor charges through R until the inverter input voltage reaches the upper 

trigger point (UTP. At this point, the inverter output goes LOW, causing the 

capacitor to discharge back through R. When the inverter input voltage decreases 

to the lower trigger point (LTP), its output goes HIGH and the capacitor charges 

again. This charging/discharging cycle continues to repeat as long as power is 

applied to the circuit, and the resulting output is a pulse waveform, as indicated. 
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2-Monostable Multivibrator (One-Shots) 

 The monostable multivibrator or one-shot, is a device with only one stable state. A 

monostable multivibrator is normally in its stable state and will change to its 

unstable state only when triggered. Once it is triggered, the monostable 

multivibrator remains in its unstable state for a predetermined length of time and 

then automatically returns to its stable state. The time that the device stays in its 

unstable state determines the pulse width of its output. 

Figure below shows a basic monostable multivibrator (one-shot) that is composed 

of a logic gate and an inverter. When a pulse is applied to the trigger input, the 

output of gate G1 goes LOW. This HIGH-to-LOW transition is coupled through 

the capacitor to the input of inverter G2. The apparent LOW on G2 makes its 

output go HIGH. This HIGH is connected back into G1, keeping its output LOW. 

Up to this point the trigger pulse has caused the output of the monostable 

multivibrator, Q, to go HIGH. 

 
The capacitor immediately begins to charge through R toward the high voltage 

level. The rate at which it charges is determined by the RC time constant. When 

the capacitor charges to a certain level, which appears as a HIGH to G2, the output 

goes back LOW. To summarize, the output of inverter G2 goes HIGH in response 

to the trigger input. It remains HIGH for a time set by the RC time constant. At the 

end of this time, it goes LOW. A single narrow trigger pulse produces a single 

output pulse whose time duration is controlled by the RC time constant.  

 

3-The 555 Timer: 

The 555 timer is a versatile and widely used IC device because it can be configured 

in two different modes as either a monostable multivibrator (one-shot) or as an 

astable multivibrator (pulse oscillator). 
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The 555 Timer Operations: 

A functional diagram showing the internal components of a 555 timer is shown in 

Figure below. The comparators are devices whose outputs are HIGH when the 

voltage on the positive (+) input is greater than the voltage on the negative (-) input 

and LOW when the - input voltage is greater than the + input voltage. The voltage 

divider consisting of three       resistors provides a trigger level of 
3

1
CCV and a 

threshold level of
3

2
CCV . The control voltage input (pin 5) can be used to 

externally adjust the trigger and threshold levels to other values if necessary. When 

the normally HIGH trigger input momentarily goes below
3

1
CCV , the output of 

comparator B switches from LOW to HIGH and sets the S-R latch, causing the 

output (pin 3) to go HIGH and turning the discharge transistor    off. The output 

will stay HIGH until the normally LOW threshold input goes above 
3

2
CCV and 

causes the output of comparator A to switch from LOW to HIGH. This resets the 

latch, causing the output to go back LOW and turning the discharge transistor on. 

The external reset input can be used to reset the latch independent of the threshold 

circuit. The trigger and threshold inputs (pins 2 and 6) are controlled by external 

components connected to produce either monostable or astable action. 
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A-The 555 Timer as an Astable Multivibrator 

A 555 timer connected to operate as an astable multivibrator is shown in Figure 

below. Notice that the threshold input (THRESH) is now connected to the trigger 

input (TRIG). The external components R1, R2, and C1 form the timing network 

that sets the frequency of oscillation. The 0.01 µF capacitor, C2, connected to the 

control (CONT) input is strictly for decoupling and has no effect on the operation; 

in some cases it can be left off. 

 
 

Initially, when the power is turned on, the capacitor (C1) is uncharged and thus the 

trigger voltage (pin 2) is at 0 V. This causes the output of comparator B to be 

HIGH and the output of comparator A to be LOW, forcing the output of the latch, 

and thus the base of Q1, LOW and keeping the transistor off. Now, C1 begins 

charging through R1 and R2, as indicated in Figure below. When the capacitor 

voltage reaches  

3
1

CCV , comparator B switches to its LOW output state; and when the capacitor 

voltage reaches
3

2
CCV , comparator A switches to its HIGH output state. This resets 

the latch, causing the base of Q1 to go HIGH and turning on the transistor. This 

sequence creates a discharge path for the capacitor through R2 and the transistor, 

as indicated. The capacitor now begins to discharge, causing comparator A to go 

LOW. At the point where the capacitor discharges down to
3

1
CCV , comparator B 

switches HIGH; this sets the latch, making the base of Q1 LOW and turning off the 

transistor. Another charging cycle begins, and the entire process repeats.  
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1   

(      )  
 

      (     )    Where:    Is the time that the output is HIGH. 

            Where:    Is the time that the output is HIGH. 

The period, T, of the output waveform is the sum of    and    

           (      )   

  
1

 
 

1   

(      )  
 

 

Finally, the duty cycle is 

           
  
 

 
  

     
 

           (
     

      
)1    

           (
  

     
) 1    
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B-The 555 Timer as a monostable 

An external resistor and capacitor connected as shown in Figure below are used to 

set up the 555 timer as a monostable. The pulse width of the output is determined 

by the time constant of R1 and C1 according to the following formula: 

    1 1     
The control voltage input is not used and is connected to a decoupling capacitor C2 

to prevent noise from affecting the trigger and threshold levels. 

Before a trigger pulse is applied, the output is LOW and the discharge transistor 

Q1 is on, keeping C1 discharged as shown in Figure below part (a). When a 

negative-going trigger pulse is applied at   , the output goes HIGH and the 

discharge transistor turns off, allowing capacitor C1 to begin charging through R1 

as shown in part (b). When C1 charges to
3

1
CCV , the output goes back LOW at t1 

and Q1 turns on immediately, discharging C1 as shown in part (c). As you can see, 

the charging rate of C1 determines how long the output is HIGH. 

 
 

 

 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

123  

 

5.4Basic flip-flop Applications: 

 1- Parallel data storage (Simple memory) 

In order to store a 4-bit binary word, we can use the arrangement below: 

  

 
 

 The 4-bit register (flip-flop) is first cleared by putting    ̅̅ ̅̅ ̅̅     

 When    is ↑ , the 4-bit word applied on             is stored in the flip-

flops. 

 The stored data can be read from the outputs           . 

 

 2- Frequency Division 

The frequency of the clock signal is divided by 2 at the output ( ) of a    flip-

flop connected in the toggling condition (  1   1) 
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Further division of a clock frequency can be achieved by using the output of 

one flip-flop as the clock input to a second flip-flop, as shown below: 

 

 
 

 
 

 

 

 The frequency of    
 

 
                          

 The frequency of    
 

 
                          

 

By connecting flip-flops in this way, a frequency is division of     is a 

achieved, where   is the number of flip-flops. For example three flip-flops 

divide the clock frequency by       ; four flip-flops divide the clock 

frequency by      1 . 
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 3- Counters  

1. Asynchronous counter(Ripple counters) 

An asynchronous counter is a sequential logic system in which the clock is 

applied at one end of the counter. With respect to counter operation, 

asynchronous means that the flip-flops within the counter are not made to 

change states at exactly the same time, because the clock pulses are not 

connected directly to the CK input of each flip-flop in the counter. 

Asynchronous counters are commonly referred to as ripple counters since the 

flip-flops are triggered one after the other separated by same delay time. Thus 

the effect of an input clock pulse "ripples" through the counter to reach the 

last flip-flop. 

 

a) Two-Bit Asynchronous Binary Counter. 

The following figure shows a 2-bit asynchronous binary counter. 
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 The JK flip-flops are connected for toggle operation (J=1 , K=1). 
 Assuming that the flip-flops are initially RESET. 
 When the 1

st
 falling (-ve going) edge of the clock CK comes,    toggles to 

become HIGH. This has no effect on flip-flop B. 
 When the 2

nd
 falling (-ve going) edge of the clock CK comes,    toggles to 

become LOW. This falling edge of    is connected to the clock input of 

flip-flop B, therefore,    will toggle to become HIGH, and so on 
 The counter will complete a cycle each four clock pulse, and then recycles to 

the original state. 
 The number of states is given by  , where   is the number of flip-flops 

(          1    ). 
 

Note that: 

The counter described above is an up-counter, i.e., it starts counting from 00-to11 

(regardless whether the flip-flops are initially SET or RESET). 

If it's required to implement a down-counter, we may connect the output   ̅  to the 

clock input of flip-flop B, as shown below:    

 

 

http://cbs.wondershare.com/go.php?pid=5261&m=db


2018-2019   
DIGITAL ELECTRONICS                                                              

ELECTRONIC & CONTROL DEPT.                                               SECOND YEAR  

 

127  

 

If we wish to implement ripple (asynchronous) counters using positive edge 

triggered flip-flops, we must note that: 

 For an up-counter, the output  ̅  is connected to the clock input of flip-flop 

B, as shown in figure below: 

  
 For a down-counter, the output    is connected to the clock input of flip-

flop B, as shown in figure below: 
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b) Three-Bit Asynchronous Binary Counter. 

 Here we have three flip-flops, and therefore, eight different states. 

 The same basic operation principles of a 2-bit counter are connect here. 

 The logic diagram of a 3-bit ripple up counter together with its timing 

diagram are shown in the figure below: 

 
 

 
 

The output is the number        

 

CK 

pulse 

0 1 2 3 4 5 6 7 8 9→ 

Output 000 001 010 011 100 101 110 111 000 001→ 

 

 H.W 

1. Design a 3-bit asynchronous binary down counter with +ve edge clock. 

2. Design a 3-bit asynchronous binary up counter with +ve edge clock.  

3. Design a 3-bit asynchronous binary down counter with -ve edge clock.  
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c) Four-Bit Asynchronous Binary Counter. 

The logic timing diagrams for a 4-bit asynchronous down counter using (+ve 

edge clock) JK flip-flops are shown below: 
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d) Asynchronous Decade Counter 

 Regular binary counters have    maximum possible the number of flip-flops 

in the counter. 

 Counters can also be designed to have a number of states in their sequence 

less than  . The resulting sequence is called a truncated sequence. 

 Counters with ten states   their sequence are called decade counters. A 

decade counter with a sequence of 0 to 9 (0000 to 1001) is a BCD decade 

counter because its ten states sequence is the BCD code. 

 To do that it is necessary to force the counter to recycle before completing 

all of its normal state. For example, the BCD decade counter must recycle 

back to the 0000 state after 1001 state. 

 A logic circuit (NAND) must be added such that its output is LOW when the 

code 1001 appears on the  s of the counter, in order to bring the counter 

back to the 0000 state using the    ̅̅ ̅̅ ̅̅  line as shown in figure below: 
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2. synchronous counters: 

The term synchronous, as applied to counter operations, means that the 

counter is clocked such that each flip-flop in the counter is triggered at the 

same time. This is accomplished by connecting the clock line to each of the 

counter. Unlike asynchronous counters, synchronous counters have different 

arrangements for the J and K inputs in order to achieve a binary sequence.  

A procedure for the design of synchronous counters:  

1- Determine the type and the number of flip-flops needed. 

2- Write a truth table containing the present state and the next state 

according to required sequence. 

3- Find an expression for each flip-flop input using the k-map according 

to the type of flip-flops used. 

4- Implement these expressions with combinational logic and combine 

with flip-flops. 

 

Example: 

Design a 2-bit synchronous up counter using edge-triggered JK flip-flops (modulus 

4 or mod 4 or divide by 4). 

Solution  

Here we need 2JK flip-flops. 

CK 

Present state Next  state Output 

        1       

            J K J K 

0 0 0 0 1 0 x 1 x 

1 0 1 1 0 1 x x 1 

2 1 0 1 1 x 0 1 x 

3 1 1 0 0 x 1 x 1 

 

Now, the state transition table of a JK flip-flops is: 

   →     1 J K 

 →   0 x 

 → 1 1 x 

1 →   x 1 

1 → 1 x 0 

 

 

 

 

 

 

 

 

 

 →   

 → 1  

1 →   

1 → 1  
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1- For  FFA, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

 

2- For  FFB, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

 

∴The logic diagram of the counter is: 

 

 

 
 

Note that the design is independent from the way of flip-flop triggering. 

 

  ̅   

 ̅ 0 x 

  1 x 

  ̅   

 ̅ x 0 

  x 1 

  ̅   

 ̅ x x 

  1 1 

  ̅   

 ̅ 1 1 

  x x 

  𝐽𝐴  𝐵  𝑄𝐵                                        𝐾𝐴  𝐵  𝑄𝐵                                       

  𝐽𝐵  1                                        𝐾𝐵  1                                      
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Example: 

Design a 2-bit synchronous up counter using edge-triggered D flip-flops. 

Solution  

 The state transition table of D flip-flop is: 

   →     1 D 

 →   0 

 → 1 1 

1 →   0 

1 → 1 1 

 

CK 

Present state Next  state Out put 

         1 

                  

0 0 0 0 1 0 1 

1 0 1 1 0 1 0 

2 1 0 1 1 1 1 

3 1 1 0 0 0 0 

 

1- For  FFA, use the k-map to 

find      : 

 

 

 

 

 

 

 

  ̅   

 ̅ 0 1 

  1 0 

2- For  FFB, use the k-map to 

find    : 

   ̅   

 ̅ 1 1 

  0 0 

 

∴The logic diagram of the counter is: 

 
 

 

  𝐷𝐴  𝐴̅𝐵  𝐴𝐵̅ 
 𝑄𝐴 𝑄𝐵                                         𝐷𝐵  𝐵̅  𝑄̅𝐵                                      
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Example: 

Design a mod-4(divide by 4) (2-bit) binary synchronous down- counter using JK 

flip-flops. 

Solution  

As we saw before, two flip-flops are needed. 

CK 

Present 

state 

Next  

state 

Input of F.FS 

        1       

            J K J K 

0 0 0 1 1 1 x 1 x 

1 0 1 0 0 0 x x 1 

2 1 0 0 1 x 1 1 x 

3 1 1 1 0 x 0 x 1 
 

 

   →     1 J K 

 →   0 x 

 → 1 1 x 

1 →   x 1 

1 → 1 x 0 

1- For  FFA, use the k-map to find      and      : 

 

 

 

 

 

 

 

2- For  FFB, use the k-map to find      and      : 

 

 

 

 

 

 

∴The logic diagram of the counter is: 

 
 

 

  ̅   

 ̅ 1 x 

  0 x 

  ̅   

 ̅ x 1 

  x 0 

  ̅   

 ̅ x x 

  1 1 

  ̅   

 ̅ 1 1 

  x x 

  𝐽𝐴  𝐵̅  𝑄̅𝐵                                        𝐾𝐴  𝐵  𝑄𝐵                                       

  𝐽𝐵  1                                       𝐾𝐵  1                                     
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Example: 

Design a 3-bit synchronous up counter using edge-triggered JK flip-flops. 

Solution  

Here we need 3JK flip-flops. 

CK 

Present 

state 
Next  state Input of F.FS 

        1          

                  J K J K J K 

0 0 0 0 0 0 1 0 x 0 x 1 x 

1 0 0 1 0 1 0 0 x 1 x x 1 

2 0 1 0 0 1 1 0 x x 0 1 x 

3 0 1 1 1 0 0 1 x x 1 x 1 

4 1 0 0 1 0 1 x 0 0 x 1 x 

5 1 0 1 1 1 0 x 0 1 x x 1 

6 1 1 0 1 1 1 x 0 x 0 1 x 

7 1 1 1 0 0 0 x 1 x 1 x 1 

 

   →     1 J K 

 →   0 x 

 → 1 1 x 

1 →   x 1 

1 → 1 x 0 

 

1- For  FFA, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ 0 0 x x 

  0 1 x x 

  ̅ ̅  ̅       ̅ 

 ̅ x x 0 0 

  x x 1 0 

  𝐽𝐴  𝑄𝐵𝑄𝐶                                         𝐾𝐴  𝑄𝐵𝑄𝐶                                       
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2- For  FFB, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

 

3- For  FFC, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

∴The logic diagram of the counter is: 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ 0 x x 0 

  1 x x 1 

  ̅ ̅  ̅       ̅ 

 ̅ 0 x x 0 

  1 x x 1 

  ̅ ̅  ̅       ̅ 

 ̅ 1 1 1 1 

  x x x x 

  ̅ ̅  ̅       ̅ 

 ̅ x x x x 

  1 1 1 1 

  𝐽𝐵  𝑄𝐶                                        𝐾𝐵  𝑄𝐶                                         𝐽𝐵  𝑄𝐶                                     

  𝐽𝐶  1                                      𝐾𝐶  1                                    
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Example: 

Design a 3-bit synchronous down counter using edge-triggered JK flip-flops. 

Solution  

Here we need 3JK flip-flops. 

CK 

Present state Next  state 

          

                  

0 0 0 0 1 1 1 

1 0 0 1 0 0 0 

2 0 1 0 0 0 1 

3 0 1 1 0 1 0 

4 1 0 0 0 1 1 

5 1 0 1 1 0 0 

6 1 1 0 1 0 1 

7 1 1 1 1 1 0 

 

    ̅  ̅ ,     ̅  ̅ ,     ̅ ,     ̅ ,    1,    1 

∴The logic diagram of the counter is: 

 

 

 H.W.: 

Design a mod 8 synchronous counter using edge triggered D flip-flops: 

a- An up-counter. 

b- A down counter. 
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Example: 

Draw a logic diagram for an up/down 3-bit synchronous counter using edge-

triggered JK flip-flops. 

Solution 

 

Example: 

Design a BCD (mod-10) synchronous up counter using edge-triggered JK flip-

flops. 

Solution  

 

CK 

Present state Next  state Input of F.FS 

        1             

                        J K J K J K J K 

0 0 0 0 0 0 0 0 1 0 x 0 x 0 x 1 x 

1 0 0 0 1 0 0 1 0 0 x 0 x 1 x x 1 

2 0 0 1 0 0 0 1 1 0 x 0 x x 0 1 x 

3 0 0 1 1 0 1 0 0 0 x 1 x x 1 x 1 

4 0 1 0 0 0 1 0 1 0 x x 0 0 x 1 x 

5 0 1 0 1 0 1 1 0 0 x x 0 1 x x 1 

6 0 1 1 0 0 1 1 1 0 x x 0 x 0 1 x 

7 0 1 1 1 1 0 0 0 1 x x 1 x 1 x 1 

8 1 0 0 0 1 0 0 1 x 0 x 0 0 x 1 x 

9 1 0 0 1 0 0 0 0 x 1 x 0 0 x x 1 
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1- For  FFA, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

                                                               

 

2- For  FFB, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

                                                                              

 

3- For  FFC, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

    ̅   ̅                                                                    
 

4- For  FFD, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

   1                                                                                   1    

 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 x x 

 ̅  0 0 x x 

   0 1 x x 

  ̅ 0 0 x x 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ x x x 0 

 ̅  x x x 1 

   x x x x 

  ̅ x x x x 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 x x x 

 ̅  0 x x x 

   1 x x x 

  ̅ 0 x x x 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ x 0 x 0 

 ̅  x 0 x 0 

   x 1 x x 

  ̅ x 0 x x 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 x 0 

 ̅  1 1 x 0 

   x x x x 

  ̅ x x x x 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ x x x x 

 ̅  x x x x 

   1 1 x x 

  ̅ 0 0 x x 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ x x x x 

 ̅  1 1 x 1 

   1 1 x x 

  ̅ x x x x 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 1 1 x 1 

 ̅  x x x x 

   x x x x 

  ̅ 1 1 x x 
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Example: 

Design a synchronous 3-bit up counter with a Gray code sequence using JK flip-

flops.   

Solution 

Here we need 3JK flip-flops. 

 

CK 

Present state 

    

Next  state 

    1 

Input of F.FS 

         

                  J K J K J K 

0 0 0 0 0 0 1 0 x 0 x 1 x 

1 0 0 1 0 1 1 0 x 1 x x 0 

2 0 1 1 0 1 0 0 x x 0 x 1 

3 0 1 0 1 1 0 1 x x 0 0 x 

4 1 1 0 1 1 1 x 0 x 0 1 x 

5 1 1 1 1 0 1 x 0 x 1 x 0 

6 1 0 1 1 0 0 x 0 0 x x 1 

7 1 0 0 0 0 0 x 1 0 x 0 x 

 

 

1- For  FFA, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

2- For  FFB, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ 0 0 x X 

  0 1 x X 

  ̅ ̅  ̅       ̅ 

 ̅ x x 0 0 

  x x 1 0 

  ̅ ̅  ̅       ̅ 

 ̅ x 0 x 0 

  x 0 x 1 

  ̅ ̅  ̅       ̅ 

 ̅ 0 x 0 X 

  1 x 0 X 

  𝐽𝐴  𝑄𝐵𝑄𝐶                                       
  𝐾𝐴  𝑄𝐵𝑄𝐶                                       

𝐽𝐵  𝑄̅𝐴𝑄𝐶                            𝐾𝐵  𝑄𝐴𝑄𝐶                                       
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3- For  FFC, use the k-map to find      and      : 

 

 

 

 

 

 

 

 

 The implementation of the counter is shown in Figure below: 

 
 

Example: 

Design a counter with the irregular binary count sequence shown in the state 

diagram of Figure below. Use D flip-flops. 

 
Solution 

We have only four states, a 3-bit counter is require 3 flip-flops to implement this 

sequence because the maximum binary count is seven. 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ 1 x x 1 

  x 0 0 x 

  ̅ ̅  ̅       ̅ 

 ̅ x 1 1 x 

  0 x x 0 

𝐽𝐶  𝑄̅𝐶                           𝐽𝐶  𝑄̅𝐶                                        𝐾𝐶  𝑄̅𝐶                                      
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CK 

Present state 

    

Next  state 

    1 
Input of F.FS 

                           

1 0 0 1 0 1 0 0 1 0 

2 0 1 0 1 0 1 1 0 1 

5 1 0 1 1 1 1 1 1 1 

7 1 1 1 0 0 1 0 0 1 

 

1- For  FFA, use the k-map to find      : 

 

 

 

 

 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ x 1 x x 

  0 x 0 1 

2- For  FFB, use the k-map to find    : 
 

  ̅ ̅  ̅       ̅ 

 ̅ x 0 x x 

  1 x 0 1 

 

3- For  FFC, use the k-map to find    : 

 

 

 

 

 

  

 

The implementation of the counter is shown in Figure below: 

 
 

 

 

  ̅ ̅  ̅       ̅ 

 ̅ x 1 x x 

  0 x 1 1 

  𝐷𝐴  𝐶̅  𝐴𝐵̅   𝑄̅𝐶  𝑄𝐴𝑄̅𝐵                                      
  𝐷𝐵  𝐵̅  𝑄̅𝐵                                      

  𝐷𝐶  𝐶̅  𝐴  𝑄̅𝐶  𝑄𝐴                                      
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Example: 

Design an up/down 3-bit synchronous counter using T flip-flops. 

Solution 

Here we need 3T flip-flops. 

M 

Present state 

    

Next  state 

      

Input of F.FS 

         

                  T T T 

0 0 0 0 0 0 1 0 0 1 

0 0 0 1 0 1 0 0 1 1 

0 0 1 0 0 1 1 0 0 1 

0 0 1 1 1 0 0 1 1 1 

0 1 0 0 1 0 1 0 0 1 

0 1 0 1 1 1 0 0 1 1 

0 1 1 0 1 1 1 0 0 1 

0 1 1 1 0 0 0 1 1 1 

1 0 0 0 1 1 1 1 1 1 

1 0 0 1 0 0 0 0 0 1 

1 0 1 0 0 0 1 0 1 1 

1 0 1 1 0 1 0 0 0 1 

1 1 0 0 0 1 1 1 1 1 

1 1 0 1 1 0 0 0 0 1 

1 1 1 0 1 0 1 0 1 1 

1 1 1 1 1 1 0 0 0 1 

 

 

 

   →     1 T 

 →   0 

 → 1 1 

1 →   1 

1 → 1 0 

The state transition table of T flip-flop is: 

 
  ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 1 1 

 ̅  0 0 0 0 

   1 1 0 0 

  ̅ 0 0 0 0 

1- For  FFA, use the k-map to find     

2- For  FFB, use the k-map to find    : 

   ̅ ̅  ̅       ̅ 

 ̅ ̅ 0 0 1 1 

 ̅  1 1 0 0 

   1 1 0 0 

  ̅ 0 0 1 1 

 

 

 

 

 

 

3- For  FFC, use the k-map to find    : 

  ̅ ̅  ̅       ̅ 

 ̅ ̅ 1 1 1 1 

 ̅  1 1 1 1 

   1 1 1 1 

  ̅ 1 1 1 1 

 

  𝑻𝑪  𝟏 

                                   

  𝑻𝑨  𝑴𝑩̅𝑪̅  𝑴̅𝑩𝑪  𝑴𝑸̅𝑩𝑸̅𝑪  𝑴̅𝑸𝑩𝑸𝑪                                     

  𝑻𝑩  𝑴𝑪̅  𝑴̅𝑪  𝑴𝑸̅𝑪  𝑴̅𝑸𝑪                                     
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 4- Shift register  

Shift registers are a type of sequential logic circuit, mainly for storage of digital 

data. They are a group of flip-flops connected in a chain so that the output from 

one flip-flop becomes the input of the next flip-flop. Most of the registers 

possess no characteristic internal sequence of states. All flip-flops are driven by 

a common clock, and all are set or reset simultaneously. 

The basic types of shift registers are studied, such as Serial In - Serial Out, 

Serial In - Parallel Out, Parallel In – Serial Out, Parallel In - Parallel Out, and 

bidirectional shift registers. 

 

Register:  

 A set of n flip-flops. 

 Each flip-flop stores one bit.  

  Two basic functions: data storage and data movement. 

 

Shift Register:  

 A register that allows each of the flip-flops to pass the stored information to 

its adjacent neighbour. 

 

 

The figure below shows the basic data movement in shift registers. 

 

 
Basic data movement in shift registers. (Four bits are used for illustration. The bits move in the direction of the arrows.) 
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A. Serial In - Serial Out Shift Registers 

 The serial in/serial out shift register accepts data serially – that is, one bit at 

a time on a single line. It produces the stored information on its output also 

in serial form. 

A basic four-bit shift register can be constructed using four D flip-flops, as 

shown in figure below: 

 
 

The operation of the circuit is as follows:  

 The register is first cleared, forcing all four outputs to zero.  

  The input data is then applied sequentially to the D input of the first flip-

flop on the left (FF0).  

 During each clock pulse, one bit is transmitted from left to right.  

Assume a data word to be 1010. The least significant bit of the data has to be 

shifted through the register from FF0 to FF3. In order to get the data out of the 

register, they must be shifted out serially. This can be done destructively or 

non-destructively. For destructive readout, the original data is lost and at the 

end of the read cycle, all flip-flops are reset to zero. 

The following table shows shifting a 4-bit code into the shift register. 

 

 

 

 

 

 

 

 

The following table shows shifting a 4-bit code out of the shift register 

 

 

 

 

 

 

 

 

CLK FF0(  ) FF1(  ) FF2(  ) FF3(  ) 

Initial 0 0 0 0 

1 0 0 0 0 

2 1 0 0 0 

3 0 1 0 0 

4 1 0 1 0 

CLK FF0(  ) FF1(  ) FF2(  ) FF3(  ) 

Initial 1 0 1 0 

5 0 1 0 1 

6 0 0 1 0 

7 0 0 0 1 

8 0 0 0 0 
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Example: 

Show the states of the 5-bit register in Figure below for the specified data input and 

clock waveforms. Assume that the register is initially cleared (all 0s). 

Solution  

The first data bit (1) is entered into the register on the first clock pulse and then 

shifted from left to right as the remaining bits are entered and shifted. The register 

contains Q4Q3Q2Q1Q0 = 11010 after five clock pulses. 
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B. Serial In/Parallel out Shift Registers 

For this kind of register, data bits are entered serially in the same manner as 

discussed in the last section. The difference is the way in which the data bits 

are taken out of the register. Once the data are stored, each bit appears on its 

respective output line, and all bits are available simultaneously.  

A construction of a four-bit serial in - parallel out register is shown below. 

 

 
 

In the table below, we can see how the four-bit binary number 1001 is shifted to 

the Q outputs of the register. 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK FF0(  ) FF1(  ) FF2(  ) FF3(  ) 

Initial 0 0 0 0 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 1 0 0 1 
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Example: 

Show the states of the 4-bit register (SRG 4) for the data input and clock 

waveforms in Figure below. The register initially contains all 1s.  

 
 

Solution 

 
 

 

The register contains 0110 after four clock pulses. 
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C. Parallel In - Serial out Shift Registers 
 

For a register with parallel data inputs, the bits are entered simultaneously 

into their respective stages on parallel lines rather than on a bit-by-bit basis 

on one line as with serial data inputs. The serial output is the same as in 

serial in/serial out shift registers, once the data are completely stored in the 

register. For parallel data, multiple bits are transferred at one time. 

A logic diagram for a four-bit parallel in - serial out shift register is shown 

below. 

 
 

 
Logic symbol 

 

 

The circuit uses D flip-flops and gates for entering data to the register. D0, 

D1, D2 and D3 are the parallel inputs, where D0 is the MSB and D3 is the 

LSB. To load data in, the mode control line is taken to LOW (    ̅̅ ̅̅ ̅̅ ̅̅ ) and 

the data is clocked in. The data can be shifted when the mode control line is 

HIGH as SHIFT is active high. The register performs right shift operation on 

the application of a clock pulse. 
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Example: 

Show the data-output waveform for a 4-bit register with the parallel input 

data and the clock and SHIFT/LOAD waveforms given in Figure below.  

 

Solution 

On clock pulse 1, the parallel data (D0D1D2D3 = 1010) are loaded into the 

register, making Q3 a 0. On clock pulse 2 the 1 from Q2 is shifted onto Q3; 

on clock pulse 3 the 0 is shifted onto Q3; on clock pulse 4 the last data bit 

(1) is shifted onto Q3; and on clock pulse 5, all data bits have been shifted 

out, and only 1s remain in the register (assuming the D0 input remains a 1). 
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D. Parallel In/Parallel out Shift Registers 

For parallel in - parallel out shift registers, all data bits appear on the parallel 

outputs immediately following the simultaneous entry of the data bits. The 

following circuit is a four-bit parallel in - parallel out shift register 

constructed by D flip-flops. 

 

 
  

The D's are the parallel inputs and the Q's are the parallel outputs. Once the 

register is clocked, all the data at the D inputs appear at the corresponding Q 

outputs simultaneously. 

 

 

E. Bidirectional Shift Registers  

The registers discussed so far involved only right shift operations. Each right 

shift operation has the effect of successively dividing the binary number by 

two. If the operation is reversed (left shift), this has the effect of multiplying 

the number by two. With suitable gating arrangement a serial shift register 

can perform both operations. A bidirectional, or reversible, shift register is 

one in which the data can be shift either left or right. A four-bit bidirectional 

shift register using D flip-flops is shown below. 
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Shift Register Counters  

Two of the most common types of shift register counters are introduced here: the 

Ring counter and the Johnson counter. They are basically shift registers with the 

serial outputs connected back to the serial inputs in order to produce particular 

sequences. These registers are classified as counters because they exhibit a 

specified sequence of states.  

1-  Ring Counters : 

A ring counter is basically a circulating shift register in which the output of the 

most significant stage is fed back to the input of the least significant stage. The 

following is a 4-bit ring counter constructed from D flip-flops. The output of 

each stage is shifted into the next stage on the positive edge of a clock pulse. If 

the CLEAR signal is high, all the flip-flops except the first one FF0 are reset to 

0. FF0 is preset to 1 instead. 

 
 

Since the count sequence has 4 distinct states, the counter can be considered as 

a mod-4 counter.  Only 4 of the maximum 16 states are used, making ring 

counters very inefficient in terms of state usage.  But the major advantage of a 

ring counter over a binary counter is that it is self-decoding.  No extra decoding 

circuit is needed to determine what state the counter is in. 

 

Clock pulse             
 

0 0 0 0 1  

1 0 0 1 0 

2 0 1 0 0 

3 1 0 0 0 
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2- Johnson Counters 

Johnson counters are a variation of standard ring counters, with the inverted 

output of the last stage fed back to the input of the first stage.  They are also 

known as twisted ring counters.  An n-stage Johnson counter yields a count 

sequence of length 2n, so it may be considered to be amod-2n counter.  The 

circuit below shows a 4-bit Johnson counter.   

 

The state sequence for the counter is given in the table below as well as the 

animation on the left. 

 

 

 

 

 

 

 

Again, the apparent disadvantage of this counter is that the maximum 

available states are not fully utilized.  Only eight of the sixteen states are 

being used. 

 

 

 

 

 

 

 

 

Clock pulse             
 

0 0 0 0 0  

1 0 0 0 1 

2 0 0 1 1 

3 0 1 1 1 

4 1 1 1 1 

5 1 1 1 0 

6 1 1 0 0 

7 1 0 0 0 
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