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VECTOR ALGEBRA 

 

1.1 SCALARS AND VECTORS 

        Vector analysis is a mathematical tool with which electromagnetic (EM) 

concepts are most conveniently expressed and best comprehended. 

 

A scalar is a quantity that has only magnitude 

Quantities such as time, mass, distance, temperature, electric potential, and 

population are scalars. 

A vector is a quantity that has both magnitude and direction 

Vector quantities include velocity, force, displacement, and electric field intensity. 

A field is a function that specifies a particular quantity everywhere in a region 

 

If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. 

Examples of scalar fields are temperature distribution in a building, sound 

intensity in a theater, electric potential in a region, and refractive index of a 

stratified medium. The gravitational force on a body in space and the velocity of 

raindrops in the atmosphere are examples of vector fields. 

 

1.2 UNIT VECTOR 

        Let   be a vector                   The magnitude of   is a scalar 

written as   or |  ⃑⃑  |, which is given by  

 

 

|  |  √  
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 A unit vector    along   is defined as a vector whose magnitude is unity (i.e., 1) 

and its direction is along  , that is, 

 

   
 

| |
 

  

|  |
 

or 

   
               

√  
    

    
 

 

 

Note that |  | = 1.  

 
 

 

 

1.3 VECTOR ADDITION AND SUBTRACTION 
 

Two vectors   and   can be added together to give another vector  ; that is, 

       

The vector addition is carried out component by component. Thus, if  

 ⃑⃑                     and    ⃑⃑                 . 

 ⃑⃑   ⃑⃑                                

Vector subtraction is similarly carried out as 

 ⃑⃑   ⃑⃑                                

 

 

 



3 
 

Chapter one                                VECTOR ALGEBRA                                 Asst. Lect.:Mayada J. Hamwdi                                                                            

1.3 POSITION AND DISTANCE VECTORS 

The position vector   . (or radius vector) of point P is defined as the directed 

distance from the origin O to P, that is, 

                  

 

 

 

 

 

 

 

 

 
                         Figure 1.1 Illustration of position vector                . 

 

 

The distance vector is the displacement from one point to another 
 

 

 

 

 

    Figure 1.2 Distance vector    . 

   

 

 

 

 

If two points P and Q are given by (        ) and (        ), the distance 

vector is the displacement from P to Q as shown in Figure 1.2; that is, 
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Example: Find the vector between the points P (1, 4, 2) and Q (3, 1, 6)? 

Solution:    ⃑⃑⃑⃑  ⃑                   

                   ⃑⃑⃑⃑  ⃑                                      

                   ⃑⃑⃑⃑  ⃑                   

                    ⃑⃑⃑⃑  ⃑                                       

 

Example: If                and          find:  

                 (a) the component of A along   ,       (b) the magnitude of  ,  

                 (c) the magnitude of  ,                       (d)  the magnitude of       , 

                 (e) a unit vector along  .          

                    

 Solution: (a) The component of   along    is       . 

                    

                 (b)   √  
    

    
  √                

 

                 (c)   √           

                 (d) the magnitude of        

                

             (            )                          

              

                |    |  √            √           

            

      

                               
 ⃑⃑ 

| ⃑⃑ |
 

            

     
  

 

                                             

                  |  |  √                     
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      Example : Points P and Q are located at (0, 2, 4) and ( - 3 , 1, 5). Calculate 

                       (a)The position vector P 

                       (b) The distance vector from P to Q 

                       (c) The distance between P and Q 

                       (d) A vector parallel to PQ with magnitude of 10 

 

    Solution: 

                    (a)   ⃑                      

 

                      (b)                             

                                                

   (c)  Since     is the distance vector from P to Q, the distance between P and Q is the  

         magnitude of this vector; that is, 

 

  |   |  √            

   Alternatively: 

                 

         √       
 
        

 
        

 
 √            

 

   (d)  Let the required vector be   , then   

                

                             
  

|  |
         |  |                                                      

   where |  | = 10 is the magnitude of   . Since    is parallel to PQ, it must have the same  

   unit vector as       or     . Hence,   

            

             
   

|   |
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1.6 VECTOR MULTIPLICATION 
 

            When two vectors A and B are multiplied, the result is either a scalar or a vector 

depending on how they are multiplied. Thus there are two types of vector 

multiplication: 

 

1. Scalar (or dot) product:     

2. Vector (or cross) product:       

Multiplication of three vectors  ,  , and   can result in either: 

3. Scalar triple product:             

or 

4. Vector triple product:             

A. The Dot Product 

The dot product of two vectors  ⃑⃑  and  ⃑⃑  , written as  ⃑⃑   ⃑⃑  , is defined geometrically 

as the dot product of the magnitude of   ⃑⃑   and the projection of   ⃑⃑  onto  ⃑⃑   (or vice 

versa) 

 

Thus: 

 ⃑⃑   ⃑⃑  | ⃑⃑ || ⃑⃑ |        

 

where     is the smaller angle between   and  , the result of     is called either 

scalar product since it is scalar, or dot product due to sign. 

 

If  ⃑⃑                 and  ⃑⃑                 then 

 ⃑⃑   ⃑⃑                 

Not that  
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 Example: The three vertices of a triangle are located at          ,                

                  and C(-3, 1, 5). Find: (a)  ⃑    ; (b)  ⃑    ; (c) the angle      at vertex A ? 

 

 

  Solution: 

   (a)         ⃑                        

                                  (                )   

                                      

 

    (b)              ⃑                             

          (               )   

                                          

 

  (c)    | ⃑   |  √               

     

          | ⃑   |  √              

     

          ⃑     ⃑                   

 

                                              

 

        ⃑     ⃑    | ⃑   || ⃑   |          

                              

  

                 
  

      
 

                         

      ∴             
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B. Cross Product 

      The cross product of two vectors A and B, written as  ⃑⃑   ⃑⃑ , is defined as 

 

 ⃑⃑   ⃑⃑             

 

Where is a unit vector normal to the plane containing  ⃑⃑  and  ⃑⃑   . The direction of is 

taken as the direction of the right thumb when the fingers of the right hand rotate 

from A to B as shown in Fig. 1.3(a). Alternatively, the direction of    is taken as 

that of the advance of a right-handed screw as A is turned into B as shown in Fig. 

1.3(b). 

The 

 

 

 

 

 

 

 

 

 

 

                                               

(a)                                             (b)     

    Figure 1.3: Direction of  ⃑⃑    ⃑⃑  and    using (a) right hand rule (b) a right-handed screw. 

 

The vector multiplication of equation above is called cross product due to the cross 

sign; it is also called vector product since the result is a vector. 

If     ⃑⃑                    and      ⃑⃑                   then 

 ⃑⃑   ⃑⃑  *

      

      

      

+ 

 (         )                               
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Note that 

                                                      

                           

         

                while                   

 

  Example: If three points                       and          .  

  Find   ⃑     ⃑    

  Solution: 

  ⃑                        

                   (      )            

                       

 

   ⃑                        

                    (      )           

                        

 

  | ⃑   |  √               

  | ⃑   |  √              

    ⃑     ⃑    *

      

    
    

    

    
    

    

+  [

      

     
    

] 

   ⃑     ⃑    [          ]   [              ]                  

   ⃑     ⃑                   

  | ⃑     ⃑   |  √            | ⃑   || ⃑   |          

            | ⃑     ⃑   |

| ⃑   || ⃑   |
      √           

          
              ∴            
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  Example: Given vectors                    and               , find     

                    the angle between   and  . 

 

 Solution:  
      

             The angle     can be found by using either dot product or cross product. 

 

 

 ⃑⃑   ⃑⃑  | ⃑⃑ || ⃑⃑ |        

 

 ⃑⃑   ⃑⃑                   

         

| ⃑⃑ |  √         √   

| ⃑⃑ |  √         √   

       
 ⃑⃑   ⃑⃑ 

| ⃑⃑ || ⃑⃑ |
 

 

√        
        

 

                       
 

 

  Alternatively: 

 

 ⃑⃑   ⃑⃑  [

      

   
    

] 

                             

                

| ⃑⃑   ⃑⃑ |  √              √    

       
 ⃑⃑   ⃑⃑ 

|  || ⃑ |
 

√   

√        
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COORDINATE SYSTEMS 

AND TRANSFORMATION 

2.1 Introduction 

          A point or vector can be represented in any curvilinear coordinate system, 

which may be orthogonal or nonorthogonal. 

 

An orthogonal system is one in which the coordinates are mutually perpendicular 

 

In this chapter, we shall restrict ourselves to the three best-known coordinate 

systems: the Cartesian, the circular cylindrical, and the spherical. 

 

2.2 The Cartesian Coordinate System (x, y, z) 

    In the Cartesian coordinate system we set up three coordinate axes mutually at 

right angles to each other, and call them the x, y, and z-axes. It is customary to 

choose a right-handed coordinate system, in which a rotation (through the smaller 

angle) of the x-axis into the y-axis would cause a right-handed screw to progress in 

the direction of the z-axis. Figure 1.3 shows a right-handed Cartesian coordinate 

system.  

 

A point is located by giving its x, y, and z coordinates. These are, respectively, the 

distances from the origin to the intersection of a perpendicular dropped from the 

point to the x, y, and z-axes.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 (a) A right-handed Cartesian coordinate system. (b) The location of points P(1, 2, 3)     

                   and Q(2, -2, 1). (c) The differential volume element in Cartesian coordinates 
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     Also shown in Figure 1.3(c) are differential element in length, area, and 

volume. Notes from the figure that in Cartesian coordinate: 

 

1. Differential displacement is given by 

  ⃑                 

 

2. Differential normal area is given by 

                      

                      

                      

3. Differential volume is given by 

            

 

The ranges of the coordinate variables x, y, and z are 

       

       

        

A vector  ⃑⃑  in Cartesian coordinates can be written as shown in Figure 1.4 

                   ⃑⃑                  

 

 

where   ,   , and    are unit vectors 

along the x, y, and z-directions. 

 

 

 

 

                                                                                       Figure 1.4 Unit vectors   ,   , and    
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2.3 The Cylindrical Coordinate System (     )  

        The circular cylindrical coordinate system is very convenient whenever we 

are dealing with problems having cylindrical symmetry. A vector  ⃑⃑  in cylindrical 

coordinates can be written as: 

 

 ⃑⃑                 

 

Where             , are unit vectors in the  , , and z-directions as illustrated in 

Figure 1.5. 

The magnitude of  ⃑⃑  is: 

| ⃑⃑ |  √  
    

    
  

 

A point P in cylindrical coordinates is represented as (     ) and is as shown in 

Figure 1.5. Observe Figure 1.5 closely and note how we define each space 

variable: ρ is the radius of the cylinder passing through P or the radial distance 

from the z-axis;   is (called the azimuthal angle) measured from the x-axis in the 

xy-plane; and z is the same as in the Cartesian system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 1.5 Point P and unit vectors in the cylindrical coordinate system 
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Notice that the unit vectors              are mutually perpendicular since our 

coordinate system is orthogonal;    points in the direction of increasing  ,    in 

the direction of increasing  , and z in the positive z-direction. Thus 

                         

                         

           

           

           

Note Also from Figure 1.5 that in cylindrical coordinate, differential element can 

be found: 

 

a. Differential displacement is given by:                                                       

  ⃑        

  ⃑          

  ⃑        

or    ⃑                      

 

b. Differential normal area is given by:  

                

              

                

c. Differential volume is given by: 

               

d. The distance between two points in cylindrical coordinate   (  ,         and 

  (  ,        is given by 

  √  
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 Cartesian to Cylindrical Coordinate Transformation 

            The relationships between the variables (x, y, z) of the Cartesian coordinate 

system and those of the cylindrical system         are easily obtained as 

  

  √                               
 

 
                  

 

In matrix form, we have transformation of vector  ⃑⃑  

From Cartesian coordinate        ⃑⃑                  

To cylindrical coordinate          ⃑                     as 

*

  

  

  

+  [
             
          

   
] *

  

  

  

+ 

 Cylindrical to Cartesian Coordinate Transformation 

           The relationships between the variables (     ) of the cylindrical 

coordinate system and those of the Cartesian system (x, y, z) are easily obtained as 

                                         

In matrix form, we have transformation of vector  ⃑⃑  

From cylindrical coordinate           ⃑⃑                 

To Cartesian coordinate        ⃑⃑                     as  

*

  

  

  

+  [
          
            
   

] *

  

  

  

+ 
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  Example: Given point           and vector  ⃑⃑              , express      

                   and  ⃑⃑  in cylindrical coordinate. Evaluate  ⃑⃑  at   in Cartesian and     

                   cylindrical system?  

 

  Solution:           The vector  ⃑⃑   in Cartesian coordinate at P is: 

   ⃑⃑                      

  | ⃑⃑ |  √           

  The point P in cylindrical coordinate is: 

    √       √                 

          

 
       

  
         

               

  P(6.324 , 108.430°, 3) 

  *

  

  

  

+  [
             
          

   
] *

  

  

  

+  [
             
          

   
] *

 
   

 
+ 

  But                       and substituting these yields 

  *

  

  

  

+  [
             
          

   
] [

      
        

 

] 

  *

  

  

  

+  [
                            

 ρ                   
 

] 

                                  

      ρ                    
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   ⃑⃑            

     at point P is: 

                                                                        

                                                          

    ⃑⃑                  

  | ⃑⃑ |  √                      

 

2.4 The Spherical Coordinate System (       

               The Spherical coordinate system is most appropriate when dealing with 

problems having spherical symmetry. A vector  ⃑⃑  in spherical coordinates can be 

written as: 

 ⃑⃑                  

Where             , are unit vectors in the      and  -directions  

The magnitude of  ⃑⃑  is: 

| ⃑⃑ |  √  
    

    
  

A point P in spherical coordinates is represented as (     ) and is illustrate in 

Figure 1.6 (a). From this Figure, we notice that   is defined as the distance from 

the origin to the point P or the radius of a sphere centred at the origin and passing 

through P;   is the angle between the z-axis and the position vector of P; and   is 

measured from the x-axis 
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(a)                                                                           (b) 

 

Figure 1.6 Spherical coordinate system (a) Point P and unit vectors (b) Differential elements  

              

Notice that the unit vectors              , and are mutually perpendicular since 

our coordinate system is orthogonal;    points in the direction of increasing r,    

in the direction of increasing   , and    in the direction of increasing  . Thus 

                         

                         

           

           

           

From Figure 1.6 (b), we note that in spherical coordinate, differential element can 

be found:  
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 Differential displacement is given by:  

        ⃑                                                         

        ⃑                       

       ⃑                                                                        

Or    ⃑                           

 

 Differential normal area is given by: 

  ⃑                 

                  

               

 

 Differential volume is given by: 

                      

 

The distance between two points in spherical coordinate   (  ,          and    

  (  ,       is given  

  √  
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 Cartesian to Spherical Coordinate Transformation   

           The relationships between the variables (     ) of the Cartesian coordinate 

system and those of the Spherical system (     ) are easily obtained as  

  

  √                           
√     

 
                    

 

 
 

  

In matrix form, we have transformation of vector  ⃑⃑  

From Cartesian coordinate        ⃑⃑                  

To Spherical coordinate           ⃑                     as 

[

  

  

  

]  [
                    
                     
          

] *

  

  

  

+ 

         Figure 1.7 shows the relation between space variables 

 

 

 

 

 

 

 

            Figure 1.7: The relation between space variables (     ), ( ,       and (       ) 
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 Spherical to Cartesian Coordinate Transformation 

            The relationships between the variables ( ,  ,  ) of the spherical coordinate 

system and those of the Cartesian system (x, y, z) are easily obtained as 

                                                   

    In matrix form, we have transformation of vector  ⃑⃑  

From Spherical coordinate           ⃑                 

To Cartesian coordinate        ⃑⃑                    as 

*

  

  

  

+  [
                     
                    

          
] [

  

  

  

] 
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Home Work 

1. Given vectors             and                 , determine 

 

a) |   |. 

b)     . 

c) The component of   along   . 

d) A unit vector parallel to     . 

e) The angle     between the two vectors. 

 

           Answer:         a) 7,     b) (0, - 2 , 21),     c) 0,      d) (0.9117, 0.2279, 0.3419)      

e)            . 
 

2. Given the three points in Cartesian coordinate system as          , 
          ,          . Find  

 

a) The vector from   to  . 

b) The unit vector from B to  . 

c) The distance from   to  . 

Answer: a)            ,  b)                           ,         

c)13.6747. 

 

3. Transfer the vector   ⃑⃑         to spherical coordinate at point  

                                                    
                                          ⃑⃑                            

 

 

 

4. Give the Cartesian coordinates of  ⃑⃑                   at point  

                         

                                              ⃑⃑                            
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ELECTROSTATICS FIELD 

3.1 Introduction 

         We begin our study of electrostatics by investigating the two fundamental 

laws governing electrostatic fields: 

1. Coulomb's law 

2. Gauss's law 

COULOMB'S LAW AND FIELD INTENSITY 

3.2 Coulomb's Law     (قاوىن كىنىو) 

        Coulomb stated that “The force between two very small objects separated in 

a vacuum or free space by a distance which is large compared to their size is 

proportional to the charge on each and inversely proportional to the square of the 

distance between them”. 

 كبٍزة مسافت انحز انفضاء أو زاغانف فً ٌفصمهما جدا صغٍزٌه جسمٍه بٍه انقىة " : كىنىو قاوىن

                 ."بٍىهما انمسافت مزبع مع عكسٍا وتتىاسب مىهما كم ىهع انشحىت مع طزدٌا تتىاسب نمقاٌٍسها بانىسبت

  
     

     
 
 

Where: 

 : Force in newton (N), 

   and    are the positive or negative quantities of charge in Coulomb(C)  

 : is the separation in meters (m) 

  : is called the permittivity of free space and has the magnitude, 

      measured in farads per meter (F/m) 

 

                
    

   

 

 
 

or  
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The coulomb is an extremely large unit of charge, for the smallest known quantity 

of charge is that of the electron (negative) or proton (positive), given in mks units 

as               ; hence a negative charge of one coulomb represents about 

         electrons. 

 

If point charges    and    are located at points having position vector    and   , 

then the vector force      on     duo to   , shown in Figure 3.1, is given by 

     

    
     

    | | 
    

 

                                                         

where 
                                                                                   

 ⃑⃑                                                                           

 

   | ⃑⃑   |                                                          Figure 3.1 Coulomb vector force on point 

                                                                                                    charges    and    

     
 

  ⃑⃑   

| ⃑⃑   |
                                                      

 

 

∴      
     

    | | 
 ⃑    

 

or 

  

     
               

    |       |
 

 

 

As shown in Figure 3.1, the force      on    due to    is given by 

 

           

 

Like charges (charges of the same sign) repel each other while unlike charges 

attract. This is illustrated in Figure 3.2. 

                                                                                                                           

Figure 3.2 (a), (b) Like charges 

repel. (c) Unlike charges attract. 
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From Figure 3.1    located at (          and    at (         , then 

 

 ⃑⃑                                  

 

| ⃑⃑   |  √       
         

         
  

 

 

    
 

  ⃑⃑   

| ⃑⃑   |
 

 

 

    
 

       
           

            
   

√       
         

         
 

 

 

 

since 

 

   
     

    | | 
    

 

 

 
    

    [       
         

         
 ]

 
       

           
           

   

√       
         

         
 

 

 

 

 

   
           

           
           

   

    [       
         

         
 ]

 
 ⁄
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If we have more than two point charges, we can use the principle of superposition 

to determine the force on a particular charge. The principle states that if there are N 

charges            located, respectively, at points with position vectors 

           the resultant force   on a charge   located at point   is the vector 

sum of the forces exerted on   by each of the charges             Hence: 

 

 ⃑  
             

    |      |
 
 

             

    |      |
 
   

             

    |      |
 
 

 

or 

 ⃑  
  

    
∑

            

|      |
 

 

   

 

 

  Example: Find the force on    (20μC) duo to charge    (-300μC), where         

                 located at (0, 1, 2) and    at (2, 0, 0)? 

 

  Solution: 

   ⃑⃑                    
                                   

                       

   

  | ⃑⃑   |  √                  

                                                                                                                      

   

      
     

       
     

 

  

  

  ⃑   
                   

                    
 [
           

 
] 

 

   ⃑               

 

  | ⃑  |  √                    
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3.3 The Electric Field Intensity (E)              )ًانمجالشدة  انكهزبائ ) 

          If we now consider one charge fixed in position, say   , and move a second 

charge slowly around, we note that there exists everywhere a force on this second 

charge; in other words, this second charge is displaying the existence of a force 

field. Call this second charge a test charge   . The force on it is given by 

Coulomb's law, 

 

   
     

    | | 
    

 

 

Writing this force as a force per unit charge gives 

 

  

  
 

   

    | | 
    

 

 

The quantity on the right side of the equation above is a function only of    and 

the directed line segment from    to the position of the test charge. This describes 

a vector field and is called the electric field intensity. 

Using a capital letter E for electric field intensity, we have finally 

 

  
  

  
 

 

 ⃑⃑  
   

    | | 
    

 

 

Where  ⃑⃑  is electric field intensity measured in newtons/coulomb (N/C) or 

volts/meter (V/m). 

 

The electric field intensity at point   due to a point charge located at    is readily 

obtained from eqs.  

 

 ⃑⃑  
          

    |      | 
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 Example: Find the electric field intensity (E) at (0, 2, 3) due to a point charge Q    

                 (0.4μC) located at (2, 0, 4)? 

   

  Solution: 

   ⃑⃑                  

                               

                   

   

  | ⃑⃑ |  √                   

   

    ⃑⃑  
   

     
 
    

 

  

  

   ⃑⃑  
        

                 
 
           

 
 

 

   

   ⃑⃑                           

 

  | ⃑⃑ |  √                                     

 

3. 4 Field of N Point Charge 

            Since the coulomb forces are linear, the electric field intensity due to N 

point charges,    at    ,    at   ,and    at    is the sum of the forces on    caused 

by    and    acting alone, or 

 

 ⃑⃑   ⃑⃑    ⃑⃑      ⃑⃑              

 

 ⃑⃑  
   

    | ⃑  |
    

 
   

    | ⃑  |
    

   
   

    | ⃑  |
    

 

 

 ⃑⃑  
  

    
∑

            

|      |
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 Example: A charge of -0.3μC is located at             (in cm), and a second 

charge of 0.5μC is at            cm. Find E at: (a) the origin; (b)            

cm 

 

 Solution:  

  (a)  ⃑⃑   ⃑⃑    ⃑⃑   

 

    ⃑⃑   
   

    |  |
 
   

 

 

  The point must be in meter                                         

 

                                                        

 

   ⃑                                                 

 

 |  ⃑  |  √                             

 

   ⃑⃑   
         

                       
[
                    

     
] 

 

    ⃑⃑                                  

   

   ⃑                                                 

 

 |  ⃑  |  √                             

 

   ⃑⃑   
        

                       
 
                   

     
 

 

    ⃑⃑                                     

 

    ⃑⃑    ⃑⃑     ⃑⃑                                

 

  ∴  ⃑⃑    ⃑⃑     ⃑⃑                                
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 Example: Point charges      and        are located at            and  

                           , respectively. Calculate the electric force on a             

                   charge located at         and the electric field intensity at that point.   

 

  Solution:   

 ⃑  
  

    
∑

            

|      |
 

 

   

 

    

                              

                            

    |      |  √               √    

                             

                           

    |      |  √               √   

 

  

∴  ⃑  
        

  
    

   

{
      [           ]

|√  |
  

       [           ]

|√  |
 } 

 

    

 ⃑         {
           

|√  |
  

            

|√  |
 } 

 

 ⃑                               

 

      

 ⃑⃑  
 ⃑  
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 Example: Four point charges each of       are placed in free space at the point    

                                                         respectively. Determine the  

                  force on a point charge of       located at a point           

 

 

 

   Solution:             

                                                     

                      z         

 

                                                                    

                                                                                                                

 

 

 

              y 

                                                                                                           

 

 

            

              x      

     ⃑   
             

    |      |
 

 

 

                            

                       

    |      |  √          √   

 

     ⃑   
        

  
    

   

                

|√ |
  

 

      ⃑                  
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     ⃑   
             

    |      |
 

 

 
                             

                      

    |      |  √          √  

 

 

    ⃑   
        

  
    

   

               

|√ |
  

 

    ⃑                 

 

  

     ⃑   
             

    |      |
 

 

 
                            

                       

    |      |  √          √  

 

 

     ⃑   
        

  
    

   

        (      )

|√ |
  

 

      ⃑         (      ) 

 

      ⃑         (     ) 

 

       ⃑    ⃑    ⃑    ⃑    ⃑             
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 Example: Determine the electric field intensity at                 due to a     

                  point charge of     at                  in air  

                             

 Solution: 

                                                                         

       ⃑⃑  
   

    | | 
    

 

                         

                                                                                                                       

       ⃑⃑   
  

  
   

   

      ⃑                               

                                   

 

     | ⃑ |  √                     √          

 

   

       
 ⃑ 

| ⃑ |
 

 

       
                  

    
 

 

  

  ⃑⃑   
  

| | 
   

   

  ⃑⃑  
             

       
[
                  

    
] 

 

   ⃑⃑                                
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  Example: Find the force on    at          due to the point charge    at 

        

 

  Solution:  

       

                         

        
     

    | | 
    

 

                                             

                       

    

 

      ⃑                   

                             

 

     | ⃑ |  √               √   

 

   

          
 

 ⃑ 

| ⃑ |
 

 

           
 

            

√  
 

        

           
     

| | 
    

 

 

  

     ⃑   
          

(√  )
 [

            

√  
] 

 

    ⃑           
  

√  
   

 

√  
   

 

√  
    

 

    ⃑                                    
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3.5 Electric Fields Duo to Continuous Charge Distribution 

         So far we have only considered forces and electric fields due to point 

charges, which are essentially charges occupying very small physical space. It is 

also possible to have continuous charge distribution along a line, on a surface, or in 

a volume as illustrated in Figure 3.3. 

 

 

 

 

 

 

 

                Figure 3.3 Various charge distributions and charge elements. 

 

 

 

It is customary to denote the 

 line charge density by      (in    ),  

 surface charge density by      (in     ),  and  

 volume charge density by       (in     ) 

 

The electric field intensity due to each of the charge distributions     ,     , and 

    are given by  

 

 ⃑⃑  ∫
     

    | ⃑ |
 

 

                                  

           

 ⃑  ∫
     

    | ⃑ |
 

 

                             

 

 

 ⃑  ∫
     

    | ⃑ |
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a. Field of a Line Charge 
            Consider a line charge with uniform charge density      extending from A to 

B along the z-axis as shown in Figure 3.4. The charge element    associated with 

element         of the line is 

 

   

 

 

 

                   
 

 

the total charge   is 
 

 

 

  ∫       
  

  

 

 

from Figure 3.4 
 

 

                                                        Figure 3.4 Evaluation of the E field due to a line charge  

 

 

 ⃑                   
 

                     

 

or 
 

 ⃑               

 

   | ⃑ |
 
 

 

                                

 

  √           

 

  

  
 

 ⃑ 

| ⃑ |
  

            

√            [          ] 
 

            

[          ]
 

 ⁄
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Substituting all this into eq. of electric field intensity we get 

 

 ⃑⃑  ∫
     

    | ⃑ |
 

 

   

 

 ⃑⃑  
   

    
∫

            

[          ]
 

 ⁄
                  

 

 

To evaluate this, it is convenient that we define      and    as in Figure 3.4. 

 

                  
 

 
 

√          

 
            

 

∴  √                 

 

                  
   

 
                 ∴            

 

                                       

 

 

 ⃑⃑  
    

    
∫

        [               ]   

         

  

  

 

 

Hence, eq. (*) becomes 

 

      
    

    
∫ [               ]   

  

  

 

 

Thus for a finite line charge, 

 

 

 ⃑⃑  
   

     
[                                  ]         
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As a special case, for an infinite line charge, point B is at         and A at 

         so that      ⁄        ⁄ ; the  -component vanishes and eq. (**) 

becomes 

 

 ⃑⃑  
   

     
    

 

 

 Example: A uniform line charge, infinite in extent with            lies along  

                      . Find the  ⃑⃑  at          . 

 

  

 Solution: 

 

 

   

       ⃑⃑  
   

     
    

                                    P        

                                        

                     

 

                 

 

  |  |  √         

 

  

     
  

|  |
 

         

  
               

 

  

   ⃑⃑  
       

                 
[             ]                          

 

 

 



41 
 

Chapter Three                            Electrostatic Field             Asst. Lect.:Mayada J. Hamwdi                                                                            

 

  Example: Two uniform line charges of           each are parallel to the 

                       , one at                and the other at             .    

                 Find  ⃑  at           ? 

 

  Solution: 

                                                                       

    ⃑   ⃑    ⃑   

     ⃑   
   

     
    

                              

                   

   |   |  √      √   

      
   
|   |

 
         

√  
 

    ⃑   
      

               
[
         

  
]    
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    ⃑   
   

     
    

                         

                   

    |  |  √      √   

     
  

|  |
 

          

√  
 

   ⃑   
      

              
[
          

  
]      

 

 ⃑    
      

               
 
    

  
           

  

 

b. Field of a Sheet Charge 

       Consider an infinite sheet of charge in the xy-plane with uniform charge 

density   . The charge associated with an elemental area    is 

                  

                           

from the eq.  

 ⃑  ∫
     

    | ⃑ |
 

 

   

 

 

 

                                           Figure 3.5 Evaluation of the E field due to an infinite sheet of charge. 
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From eq. above, the contribution to the  ⃑  field at point P(0, 0, h) by the elemental 

surface 1 shown in Figure 3.5 is 

        ⃑   
  

    | ⃑ |
          

 

From Figure 3.5, 

 

 ⃑                   

                

 

| ⃑ |  [     ]  ⁄  

       
 ⃑ 

| ⃑ |
 

          

[     ]  ⁄
 

 

                    

 

substitution of these terms into eq. (***) gives 

 

  ⃑  
          

    [ 
    ]

*
          

[     ]  ⁄
+ 

 

 

        
           [          ]

    [ 
    ]  ⁄

 

 

           ⃑    ⃑     ⃑   

 

Since     ⃑      from the symmetry of the charge distribution, 

 

  ⃑  
             

    [ 
    ]  ⁄

    

 

 ⃑  ∫   ⃑  
 

 
  

    
∫ ∫

          

[     ]  ⁄
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 ⃑  
    

    
   ∫ [     ]   ⁄  

 

 

 

   

          

     
    

   
{ [     ]   ⁄  }

 

 
    

   ⃑  
   

   
    

 

for an infinite sheet of charge 

   ⃑  
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 Example: The finite sheet             on the     plane has a charge    

                density                 
 

       . Find 

               a. The total charge on the sheet 

               b. The electric field   ⃑   at        ? 

               c. The force experienced by a       charge located at        ?                    

  

 Solution: 

                                                                              

  a)    ∫       
 

      ∫   ∫             
 
 

 

   

  

 

   

      

 

     ,
 

 
 
 

 
∫  [           

 
 ]

 

 

    

 

   

- 

   

     ,
 

 
 
 

 
∫   [       

 
         

 
 ]     

 

   

- 

     ,
 

 
 
 

 
∫   [       

 
         

 
 ]     

 

   

- 

     {
 

 
 
 

 
*       

 

         
 

 +
 

 

}   

     
 

  
[    

 
      

 
       

 
 ]           
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       ⃑  ∫
     

    | ⃑ |
    

      

             

    

      ⃑                                    

 

    | ⃑ |  √          

 

  

       
 ⃑ 

| ⃑ |
 

               

√        
 

  ⃑  ∫   ∫   
            

 
  

     (√        )
 

 

   

 

   

 
               

√        
         

  ⃑  
      

    
∫  ∫   

            
 
  

          
 
 

 

   

 

   

 (               )         

 

  ⃑  
      

    
∫   ∫      

 

   

 

   

 (               )       

 

 

 ⃑  
      

    
* ∫ ∫              ∫ ∫              ∫ ∫         

 

   

 

   

 

   

 

   

 

   

 

   

   + 

 

 ⃑  
      

    
[ *

  

 
+
 

 

*
  

 
+
 

 

    *
  

 
+
 

 

*
  

 
+
 

 

     *
  

 
+
 

 

*
  

 
+
 

 

   ] 

 

 ⃑  
      

    
[ 

 

 

 

 
    

 

 

 

 
     

 

 

 

 
   ]  

      

    
[ 

 

 
    

 

 
    

 

 
   ] 

 

 ⃑                               

 

c.      ⃑         (                       )   
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Example: A uniform sheet charge with        ⁄       is located at         

                and a uniform line charge with        ⁄      at 

                     . Find   ⃑  at           

 

  Solution:         

                                                                                                                    

      ⃑    ⃑    ⃑   

      ⃑                          

     ⃑                      

       ⃑   
   

   
    

       ⃑   
    ⁄       

   
             

      ⃑   
   

     
    

                                                                                

     |  |  √      √     

        
  

|  |
 

          

 
 

     ⃑   
     ⁄       

                
[
          

 
] 

    ⃑             

    ⃑                                    
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    Example: A circular ring of radius   carries a uniform charge        and is  

                      placed on the          with axis the same as the       . 

  (a) Show that 

                  
     

   [ 
    ]

 
 

     

  (b) What values of h gives the maximum value of  ? 

  (c) If the total charge on the ring is  , find   as      . 

 

   Solution: 

                                                             

 (a).   ⃑                      

   From the figure               ∴         

   ⃑                         ⃑             

  

    | ⃑ |  √                           
 ⃑ 

| ⃑ |
                    

  

| ⃑ |
  

 ⃑ 

| ⃑ |
  

          

[     ]
 

 ⁄
 

  ⃑  ∫
     

    | ⃑ |
 

 

   

   ⃑  
   

    
∫

(          )

[     ]
 

 ⁄
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By symmetry, the contributions along     add up to zero.  

  ⃑  
         

    [ 
    ]

 
 ⁄
∫   

  

   

  
         

   [ 
    ]

 
 ⁄

 

 

 

  (b). 

 | ⃑ |

  
 

     

   
,
[     ]

 
 ⁄     

 
 
   [     ]

 
 ⁄

[     ] 
- 

 

  For maximum  ⃑ , 
 | ⃑ |

  
  , which implies that 

 [     ]
 

 ⁄   [         ]     

                          
 

√ 
 

 

  (c). Since the charge is uniformly distributed, the line charge density is 

   
 

   
 

  so that  

 ⃑  
   

    [ 
    ]

 
 ⁄
    

  As     

 ⃑  
  

     
 
    

  or in general 

 ⃑  
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   Example: Planes       and        , respectively, carry charges          

                    and         . If the line      ,       carries charge         ,    

                    calculate   at          due to the three charge distributions. 

 

 Solution: 

                                                               

     ⃑   ⃑    ⃑    ⃑   

   

      ⃑  
   

   
    

  

     ⃑   
    

   
        

        

  
    

   

              

     ⃑   
    

   
    

        

  
    

   

             

  

    ⃑   
   

     
    

                                  

   |  |  √      √   
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|  |
 

        

√  
 

   

  ⃑   
         

   
    

   
 √  

 
        

√  
               

 

   ⃑                                   

                                       

 

 

 

a. Field Due to a Continuous Volume Charge Distribution 

         If we now visualize a region of space filled with a great number of charges 

separated by minute distances, we see that we can replace this distribution of very 

small particles with a smooth continuous distribution described by a volume 

charge density          

 

إذا تصىزوا مىطقة مه انفساغ ممهؤة بعدد هائم مه انشحىات انمىفصهة عه بعضها بمسافات 

يىصف بكثافة صغيسة جدا, فأوىا وستطيع أحلال هر انتىشيع نجسيمات صغيسة بتىشيع أمهس 

  شحىة حجمية.

 

The total charge within some finite volume is obtained by integrating throughout 

that volume, 

  ∫        
   

 

 ⃑  ∫  
     

    | ⃑ |
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Example: Calculate the total charge within each of the indicate volumes: 

(a)                                          
 

    
 

(b)                                                                

(c)                                                    
    

  
     

 

 

Solution: 

  (a) 

    

       ∫        
   

                              

    

     ∫    ∫   ∫
 

    
         

   

     

   

     

   

     

  ∫    ∫   ∫                

   

     

   

     

   

     

  

 

  

  ∫    ∫   [ 
 

   
]
   

   

 
 

  
      

   

     

   

     

 [ 
 

   
]
   

   

∫    ∫    
 

  
      

   

     

   

     

 [ 
 

   
]
   

   

 [ 
 

   
]
   

   

  ∫   

   

     

 [ 
 

   
]
   

   

 [ 
 

   
]
   

   

  [ ]   
    

                      

                         [ 
 

       
 

 

       
] [ 

 

       
 

 

       
] [       ] 
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(b)       

     ∫        
   

                                

 

 

 

                     ∫    ∫   ∫                       

   

   

 

   

 

   

 

 ∫    ∫   ∫                      

   

   

 

   

 

   

 

 

         ∫    ∫   *
  

 
+
 

   

                

 

   

 

   

 ∫    *
  

 
+
 

   

[
        

   
]
 

 

      

 

   

 

  

        *
  

 
+
 

   

[
        

   
]
 

 

 *
  

 
+
 

 

             

 

 

 

(c)       

       ∫        
   

                                      

 

 

                     ∫    ∫   ∫   
    

  
                   

 

   

 

   

  

   

   

 [ 
 

 
    ]

 

 

[     ] 
  [ ] 

    [ 
 

 
    

 

 
  ] [   ] [  ]
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Home Work 

1. A charge is distributed on y-axis of Cartesian system having a line charge 

density of            ⁄ . Find the total charge over length of     . 

                                                                             Ans:          

 

2. A charge of      is located at the point     and     and charge of 

     is at the point     and     . Find the point on        at which 

let  ⃑   . 

                                                        Ans:                                       

 

3. A point charge of        is located at the origin. Determine the magnitude 

of    ⃑  at point             

                                            Ans:  ⃑                            
 

 
 

 

4. On the line     and     , there is a uniform charge distribution with 

density       
  

 
 . Determine  ⃑  at           . 

                                               Ans:  ⃑                              

5. Four infinity sheets of charges with uniform charges density 

   
  

  
    

  

  
    

  

  
  and      

  

  
  are located at                       

                        respectively. Find   ⃑  at  

a)                 

b) (       

c)                  

d)                  Ans:             
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3.5 Electric Flux Density الكهربائي فيضكثافة ال         

    

    Michael Faraday had a pair of concentric metallic spheres constructed, the outer 

one consisting of two hemispheres that could be firmly clamped together. He also 

prepared shells of insulating material (dielectric material) which would occupy the 

entire volume between the concentric spheres 

His experiment, then, consisted essentially of the following steps: 

 

1. With the equipment dismantled, the inner sphere was given a known positive   

charge. 

2. The hemispheres were then clamped together around the charged sphere with 

about 2 cm of dielectric material between them. 

3. The outer sphere was discharged by connecting it momentarily to ground. 

4. The outer space was separated carefully, using tools made of insulating material 

in order not to disturb the induced charge on it, and the negative induced charge 

on each hemisphere was measured. 

 

Faraday found that the total charge on the outer sphere was equal in magnitude 

to the original charge placed on the inner sphere and that this was true regardless of the 

dielectric material separating the two spheres. He concluded that there was some sort 

of "displacement" from the inner sphere to the outer which was independent of the 

medium, and we now refer to this flux as displacement, displacement flux, or simply 

electric flux. 

Faraday's experiments also showed, of course, that a larger positive charge on 

the inner sphere induced a correspondingly larger negative charge on the outer sphere, 

leading to a direct proportionality between the electric flux and the charge on the inner 

sphere 

    

 

Where   (psi) is electric flux in coulombs C  
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We can obtain more quantitative information by considering an inner sphere of radius 

a and an outer sphere of radius b, with charges of   and   , respectively (Fig. 3.6). 

The paths of  

 

                          

Figure 3.6: The electric flux in the region between a pair of charged concentric sphere 

 

Electric flux   extending from the inner sphere to the outer sphere is indicated by the 

symmetrically distributed streamlines drawn radially from one sphere to the other. 

 

At the surface of the inner sphere,   coulombs of electric flux are produced by the 

charge        coulombs distributed uniformly over a surface having an area of 

       . The density of the flux at this surface is        or             , and 

this is an important new quantity. 

 

Referring again to Fig. 3.6, the electric flux density is in the radial direction and has a 

value of 

 ⃑⃑          
 

    
                        

 ⃑⃑          
 

    
                        

and at a radial distance  , where        

 ⃑⃑  
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If we now let the inner sphere become smaller and smaller, while still retaining a 

charge of Q, it becomes a point charge in the limit, but the electric flux density at a 

point r meters from the point charge is still given by 

 

 ⃑⃑  
 

    
    

 ⃑⃑     ⃑                          

Example: Determine  ⃑⃑  at         if there is a point charge        at         and a  

                line charge         along the       . 

Solution: 

                                                                   

     ⃑⃑   ⃑⃑    ⃑⃑   

     ⃑⃑                                 

     ⃑⃑                                  

      ⃑⃑      ⃑   

     ⃑⃑   
 

  | ⃑ |
     

 ⃑                    

  ⃑                                   |  ⃑ |  √        
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 ⃑ 

| ⃑ |
 

    

 
     

  

    ⃑⃑   
        

     
                       

 

 

    ⃑⃑   
   

   
    

 

                                

  |   |  √        

    ⃑⃑   
   

    
 
         

 
                        

 

  Since  

   ⃑⃑   ⃑⃑    ⃑⃑   

  ∴  ⃑⃑                            
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3.6 Gauss's Law 

           These generalizations of Faraday's experiment lead to the following 

statement,   which is known as Gauss's law: 

 

 “The electric flux passing through any closed surface is equal to the total 

charge enclosed by that surface” 

 "انسطح بذنك انمحتىاة انكمٍت انشحىت ٌساوي قهمغ سطح اي خلال انمار ًائانكهزب فٍضان" : جاوس قاوىن

 

            

     ⃑⃑       

  ∮  ⃑⃑       
 

 

 ب انسطح هرا ويسمً قهمغ سطح ًهع مؤدي انتكامم ان انً نتشيس انتكامم علامة ًهع صغيسة دائسة تىضع

 "جاوس سطح"

 The charge enclosed might be several point charges, in which case 

          ∑   

 or a line charge 

          ∫      

 

 or a surface charge 

          ∫      
 

 

 or a volume charge 

          ∫       
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   The last form is usually used, and we should agree now that it represents any or 

all of the other forms. With this understanding Gauss's law may be written in terms 

of the charge distribution as 

∮  ⃑⃑        
 

∫       
   

 

 

 

 

3.7 Applications of Gauss's Law 

         The procedure for applying Gauss's law to calculate the electric field involves 

first knowing whether symmetry exists. Once symmetric charge distribution exists, 

we construct a mathematical closed surface (known as a Gaussian surface). The 

surface over which Gauss's law is applied must be closed, but it can be made up of 

several surface elements. Thus the defining conditions of a special Gaussian 

surface are 

a- The surface is closed. 

b- At each point of the surface  ⃑⃑  is either normal or tangential to the surface, so 

that ( ⃑⃑       ) becomes either ( ⃑⃑      ) or       , respectively 

c-  ⃑⃑  is sectional constant over that part of the surface where  ⃑⃑  is normal. 
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3.8 Symmetrical Charge Distributions: 

3.8.1 Point Charge: 

          Suppose a point charge Q is located at the origin. To determine D at a point 

P, it is easy to see that choosing a spherical surface containing P will satisfy 

symmetry conditions. Thus, a spherical surface centered at the origin is the 

Gaussian surface in this case and is shown in Figure 3.7. 

       

 

 

                            

  ∮  ⃑⃑       
 

   ∮    

    ∫ ∫                   

 

   

  

   

   

                                                     Figure 3.7 Gaussian surface about a point charge 

                                                   . 

         

 ⃑⃑  
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3.8.2 Infinite Line Charge 

           Suppose the infinite line of uniform charge        lies along the z-axis. To 

determine D at a point P, we choose a cylindrical surface containing P to satisfy 

symmetry condition as shown in Figure 3.8. D is constant on and normal to the 

cylindrical Gaussian surface; i.e.,        . If we apply Gauss's law to an arbitrary 

length L of the line 

                                   

   ∫  ⃑⃑          ∫    

   ⃑⃑   ∫ ∫        

  

   

 

   

 

            

          ∫      

 

                                                                             Figure 3.8 Gaussian surface about an infinite line 
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3.8.3 Uniformly Charged Sphere 

Consider a sphere of radius a with a uniform charge        . To determine D 

everywhere, we construct Gaussian surfaces for cases r < a, and r > a separately. 

Since the charge has spherical symmetry, it is obvious that a spherical surface is 

an appropriate Gaussian surface. 

For r < a, the total charge enclosed by the spherical surface of radius r, as shown in 

Figure 3.9 (a), is   

  

  ∮  ⃑⃑         ⃑⃑   ∮     ⃑⃑   ∫ ∫       

 

   

  

   

          ⃑⃑    

          ∫      
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                                                                                                                  Figure 3.9 (a) 
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For r ≥ a, the Gaussian surface is shown in Figure 3.9(b). The charge enclosed by 

the surface is the entire charge in this case, i.e., 
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                                                                                     Figure 3.9 (b)   
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3.9  Differential Volume Element 

We are now going to apply the methods of Gauss's law to a slightly different type 

of problem, one which does not possess any symmetry at all. At first glance it 

might seem that our case is hopeless, for without symmetry a simple Gaussian 

surface cannot be chosen such that the normal component of  D is constant or 

zero everywhere on the surface. Without such a surface, the integral cannot be 

evaluated. There is only one way to circumvent these difficulties, and that is to 

choose such a very small closed surface that D is almost constant over the surface, 

and the small change in D may be adequately represented by using the first two 

terms of the Taylor's-series expansion for D. The result will become more nearly 

correct as the volume enclosed by the Gaussian surface decreases, and we intend 

eventually to allow this volume to approach zero. 

 

 

The expression is an approximation which becomes better as  ʋ becomes smaller. 

 

 

 

At the origin, the first two expressions are zero, and the last is 2. Thus, we find that 

the charge enclosed in a small volume element there must be approximately 2 .If 

 ʋ is       , then we have enclosed about 2nC. 
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3.10  Divergence (div) 

 
          There are two main indicators of the manner in which a vector field changes 

from point to point throughout space. The first of these is divergence, which will 

be examined here. It is a scalar and bears a similarity to the derivative of a 

function. The second is curl. 

When the divergence of a vector field is nonzero, that region is said to contain 

sources or sinks, sources when the divergence is positive, sinks when negative. In 

static electric fields there is a correspondence between positive divergence, 

sources, and positive electric charge Q. Electric flux   by definition originates on 

positive charge. Thus, a region which contains positive charges contains the 

sources of  . The divergence of the electric flux density D will be positive in this 

region. A similar correspondence exists between negative divergence, sinks, and 

negative electric charge 

 

3.11 Maxwell's First Equation (Electrostatics) 
      

       We now wish to consolidate the gains of the last two sections and to provide 

an interpretation of the divergence operation as it relates to electric flux density. 

The expressions developed there may be written as 
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This is the first of Maxwell's four equations as they apply to electrostatics and 

steady magnetic fields, and it states that the electric flux per unit volume leaving a 

vanishingly small volume unit is exactly equal to the volume charge density 

there. This equation is called the point form of Gauss's law. Gauss's law relates the 

flux leaving any closed surface to the charge enclosed, 
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3.12  The Divergence Theorem 
 

           Gauss' law states that the closed surface integral of D.    is equal to the 

charge enclosed. If the charge density function    is known throughout the 

volume, then the charge enclosed may be obtained from an integration of    

throughout the volume. Thus 

 

 

     This is the divergence theorem, also known as Gauss' divergence theorem. Of 

course, the volume v is that which is enclosed by the surface S. 
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3.9 Electrical Potential 

           Suppose we wish to move a point charge   from point   to point   in an 

electric field   as shown in Figure 3.10. From Coulomb's law, the force on   is 

       so that the work done in displacing the charge by    is 

 

         ⃑      ⃑    ⃑  

The negative sign indicates that the work is being done by an external agent. Thus 

the total work done, or the potential energy required, in moving   from   to   is 

 

 

 

 

        ∫  ⃑    ⃑ 

     

       

    

 

 

                                                 Figure 3.10 Displacement of point charge   in an electrostatic field  . 
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3.10 Definition of Potential Difference and Potential 

            We are now ready to define a new concept from the expression for the 

work done by an external source in moving a charge   from one point to another 

in an electric field  ⃑ , 

        ∫  ⃑    ⃑ 

     

       

    

 

In much the same way as we defined the electric field intensity as the force on a 

unit test charge, we now define potential difference   as the work done (by an 

external source) in moving a unit positive charge from one point to another in an 

electric field, 

                        ∫  ⃑    ⃑ 

     

       

   

Potential difference is measured in joules per coulomb, for which the volt is 

defined as a more common unit, abbreviated as V. Hence the potential difference 

between points A and B is 



76 
 

Chapter three                              Electrostatic Field             Asst. Lect.:Mayada J. Hamwdi                                                                            
 

      ∫  ⃑     

 

 

 

 

    is positive if work is done in carrying the positive charge from   to  . 

  

 

3.11  The Potential Field of a Point Charge 

 

The potential difference between points located at        and        in the field 

of a point charge   placed at the origin 

     ⃑⃑  
  

     
 
   

 

  ⃑        

      ∫  ⃑    ⃑ 

 

 

   ∫
  

     
 
        

  

  

  ∫
  

     
 
  

  

  

 

  

              
  

    
[
 

  
 

 

  
] 

or     

                 

 

The potential difference between two points in the field of a point charge depends 

only on the distance of each point from the charge and does not depend on the 

particular path used to carry our unit charge from one point to the other 
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How might we conveniently define a zero reference for potential? The simplest 

possibility is to let       at infinity. If we let the point at        recede to 

infinity the potential at    becomes 

 

             
  

      
                         (

 

  
 

 

 
  ) 

 

Since there is no reason to identify this point with the A subscript, 

 

    
  

     
 

 

This expression defines the potential at any point distant r from a point charge   at 

the origin, the potential at infinite radius being taken as the zero reference. 

 

A convenient method to express the potential without selecting a specific zero 

reference entails identifying    as   once again and letting 
  

      
 be a constant. 

Then 

    
  

     
    

 

   may be selected so that       at any desired value of  . We could also select 

the zero reference indirectly by electing to let   be    at       . 

 

The potential at any point is the potential difference between that point and a 

chosen point in which the potential is zero. 
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3.12  The Potential Field of a Line Charge 

The potential difference between points located at      and      in the field of 

a point charge   placed at the origin 

 

 ⃑  
  

     
   

 

and   ⃑       

 

      ∫  ⃑    ⃑ 
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Example: A point charge      is located at             while line      ,         

carries uniform charge      . 

(a) If         at           find   at           

(b) If           at           find  at            

(c) If           at  , find    . 

 

Solution: 

(a)           

 

           
  

    
*
 

  
 

 

  
+  

  

    
  

  

  

 

   

                       √   
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√ 
  

     

              *
 

 
 

 

 
+         

 

√ 
  

 

                 
 

√ 
 

   ∴             
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(b)                          

                                 √    

                              √   

                                √   

 

            
  

    
*
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√  
 

 

√  
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√  
 

 

√  
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√  
 

 

                    

                                                  

 

 

                       (c)   
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3.13  The Potential Field of a System of Charges 

 
          The potential field of a single point charge, which we shall identify as    

and locate at   , involves only the distance |    | from    to the point at  . For a 

zero reference at infinity, we have 

 

      
   

    |      |
 

 

 

The potential due to two charges,    at    and    at   , is a function only of  

|    | and |    |the distances from    and    to the field point, respectively. 

     
   

    |      |
 

   

    |      |
 

 

If the charge distribution takes the form of a line charge, a surface charge, a 

volume charge the integration is along the line or over the surface or volume: 

 

  ∫
     

      | ⃑ |
 

 

  ∫
     

      | ⃑ | 

 

  ∫
     

      | ⃑ |   
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3.16  Gradient 

         The vector field ∇V (also written grad V) is called the gradient of the scalar 

function V 

 

3.17  Relationship Between  ⃑  and V 

         

         The electric field intensity E may be obtained when the potential function V 

is known by simply taking the negative of the gradient of V. The gradient was 

found to be a vector normal to the equipotential surfaces, directed to a positive 

change in V. With the negative sign here, the  ⃑  field is found to be directed from 

higher to lower levels of potential V 

 ⃑   ∇  
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3.18  CURL OF A VECTOR 

                The curl of    is a rotational vector whose magnitude is the maximum 

circulation of    per unit area as the area lends to zero and whose direction is the 

normal direction of the area when the area is oriented so as to make the circulation 

maximum. 
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Frequently useful are two properties of the curl operator: 

1) If the divergence of a curl is zero; (     )   , then the vector field    is the   

Electric Field. 

2) The curl of a gradient is the zero vector; (       )    

 

Example: For a vector field  ⃑⃑ , show explicitly that ∇   ∇    ⃑⃑     ;   that is the 

divergence of the curl of any vector field is zero. 

 

Solution: 

 For simplicity, assume that  ⃑⃑  is in Cartesian coordinates. 
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Home work 

    Given that      ⃑⃑             ̂    
 

  
         calculate the charge density at 

       (  
 

 
  )                                                               

         with                    Answer                 
  

 
         SD (134) 

 

    Find the volume charge density in a field   ⃑⃑         ̂       ̂    ̂   
 

  
 

 

   The flux density  ⃑⃑  
 

 
  ̂        is in free space: 

a)  Find   ⃑              

b)  Find the total electric flux leaving the sphere of          

c)  Find the total charge with the sphere of                      

          Answer  a)         ̂         b)                 c)              

 

   If a sphere of radius         has a charge density               , then  

       determine  ⃑⃑  at         and   ≥      . 

 

        Answer  

 ⃑⃑  
     

 
     

      

 ⃑⃑  
    

   
     

 

   A charge distribution in free space has               for           

      and zero otherwise, determine  ⃑  at       and       . 

          

           Answer            ⃑  
      

  
            ,         ⃑  
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   Consider an infinite line charge along z-axis. Show the work done is zero if a 

point charge   is moving in a circular path of radius    central at the line 

charge. 

67محاضزاث د.أحمد ووفس مثال ص            )   Q.Q 

 

     A point charge of      is located at the origin.            at         , find 

(a) The potential at           

(b) The potential at          

(c) The potential difference     

Answer: (a)        , (b)        , (c)         .              Sadeqo p(138) 

 

 

 

     If three point charges,                   are located at     

                             respectively. Find the potential at  

        (-1, 5, 2) assuming                  Answer            
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CONDUCTORS AND DIELECTRICS 

 

4.1 Current and Current Density 

          Electric charges in motion constitute a current. The unit of current is the 

ampere    , defined as a rate of movement of charge passing a given reference 

point (or crossing a given reference plane) of one coulomb per second. Current is 

symbolized by  , and therefore 

  

  
  

  
 

 

We find the concept of current density, measured in amperes per square meter 

        more useful. Current density is a vector represented by   . 

 

Total current is obtained by integrating,  

  ∫     
 

 

 

 Current density may be related to the velocity of volume charge density at a point.  

             

  

Where is   velocity and is    volume charge density 

 

This last result shows clearly that charge in motion constitutes a current. We call 

this type of current convection current     
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  4.2 Continuity of Current 

            The continuity equation follows when we consider any region bounded by a 

closed surface. The current through the closed surface is   

  ∫     
 

 

 and this outward flow of positive charge must be balanced by a decrease of 

positive charge (or perhaps an increase of negative charge) within the closed 

surface. If the charge inside the closed surface is denoted by    , then the rate of 

decrease is         and the principle of conservation of charge requires  

  

  ∫      
    

   

 

∫      ∫  ∇       
    

            

 

We next represent the enclosed charge    by the volume integral of the charge 

density 

 

∫  ∇       
   

  
 

  
∫      
   

 

 

If we agree to keep the surface constant, the derivative becomes a partial derivative 

and may appear within the integral 

∫  ∇       
   

 ∫
    

  
   

   

 

 

 

from which we have our point form of the continuity equation, 
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∇    
    

  
    

 
Remembering the physical interpretation of divergence, this equation indicates that 

the current, or charge per second, diverging from a small volume per unit volume is 

equal to the time rate of decrease of charge per unit volume at every point. 

 

4.3 Metallic Conductors 

            Let us first consider the conductor. Here the valence electrons, or 

conduction, or free, electrons, move under the influence of an electric field. With a 

field E, an electron having a charge        will experience a force 

            ⃑  

      In free space, the electron would accelerate and continuously increase its 

velocity (and energy); in the crystalline material, the progress of the electron is 

impeded by continual collisions with the thermally excited crystalline lattice 

structure, and a constant average velocity is soon attained. This velocity    is 

termed the drift velocity, and it is linearly related to the electric field intensity by the 

mobility of the electron in the given material. 

 

        

 

Where     is the mobility of an electron, mobility is measured in the units of square 

meters per volt-second; typical values are 0.0012 for aluminum, 0.0032 for copper, 

and 0.0056 for silver. 
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where      is the free-electron charge density 

The relationship between J and E for a metallic conductor, however, is also 

specified by the conductivity    (sigma), 

 

          

 

If a conductor of uniform cross-sectional area S and length L, as shown in Figure 

below, has a voltage difference V between its ends, assume that J and E are uniform 

 

 

 

 

 

 

 

 

         ∫           ⇒          
 

 
 

    

 

     ∫               ⇒       
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The ratio of the potential difference between the two ends of the cylinder to the 

current entering the more positive end, 

 

    
 

  
 

When the fields are nonuniform, 

  
   

 
 

 ∫     
 

 

∫      
 

 

 

4.4 Conductor Properties and Boundary Conditions 

              For electrostatics, no charge and no electric field may exist at any point 

within a conducting material. Charge may, however, appear on the surface as a 

surface charge density, and our next investigation concerns the fields external to 

the conductor. 
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  To summarize the principles which apply to conductors in electrostatic fields, we 

may state that 

 

a. The static electric field intensity inside a conductor is zero. 

b. The static electric field intensity at the surface of a conductor is everywhere 

directed normal to that surface. 

c. The conductor surface is an equipotential surface. 

 

4.4.1 Conductor-Dielectric Boundary Conditions 
 

               Under static conditions all net charge will be on the outer surfaces of a 

conductor and both   and   are therefore zero within the conductor. Because the 

electric field is a conservative field, the line integral of      is zero for any closed 

path. A rectangular path with corners 1, 2, 3, 4 is shown in Figure below. 

 

∮       

around the small closed path abcda. The integral must be broken up into four parts 

∫ 

 

 

∫ 

 

 

∫ 

 

 

∫  
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If the path lengths b to c and d to a are now permitted to approach zero, keeping 

the interface between them, then the second and fourth integrals are zero. 

 

The path from   to   is within the conductor where E must be zero. This leaves 

∫     

 

 

∫     

 

 

 

where    is the tangential component of E at the surface of the dielectric. Since the 

interval a to b can be chosen arbitrarily, at each point of the surface. 

        

To discover the conditions on the normal components, a small, closed, right circular 

cylinder is placed across the interface; Gauss' law applied to this surface gives 

 

∮          

∫      ∫      ∫     
             

 ∫   
 

    

The third integral is zero since, as just determined,      on either side of the 

interface. The second integral is also zero, since the bottom of the cylinder is within 

the conductor, where D and E are zero. Then, 

∫     
   

 ∫       ∫      
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The electric flux leaves the conductor in a direction normal to the surface, and the 

value of the electric flux density is numerically equal to the surface charge density. 

 

 

 

4.5   The Nature of Dielectric Materials 

            A dielectric in an electric field can be viewed as a free-space arrangement 

of microscopic electric dipoles, each of which is composed of a positive and a 

negative charge whose centers do not quite coincide. These are not free charges, 

and they cannot contribute to the conduction process. Rather, they are bound in  

place by atomic and molecular forces and can only shift positions slightly in 

response to external fields. They are called bound charges. 

 

            The characteristic that all dielectric materials have in common, whether 

they are solid, liquid, or gas, and whether or not they are crystalline in nature, is 

their ability to store electric energy. This storage takes place by means of a shift  
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in the relative positions of the internal, bound positive and negative charges against 

the normal molecular and atomic forces. 

 

The dipole may be described by its dipole moment    

 

     
 

   where   is the positive one of the two bound charges composing the dipole, and 

  is the vector from the negative to the positive charge. We note again that the 

units of    are coulomb-meters. 

There is thus an added term to D that appears when polarizable material is present 

        

The linear relationship between P and E is 

         

where    is a dimensionless quantity called the electric susceptibility of the 

material. 

                     

             

The expression within the parentheses is now defined as 

        

This is another dimensionless quantity, and it is known as the relative permittivity, 

or dielectric constant of the material. Thus 

 

             

         

where   is the permittivity 
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4.6   Boundary Conditions for Perfect Dielectric Materials 

            Let us first consider the interface between two dielectrics having 

permittivities and and occupying regions 1 and 2, as shown in Figure below. We 

first examine the tangential components by using 

 

∮       

 

 

Around the small closed path on the left, obtaining 

     
        

     

The small contribution to the line integral by the normal component of   along the 

sections of length    becomes negligible as    decreases and the closed path 

crowds the surface. Immediately, then 
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The boundary conditions on the normal components are found by applying Gauss’s 

law to the small “pillbox” shown at the right in the Figure. The sides are again very 

short, and the flux leaving the top and bottom surfaces is the difference 

 

   
      

            

for no free charge is available in the perfect dielectrics, we may assume    is zero 

on the interface and 

   
    

 

 

Let    (and   ) make an angle with   a normal to the surface (Figure below) . 

Because the normal components 

of    are continuous, 

   
    

 

∴                 
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The ratio of the tangential components is given by 

 

     

     

 
  
  

           ⇔       
       

       
  

  
  

 

                      

and the division of these equations gives 
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4.7  Poisson’s and Laplace’s Equations 

               Poisson's and Laplace's equations are easily derived from Gauss's law (for 

a linear material medium) 

∇    ∇        

and 

   ∇   

by substitution we have 

 

∇    ∇     ∇     ∇       

∇  ∇    
  

 
 

∇     
  

 
 

Equation above is Poisson’s equation, 

If      , indicating zero volume charge density, but allowing point charges, line 

charge, and surface charge density to exist at singular locations as sources of the 

field, then 

∇      

which is Laplace’s equation. The ∇  operation is called the Laplacian of V. 
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 Example 

  Determine whether or not the following potential fields satisfy the Laplace's equation 

     a)                      b)                          

 Solution 

                 ∇   
   

   
 

   

   
 

   

   

 
  

   
[        ]  

  

   
[        ]  

  

   
[        ]

 
 

  
[  ]  

 

  
[   ]  

 

  
[  ]    

 

     So       ∇     

    Hence field   does not satisfy Laplace's equation.  

 

  b) 

                 ∇   
 

 

 

  
( 

  

  
)  

 

  
(
   

   
)  

   

   
 

 

                   
  

  
 

 

  
[       ]       

 

                  
  

  
 

 

  
[       ]         

                 
  

  
 

 

  
[       ]    

        ∴      
 

 

 

  
( 

  

  
)  

 

 

 

  
[     ]  

 

 
     

                
 

  
(
   

   
)  

 

  
[
 

  
        ]   
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[ ]    

                 ∇   
 

 
     

    

 
     

          So this field satisfies Laplace's equation. 

 

 

 

Home work 

     Find the Polarization in dielectric material with        if 

         ⃑⃑                                                Answer                 

 

 

    Find the magnitude of   ⃑⃑   and   ⃑  for dielectric material in which 

        | ⃑ |            and        .     

                        Answer | ⃑⃑ |                       | ⃑ |                   

 

 

      The region with     is characterized by         and       by       . 

    If   ⃑⃑      ̂     ̂     ̂        
   , find : 

a)  ⃑⃑                                         b)  ⃑⃑                                     c)  ⃑⃑       

d) the angle that   ⃑⃑   makes with   axis              e) 
| ⃑⃑  |

| ⃑⃑  |
     

 

Answer         a)      ̂     ̂     ̂        
            b)     ̂         c)      ̂     ̂  

                     d) 35.678°          e) 0.599 
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The Steady Magnetic Field 

5.1 BIOT-SAVART Law 

The source of the steady magnetic field may be a permanent magnet, an electric 

field changing linearly with time, or a direct current. We will largely ignore the 

permanent magnet and save the time-varying electric field for a later discussion. Our 

present study will concern the magnetic field produced by a differential dc element 

in free space 

 

 Biot-Savart's law states that “the magnetic field intensity dH produced at a point 

P by the differential current element      is proportional to the product I dl and 

the sine of the angle between the element and the line joining P to the element 

and is inversely proportional to the square of the distance R between P and the 

element”. 

 

The direction of the magnetic field intensity is normal to the plane containing the 

differential filament and the line drawn from the filament to the point P as shown in 

Figure 5.1. 

 

 

 

 

 

 

 

 

Figure 5.1 the direction of    using (a) the right-hand rule, or (b) the right-handed screw rule. 
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It is customary to represent the direction of the magnetic field intensity H (or 

current  ) by a small circle with a dot or cross sign depending on whether H (or  ) 

is out of, or into, the page as illustrated in Figure 5.2. 

 

 

Figure 5.2 Conventional representation of H (or I) (a) out of the page and (b) into the page. 

 

We can have different current distributions: line current, surface current, and 

volume current. If we define   as the surface current density (in    ) and J as the 

volume current density (in     ), 

 

Consider an infinitely long straight filament carrying a direct current I is located 

along z-axis 
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The finite-length current element is shown in Figure below. The magnetic field 

intensity H is most easily expressed in terms of the angles    and   , as identified in 

the figure. The result is 

     

  
 

   
                

To find unit vector    in eqs. above, a simple approach is use to determine it  

from 

         

where    is a unit vector along the line 

current and    is a unit vector along the 

perpendicular line from the line current to the 

field point. 
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5.2  AMPERE’S Circuital Law 

           Ampere’s circuital law states that “the line integral of H about any closed 

path is exactly equal to the direct current enclosed by that path” 

 

 

                 We choose a path, to any section of which H is either perpendicular or 

tangential, and along which H is constant. The first requirement (perpendicularity 

or tangency) allows us to replace the dot product of Ampere’s circuital law with the 

product of the scalar magnitudes, except along that portion of the path where H is 

normal to the path and the dot product is zero; the second requirement (constancy) 

then permits us to remove the magnetic field intensity from the integral sign. The 

integration required is usually trivial and consists of finding the length of that 

portion of the path to which H is parallel. 
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Let us again find the magnetic field intensity produced by an infinitely long filament 

carrying a current I. The filament lies on the z axis in free space, and the current 

flows in the direction given by    .  

 

      The path must be a circle of radius ρ , and Ampere’s circuital law becomes 
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