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VECTOR ALGEBRA

1.1 SCALARS AND VECTORS

Vector analysis is a mathematical tool with which electromagnetic (EM)

concepts are most conveniently expressed and best comprehended.

A scalar is a quantity that has only magnitude

Quantities such as time, mass, distance, temperature, electric potential, and
population are scalars.

A vector is a quantity that has both magnitude and direction
Vector quantities include velocity, force, displacement, and electric field intensity.

A field is a function that specifies a particular quantity everywhere in a region

If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field.
Examples of scalar fields are temperature distribution in a building, sound
intensity in a theater, electric potential in a region, and refractive index of a
stratified medium. The gravitational force on a body in space and the velocity of

raindrops in the atmosphere are examples of vector fields.

1.2 UNIT VECTOR

Let A be a vector A = A,a, + Aya, + Aza, The magnitude of A is a scalar

written as A or | A |, which is given by

4] = \/A,%+A§ + A2
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A unit vector a, along A is defined as a vector whose magnitude is unity (i.e., 1)
and its direction is along A, that is,

A

a, = —=
A Al

EL| N}

or

Axa, + Aya, + Aza,

aA=

\/A,ZC + A5 + A2

Note that |a,| = 1.

1.3 VECTOR ADDITION AND SUBTRACTION

Two vectors A and B can be added together to give another vector C; that is,
C=A+B

The vector addition is carried out component by component. Thus, if

_

= Aya, + Aya, + Aza, and B =B,a, + B,a, +B,a,.

>

—_

A+B= (A, +B)a, + (A, +B)a, + (A, + B)a,

Vector subtraction is similarly carried out as

—_

— B = (Ax — By)ay + (Ay — By)a, + (A, — B,)a,

> |
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1.3 POSITION AND DISTANCE VECTORS

The position vector r,. (or radius vector) of point P is defined as the directed
distance from the origin O to P, that is,

r, = 0P = xa, +ya, + za,

Figure 1.1 Illustration of position vector r, = 3a, + 4a, + 5a,.

The distance vector is the displacement from one point to another
P

rpo
rp Figure 1.2 Distance vector 1.

If two points P and Q are given by (xp,yp,zp) and (x,yq,Zq), the distance
vector is the displacement from P to Q as shown in Figure 1.2; that is,

Tpg =T —T1p

= (xg —xp)ay + (Yo —yp)ay + (29 — zp)a,
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Example: Find the vector between the points P (1, 4, 2) and Q (3, 1, 6)?
Solution: PQ = (3,1,6) — (1,4,2)
PQ=B-1a,+ (1 -4a, + (6 —2)a, = 2a, - 3a, + 4a,
QP = (1,4,2) - (3,1,6)
Q—P =(1-3)a,+ 4 —-Da, +(2-6)a, = -2a, +3a, —4a,

Example: If A = 10a, — 4a, + 6a, and B = 2a, + a, find:
(a) the component of A along a,,,  (b) the magnitude of 4,
(c) the magnitude of B, (d) the magnitude of 34 — B,

(e) a unit vector along A.

Solution: (a) The component of 4 along a,, is A, = —4 .

(b) A= JA} + A% + AZ = V102 + 42 + 62 = 12.32

(c) B =22 +12 = 2.23
(d) the magnitude of 34— B

34 - B = 3(10a, — 4a, + 6a,) — (2a, + a,) = 28a, — 13a, + 18a,

|34 — B| = V28%Z + 132 + 182 = V1277 = 35.74

—_

A 10a, —4a, + 6a,
() a,= 4]~ 12.32

a, = 0.812a, — 0.32 a, + 0.49 a,

lay| = v0.8122 + 0.322 + 0.492 =
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Example : Points P and Q are located at (0, 2, 4) and (-3, 1, 5). Calculate
(a)The position vector P
(b) The distance vector from P to Q
(c) The distance between P and Q
(d) A vector parallel to PQ with magnitude of 10

Solution:
(@) P =0a, + 2a, + 4a, = 2a, + 4a,
(b) rpg =19 —7p =(-3,1,5) = (0,2,4)
=—3a,—a,+a,

(c) Since rp, is the distance vector from P to Q, the distance between P and Q is the
magnitude of this vector; that is,

d=|rpe| =v9+1+1=3317

Alternatively:

d = \/(xQ —xp)’ + 0y —¥p) + (29 —2p)’ =VOF 1 +1=3317
(d) Let the required vector be A, then
aA = |:%| - ILT = |1‘T|aA

where |4| = 10 is the magnitude of A. Since 4 is parallel to PQ, it must have the same
unit vector as rp, Or rqp. Hence,

o _ . TPQ . _3ax - ay + aZ
AP | 3.317
-~ 10(—-3a, —a, +a
A= (34, —a,+a,) _ (—9.045a, — 3.015a,, + 3.015a,)

3.317
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1.6 VECTOR MULTIPLICATION

When two vectors A and B are multiplied, the result is either a scalar or a vector
depending on how they are multiplied. Thus there are two types of vector
multiplication:

1. Scalar (or dot) product: A-B
2. Vector (or cross) product: A X B

Multiplication of three vectors A, B, and C can result in either:
3. Scalar triple product: A - (B x C)

or
4. Vector triple product: A X (B x C)

A. The Dot Product
The dot product of two vectors A and B, written as A - B, is defined geometrically

as the dot product of the magnitude of B and the projection of A onto B (or vice
versa)

Thus:

A-B= |K| |§| cos 0,5

where 6 45 is the smaller angle between A and B, the result of A - B is called either
scalar product since it is scalar, or dot product due to sign.

IfA = Aya, + Aya, + A,a, and B = Bra, + Bya, + B,a, then

A-B=ABy +A,B, +A,B,
Not that
a,-a,=a,"a,=a; a,=>0 (6@ =90, cos 0, cos90 = 0)

a,-a,=a, - a,=a, a, =1 (@ =0, cosf, cos0=1)
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Example: The three vertices of a triangle are located at A(6,—1, 2), B(—2,3,—4)
and C(-3, 1, 5). Find: (a) ﬁAB ; (b) ﬁAC ; (C) the angle O, at vertex A ?

Solution:

@  Rap=(-23,-4)—(6,-12)
=(-2-6)a,+(3—-(-1)a, + (-4 —-2)a,
= —8ay + 4a, — 6a,

(b) Ry = (-3,1,5) — (6,—1,2)
=(-3-6)a,+(1-(-1D)a, +(5-2)a,
= —9a, + 2a, + 3a,

(©) |Rap| = V82 +4%2+62=1077
|Rac| = Vo2 +2 + 3% = 9.69
Rup * Ruc = AxBx + AyB, + A,B,
= —8(—9) + 4(2) — 6(3) = 62

}?AB '}?AC = |§AB||§AC| cos Oguc

62 = 10.77(9.69) cos Opac

62
104.36

coSOgac =

Opac = cos™10.594

o HBAC = 53550
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B. Cross Product

The cross product of two vectors A and B, written as A x B, is defined as

2§>(§:=1485n1amgan

Where is a unit vector normal to the plane containing A and B . The direction of is
taken as the direction of the right thumb when the fingers of the right hand rotate
from A to B as shown in Fig. 1.3(a). Alternatively, the direction of a,, is taken as
that of the advance of a right-handed screw as A is turned into B as shown in Fig.
1.3(b).

The

AXB AXB

(@ (b)

Figure 1.3: Direction of A x B and a,, using (a) right hand rule (b) a right-handed screw.

The vector multiplication of equation above is called cross product due to the cross
sign; it is also called vector product since the result is a vector.

_

If A= Aya, +Aya, +Aa, and B =B,a,+Bya, +B,a, then
a, a, a,
K X § = Ax Ay Az
By

B, B,

= (AyB, — A,B,)a, — (A:B, — A,B,)a, + (AB, — A,B,)a,
8
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Note that

a, Xa,=a,xXa,=a,xa, =0 6 =0, sinf@ =sin0=0
a, Xa, =a,

a, X a, = ay

a, Xa, =a, while  a, xa, =-—a,

Example: If three points A(6,—1,2), B(—2,3,—4) and C(-3,1,5).
Find Rys X Ryc

Solution:

Rus = (=2,3,—4) — (6,—-1,2)
=(-2-6)a,+(3-(-D)a, + (-4 - 2)a,
= —8ay, + 4a, — 6a,

Ry = (-3,1,5) — (6,—1,2)
=(-3-6)a,+(1-(-D)a, + (5-2)a,
= —9a, + 2a, + 3a,

|Ru5| = V82 + 42 + 62 = 10.77

|Ruc| = V92 + 22 + 32 = 9.69

a, a, a,

a, a, a,
RAB X RAC = RABx RABy lQ‘ABZ = l_S 4‘ _6]
Ryc, RACy Ryc, -9 2 3
Rap X Rac = [4%3 — (=6 2)]ay — [(—8 % 3) — (6 —9)]a, + (-8 x 2 — 4(-9))a,

Rup X Rac = 24a, + 78a,, + 20a,

|Rus X Rac| = V242 + 782 + 207 = |Rup||Rac| sin Opac

. _1|RaBxRac| _ . _1V24%2+782+202 ) . o
O54c = sin |Rag||Rac| = s 10.77%9.69 “ Opac = 53.6

9
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Chapter one

Example: Given vectors A = 3a, + 4a, + a,and B = 2a, — 5a,, find
the angle between A and B.

Solution:

The angle 8,5 can be found by using either dot product or cross product.

N

A-B = |A|[B| cos 6,5

A-B=(3,41)-(0,2,-5)
=0+8-5=3
|A| = V32 +42 + 12 =26

IB| = /02 + 22 + 52 = V29

A-B 3
0, = —— = = 0.1092
S IA|[B]  /(26)(29)

0,5 = cos~10.1092 = 83.73°

Alternatively:

3 4 1
0O 2 =5

a, a, a,
AXB=[

=(-20-2)a, — (15— 0)a, + (6 — 0)a,

= —22a, + 15a, + 6a,

|A x B| = /(=22)2 + 152 + 62 = V745

o AxB 745
Sin = — =
T 1Al1B] T J@26)29)

0,5 = sin"10.994 = 83.73°

= 0.994

10
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COORDINATE SYSTEMS
AND TRANSFORMATION

2.1 Introduction
A point or vector can be represented in any curvilinear coordinate system,
which may be orthogonal or nonorthogonal.

An orthogonal system is one in which the coordinates are mutually perpendicular

In this chapter, we shall restrict ourselves to the three best-known coordinate
systems: the Cartesian, the circular cylindrical, and the spherical.

2.2 The Cartesian Coordinate System (x, Y, z)

In the Cartesian coordinate system we set up three coordinate axes mutually at
right angles to each other, and call them the X, y, and z-axes. It is customary to
choose a right-handed coordinate system, in which a rotation (through the smaller
angle) of the x-axis into the y-axis would cause a right-handed screw to progress in
the direction of the z-axis. Figure 1.3 shows a right-handed Cartesian coordinate
system.

A point is located by giving its X, y, and z coordinates. These are, respectively, the
distances from the origin to the intersection of a perpendicular dropped from the
point to the X, y, and z-axes.

x =0 plane

= 0 planc
A Origin
I

. 3
/ z=0 plane

#

(@)

Volume =dx dy dz
|
dx dy | 2=
P23 -
B ‘ T dz

dydz /;t'r
X

dy
(5 (©)

N

Figure 1.3 (a) A right-handed Cartesian coordinate system. (b) The location of points P(1, 2, 3)
and Q(2, -2, 1). (c) The differential volume element in Cartesian coordinates

11
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Also shown in Figure 1.3(c) are differential element in length, area, and

volume. Notes from the figure that in Cartesian coordinate:

1. Differential displacement is given by
dL = dxa, + dya, + dza,

2. Differential normal area is given by

dS = dydz a,
dS = dxdz a,
dS = dxdy a,

3. Differential volume is given by
dV =dx dy dz

The ranges of the coordinate variables x, y, and z are
-0 < x < 0
—00 <y <
—00 <z < ©
A vector A in Cartesian coordinates can be written as shown in Figure 1.4

A= Axa, +Aya, +Aa,

where a,, a,, and a, are unit vectors

along the x, y, and z-directions.

]
k\
-]
b
Y
e

Figure 1.4 Unit vectors a,, a,, and a,

12
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2.3 The Cylindrical Coordinate System (p, @, z)

The circular cylindrical coordinate system is very convenient whenever we

are dealing with problems having cylindrical symmetry. A vector Ain cylindrical

coordinates can be written as:

—

A=Ay,a, +Apapy + Aza,

Where a,, ag, and a,, are unit vectors in the p,@, and z-directions as illustrated in
Figure 1.5.
The magnitude of Ais:

|A] = \/Af, + A2 + A2

A point P in cylindrical coordinates is represented as (p, @, z) and is as shown in
Figure 1.5. Observe Figure 1.5 closely and note how we define each space
variable: p is the radius of the cylinder passing through P or the radial distance
from the z-axis; @ is (called the azimuthal angle) measured from the x-axis in the

xy-plane; and z is the same as in the Cartesian system.

-

X

Figure 1.5 Point P and unit vectors in the cylindrical coordinate system

13
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Notice that the unit vectors a,, ag, and a, are mutually perpendicular since our
coordinate system is orthogonal; a, points in the direction of increasing p, ag in
the direction of increasing @, and z in the positive z-direction. Thus
a,"a,=ay"az=a, a,=1

a,"azg=as-a,=a, a,=0
a, X ag = a,
ag X a, = a,
a, X a, = ag

Note Also from Figure 1.5 that in cylindrical coordinate, differential element can
be found:

a. Differential displacement is given by:

dL=dpa,
," T \\
= { i A 1
dL = p dd ay L e O
= \\\ ey i /};
dL — dZ az \'\.“‘_ ] ,..r"” .
------- dL=dza, Ring dL = pdda,
dL = dpa,

ordl=dpa,+pdday+dza,

b. Differential normal area is given by: \

dS=pdddza,

dS = dp dz a, O
dS =pdpdda, \ ds = pd@dpa,

C. Differential volume is given by: oy
= apazag

dV=pdpdddz

d. The distance between two points in cylindrical coordinate P,(p;, @;,2;) and

P, (p2, @2, 2;) Is given by

d = [0+ 03— 2010 — 2c05(0, — B,) + (2 — 2)?

14
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e Cartesian to Cylindrical Coordinate Transformation

The relationships between the variables (x, y, z) of the Cartesian coordinate

system and those of the cylindrical system (p, @, z) are easily obtained as
_ 2 o2 _ -1y _
p=+x%+y ) @ = tan o Z=2z

In matrix form, we have transformation of vector A

From Cartesian coordinate A = A,a, + A,a, + A,a,

To cylindrical coordinate A= Aya, + Agay +A,a, as
Ap cos@ sin@ 0][Ax
Ap|=|-sin®@ cos® Of[Ay
A, 0 0 1114,

e Cylindrical to Cartesian Coordinate Transformation

The relationships between the variables (p, @, z) of the cylindrical

coordinate system and those of the Cartesian system (X, Y, z) are easily obtained as
X=pcosQ, y=p sin®, zZ=2z

In matrix form, we have transformation of vector A

From cylindrical coordinate A = A,a, + Agag + A,a,

To Cartesian coordinate A = A,a, + Aya, +A,a, as

Ay cos® —sin@® 0|4
Ayl =|sin® cos@® O0||Ag
A, 0 0 11[A,

15
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Example: Given point P(—2, 6, 3) and vector A= ya, + (x + z)a,, , express P

and A in cylindrical coordinate. Evaluate A at P in Cartesian and
cylindrical system?

Solution: The vector A in Cartesian coordinate at P is:
A= 6a, + (-2 + 3)a, = 6a, + a,
|A| = V62 + 12 = 6.08

The point P in cylindrical coordinate is:

p =+x2+y%= 22+ 6% = 6324

- tan—li2 — 108.43°

P(6.324 , 108.430°, 3)

Ayl=|—sin® cos@® O
A, 0 0 1

Agl=|—sin® cos® O

A, [ cos® sin® O
A, 0 0o 1

A, [ cos® sin@® 0

y
[x + ]
0
Butx =p cos®, y =p sin@®, z = z and substituting these yields

—sin @ cos(b 0 pcos®+z

_Ap- [ cos® sin® O” p sin @
0

—psin®@ + pcos? @ + zcos P
0

A, ] [p sin@cos@P+p cos@Psin@ + z sin@]

A, =p sin@cos@+ p cos@Psin@ + z sin®
Ap=—psin®@+pcos?@+zcos®
A, =0

16
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—

A= Apap + AQ)(I@

A at point P is:
A, = 6.3245in108.43 cos 108.43 + 6.324 cos 108.43 sin 108.43 + 3 5in108.43 = —0.948

Ay = —6.324 sin” 108.43 + 6.324 cos? 108.43 + 3 cos 108.43 = —6.008

A = —0.948a, — 6.08a,

|A| = /(0.948)2 + (6.08)2 = 6.08

2.4 The Spherical Coordinate System (r, 8, @)

The Spherical coordinate system is most appropriate when dealing with

problems having spherical symmetry. A vector Ain spherical coordinates can be

written as:

—_

A= A,,ar + +A9a9 + A¢a@
Where a,, ag, and a4, are unit vectors in the r, 8, and @-directions

The magnitude of Ais:

A| = \/A% + A% + A3

A point P in spherical coordinates is represented as (r, 8, ®) and is illustrate in
Figure 1.6 (a). From this Figure, we notice that r is defined as the distance from
the origin to the point P or the radius of a sphere centred at the origin and passing
through P; 8 is the angle between the z-axis and the position vector of P; and @ is

measured from the x-axis

17
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pdd=rsin § do

P
dr rd®

QLA

(@) (b)

Figure 1.6 Spherical coordinate system (a) Point P and unit vectors (b) Differential elements

Notice that the unit vectors a,, agy,and ay , and are mutually perpendicular since
our coordinate system is orthogonal; a, points in the direction of increasing r, ay
in the direction of increasing 6 , and ay, in the direction of increasing @. Thus
a.-a,= ayg-ag=ag-ag=1

a.-ag=ayg-az= ag- a, =0

a. X ag = ay

ag X ag = a,

ag X a, = ag

From Figure 1.6 (b), we note that in spherical coordinate, differential element can

be found:

18
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eDifferential displacement is given by: _dL =rdoa,
dZ= dr a, ke _‘_‘,-dL:d'ra,_
dL = r db a, = =

. H‘*dL:T sin 8 dPa,
dL =rsin6d® ay

Or dL = dr a, +rdf ag + rsin6 dp a,

eDifferential normal area is given by:

dS = r2sin @ d6 do a, S=r2sinf dodpa,

d§=rsin0drd®a9

dS =r dr do a,
dS = rdr dfa,

eDifferential volume is given by:

dV =1r?sin6 dr df do

The distance between two points in spherical coordinate P;(ry, 6,,0,) and

P, (7, 6,,8,)is given

d= \/rlz + 12 — 2141, cos 0, cos 6; — 211, sin 0, sin 6, cos(@, — @;)

19
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e Cartesian to Spherical Coordinate Transformation

The relationships between the variables (x, y, z) of the Cartesian coordinate

system and those of the Spherical system (r 8, @) are easily obtained as

x2+ 2
r=+/x2+ y2 + 722 0 = tan"lTy, @ =tan~ !

4
X

In matrix form, we have transformation of vector A

From Cartesian coordinate A = Aya, +Aya,+Aza,

To Spherical coordinate A= A.a,. + Agag + Agay as
A, sin@cos® sinfsin@® cosb :ix

Ag|=|cosOcos® cosfsin® —sind
Ag —sin @ cos @ 0

>

VA

Figure 1.7 shows the relation between space variables

4

p=rsin &

r Pix, 3. 23 = Plr, t?,qi)zP{p,eﬁ,z)

Z=rCos @

[ x= peos ¢

Figure 1.7: The relation between space variables (x, y, z), (r, 8, ®) and (r, @, z)

20
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e Spherical to Cartesian Coordinate Transformation

The relationships between the variables (r, 8, @) of the spherical coordinate
system and those of the Cartesian system (X, y, z) are easily obtained as

x =71rsinf cos?, y=rsinfsing®, Z=1rcos6f
In matrix form, we have transformation of vector A
From Spherical coordinate A=Aa, +Aya, + Azay

To Cartesian coordinate A = Aya, + Aya, + A,a, as

Ay sin@cos@® cos@cos® —sin@][Ar
Ay[=|sinfsin® cosOsin® cos® ||As
Az cos @ —sin @ 0 A@

21
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Home Work

1. GivenvectorsA = a, + 3a,and B = 5a, + 2a, — 6a,, determine

a) |A+Bj.

b) 5A —B.

c) The component of A along a,,.

d) A unit vector parallel to 3A + B.

e) The angle 8,5 between the two vectors.

Answer: a7, Db)(0,-2,21), ¢)0, d)(0.9117,0.2279,0.3419)
e) 0,5 = 120.6° .

2. Given the three points in Cartesian coordinate system as A(3,-2,1),
B(-3,-3,5), C(2,6,—4). Find

a) The vector from A to C.
b) The unit vector from B to A.
c) The distance from B to C.
Answer:  a)—a, + 8a, — 5a,, b)0.8241a, + 0.1373a, — 0.5494a,,
€)13.6747.

3. Transfer the vector A = 10 a, to spherical coordinate at point
P(x=-3,y=2,z=4)

—_

A =-55702a, — 6.18 ayg — 5.547ay

4. Give the Cartesian coordinates of H = 20 a,—10ay+3 a, at point
P(x=5y=2,z=-1)

—_

H=22.282a,—-1856a,+3a,

22
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ELECTROSTATICS FIELD

3.1 Introduction
We begin our study of electrostatics by investigating the two fundamental

laws governing electrostatic fields:

1. Coulomb's law
2. Gauss's law

COULOMB'S LAW AND FIELD INTENSITY

3.2Coulomb’'s Law  (pslss 05i8)

Coulomb stated that “The force between two very small objects separated in
a vacuum or free space by a distance which is large compared to their size is
proportional to the charge on each and inversely proportional to the square of the
distance between them”.
BonS Al jal) sliadl) gl £1,8 (A Lagaualy 1an G phia Gpam O SRR 1 " agleS (ilE
" Lagrin Adlcall A pa pe LS Canillii g Lagia JS o Adaldl) aa L o ol Lgonuilial ity
o Q0
41eyR?
Where:
F: Force in newton (N),
Q1 and Q2 are the positive or negative quantities of charge in Coulomb(C)
R: is the separation in meters (m)

&y Is called the permittivity of free space and has the magnitude,
measured in farads per meter (F/m)

107° F
36T m

£, = 8.854 x 10712 =

or

k =9 x 10° m/F

4'T[€0

23
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The coulomb is an extremely large unit of charge, for the smallest known quantity
of charge is that of the electron (negative) or proton (positive), given in mks units
as 1.602 x 1071° C; hence a negative charge of one coulomb represents about
6 x 1018 electrons.

If point charges Q; and Q, are located at points having position vector r; and r,,
then the vector force F;, on Q, duo to Q,, shown in Figure 3.1, is given by

E— 010,
127 4mey|R|2 "Rz
where
Rip=r,—-1 Origin
R = |R12 | Figure 3.1 Coulomb vector force on point
charges Q4 and Q-
Ry

d = ——

Riz ™ |Ry,|

- 010, -
~Fip =

4rreg|R|3 T

or

> Q1Q; (, —11)

Fi, = ——
= dmeg|r, — 1|

As shown in Figure 3.1, the force 1321 on Q, due to Q, is given by
Fp1 = —Fpp

Like charges (charges of the same sign) repel each other while unlike charges
attract. This is illustrated in Figure 3.2.

+ 4 - - + — Figure 3.2 (a), (b) Like charges

repel. (¢) Unlike charges attract.
{a) ih) 3]
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From Figure 3.1 Q, located at (x,, y;,2;) and Q, at (x,, y,, z,), then

ﬁ12 = (X2 —x1)ay + (Y2 —y1)ay + (2, — z1)a,

|§12| = \/(xz —x1)*+ (V2 —y1)? + (22 — 71)?

(x2 — x1)%a, + (2 — y1)?ay+, (2, — z1)a,

Vxa —x)2 + (v, — 1) + (23 — 21)?

ap,, =

since

010,

=—)-7a
27 4mey|R|? TRz

_ Q10: (X2 — x1)%a + (¥, — 3’1)2ay + (22 — z1)%a,
dmeg[(x2 — x1)% + (y2 — ¥1)? + (22 — 21)?] VO — %)%+ (7, — y1)? + (25 — 77)2

Q102 —x)?ay + (y2 —y1)’ay + (22 — z1)?a,

F
F O ameg[(t — x0)2 + (s — y1)? + (2 — 21)2] 2
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If we have more than two point charges, we can use the principle of superposition
to determine the force on a particular charge. The principle states that if there are N
charges Q,,Q-, ..., Qy located, respectively, at points with position vectors
r,, T, ..., Ty the resultant force F on a charge Q located at point 7 is the vector
sum of the forces exerted on Q by each of the charges Q,, Q,, ..., Qy Hence:

L_Q0G-R) Q@ G-F) . 0QG-7)

F= — — e —
Amtey|r — |3 dmey|r — 1|3 Amtey|r — 1, |3

or

N L.
Q Qx (r — 1)

4‘77.-80 =1 |‘F _Fklg

F=

Example: Find the force on Q; (20uC) duo to charge Q, (-300uC), where Q,
located at (0, 1, 2) and Q, at (2, 0, 0)?

Solution:
R,; = (0,1,2) — (2,0,0) 1
=(0-2)a,+(1-0)a, + (2-0)a, £
I
= —2a, +a, +2a, 0
(,1,2)
— R
[Ras| =V/(=2)2+ (1)2 + (2)2 = 3 /
-y
0,
Q10 2.0,0)
=——a
21" Ame Ry 2 R g

Ea 20 % 107® % (=300 x 107°) —2a, + a, + ZaZ]
L™ 47+ 8.854 % 10712 x 32 3

ﬁl = 4a, — 2a, — 4a,

[F1| = V(@) + (—2)2 + (—4)2 = 6N
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3.3 The Electric Field Intensity (E) (s Jlaal) 5oy

If we now consider one charge fixed in position, say Q,, and move a second
charge slowly around, we note that there exists everywhere a force on this second
charge; in other words, this second charge is displaying the existence of a force
field. Call this second charge a test charge Q. The force on it is given by
Coulomb's law,

Q10Q¢

F,=————a
© T 4meg|RI2 T

Writing this force as a force per unit charge gives

Fo_ 0O

=——a
Q: 47T€0|R|2 Rat

The quantity on the right side of the equation above is a function only of @, and

the directed line segment from @, to the position of the test charge. This describes
a vector field and is called the electric field intensity.
Using a capital letter E for electric field intensity, we have finally

F

E=—

Q¢
Q1

E=———a
4rreg|R|? "Rt

Where E is electric field intensity measured in newtons/coulomb (N/C) or
volts/meter (\V/m).

The electric field intensity at point 7 due to a point charge located at ' is readily
obtained from egs.

. QG-

E= —=
Amey|r — '3

27



Chapter Three Electrostatic Field Asst. L ect.:Mayada J. Hamwdi

Example: Find the electric field intensity (E) at (0, 2, 3) due to a point charge Q
(0.4uC) located at (2, 0, 4)?

Solution:

R=(0,2,3)—(2,0,4)
=(0-2)a,+2-0a,+ (3 —4)a,
= —2a,+2a,—a,

Rl = V(=22 + ()2 + (-1)2 =3

Bo—A g,
4mre,R2 “Fat
i 0.4x 107° ) —2a, +2a, — a,
41 X 8.854 x 10712 x 32 3
E = —266.4a, + 266.4a, — 133.2a,

E| = /(266.4)% + (266.4)% + (133.2)% = 399.6 V/m

3. 4 Field of N Point Charge
Since the coulomb forces are linear, the electric field intensity due to N

point charges, Q, atr; , Q, at r,,and Qy at r;, is the sum of the forces on Q, caused
by Q, and Q, acting alone, or

—_ —_

E=E1 +E2+"'+EN

= Q Q Q
E=—1|2aR1+—2a +...+—NaR

_ —~ 29R; - 2
4rreg|Ry 4rreg|Ry|
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Example: A charge of -0.3uC is located at (25,—30,15) (in cm), and a second
charge of 0.5uC is at (—10,8,12) cm. Find E at: (a) the origin; (b) (15,20,50)
cm

Solution:
(@ E=E, +E,

. Q1

E,=———
7 4mey|R, |2 ARy
The point must be in meter (25, —-30,15) in cm = (0.25,—0.3,0.15)in m

(—=10,8,12) incm = (—0.1,0.08,0.12)in m

R, = (0,0,0) — (0.25,-0.3,0.15) = —0.25a, + 0.3a, — 0.15a,

| Ry| = 1/(0.25)2 + (0.3)% + (0.15)2 = 0.418

= —0.3x107° [—O.ZSax +0.3a, — 0.15a,
1™ 47 x 8.854 x 10712 x (0.418)2 0.418

E, = 9233.77a, — 11080.5a, +5540.26a,

R, = (0,0,0) — (=0.1,—0.08,0.12) = 0.1a, + 0.08a, — 0.12a,

| R;| = /(0.1)% + (0.08)2 + (0.12)2 = 0.175

= 0.5 x 107¢ 0.la, + 0.08a, — 0.12a,
= k
> 41 x 8.854 x 1012 x (0.175)2 0.175

Ez = 83888.55a, — 67110.8a, +100666.26a,

E= E, + E, = 93122.3a, — 78190.52a,—95126a,

N —_

»E= E, + E, = 93.12a, — 78.19a,~95.12a, KV /m
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(b)
E at(15,20,50)Cm? — (0.15,0.2,0.5)m
R, = (0.15 — 0.25)a, + (0.2 — (—0.3))a,+(0.5 — 0.15)a,
~ Ry = —0.1a,+0.5a,,+0.35a,

|R,| = 0.618
R, = (0.15 — (—0.1))a, + (0.2 — 0.08)a,+(0.5 — 0.12)a,
R, = 0.25a,+0.12a,,+0.38a,

IR,| = 0.47

Q1 Q2
2 AR,

E=E+E, = ap +—2—
L 2 4H€DR1 B 4H€DR2

10—6[ —03  —0.a,+05a,+035a, 0.5  0.25a,+0.12a,+0.38a,
= * + X
41e, 1(0.618)2 0.618 (0.47)2 0.47
-6
“F = [0.127a,—0.635a,—0.44a,+1.2a,+0.577a,+1.83a,|
0

E = 11.9a,—0.52a,+12.4a, KV/m
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Example: Point charges 1 mC and — 2 mC are located at (3,2,— 1) and
(—1,—1,4), respectively. Calculate the electric force on a 10 nC
charge located at (0, 3, 1) and the electric field intensity at that point.

Solution:
N N N
Q Z Qp (r — 1)

41e r—r.|3
0 & | il

F =

r—n,=(0,31)—-@3,2-1)

= —3a, +a,+2a,

F =7l =32+ (1)2+ ()% = V14
r—n,=1(0,31)—(-1,-1,4)

= a, +4a,—3a,

F =7yl = (12 + (4% + (3)2 =26

~F=

10 % 107° {1 «1073[-3a, + a,+2a,] , T2 1073[a, + 4ay—3az)]}
[vze|”

—3a, + a,+2a, N —-2a, — 8ay—6aZ}

vz’ Nk

gz

= —6.507a, — 3.817a,,+7.506a, mN

= _ E _ (=6.507a, — 3.817a,+7.506a,)
0, 10 % 109

= —650.7a, — 381.7a,,+750.6a,
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Example: Four point charges each of 10 uC are placed in free space at the point
(1,0,0),(—1,0,0),(0,1,0)and (0, —1, 0)m respectively. Determine the
force on a point charge of 30 uC located at a point (0,0, 1)m

Solution: F,

Q4 Qs

Q1
ﬁ . Q0, (F_Fl)

V7 4me,y|r — 73

r—n =(0,0,1)—(1,0,0)
= —a,+a,

IF—nl=y@*+ D2 =+2

~  30%10°%%x10%10"%(-a,+a,)

Fl - -9 3
10
4 367 |\/E|

F, = 0.9533(-a, +a,)

32



Chapter Three Electrostatic Field

Asst. L ect.:Mayada J. Hamwdi

ﬁ _ QQ: (F_FZ)

2= 477:80'?_ F2|3

r—1,=1(0,0,1)—(-1,0,0)
=a,+ta,

r—1 =y@)2+1)?=+2

~  30%107%%x10x10"%(a,+a,)

27 107 3
41t 367 |\/E|

F, = 0.9533(a,+a,)

= _ Q0 (r—13)

37 4mey|F — 153

r—13=(0,0,1) —(0,1,0)
= —a,+a,

r—13| =y/(1D*+ ()2 =2

. 30%107%%10%107%(-a,+a,)

37 1079 3
T [V2]

F3 = 0.9533(-a,+a,)

r
N
Il

0.9533(ay+az)

F, =F, +F, + F; + F, = 3.813a,N

33



Chapter Three Electrostatic Field Asst. L ect.:Mayada J. Hamwdi

Example: Determine the electric field intensity at P(—0.2,0,—2.3)m due to a

point charge of 5nC at Q(0.2,0.1, —2.5)m in air

Solution:

P(—0.2,0,—2.3)

S__ o

5nC

—————a
4mey|R|? Rate

Q

E=KﬁaR

R = (-0.2,0,—2.3) — (0.2,0.1,—2.5)
= —0.4a, — 0.1a,+0.2a,

|R| = /(0.4)2 + (0.1)2 + (0.2)2 = V0.21 = 0.45

R
dp = —
T
_ —0.4a, — 0.1a,+0.2a,
ar = 0.45
- Q
E == KwaR

E=

9%10°%x5%107° [—0.4ax — 0.1ay+0.2az]
(0.45)2 0.45

E = —197.53a, — 49.38a,+98.76a, V/m
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Example: Find the force on 5C at (—1,2,3) due to the point charge 3C at
(1,4,6)

Solution:

5C(—1,2,3)
— Qth aR
4mey|R[Z T
3C
(1,4,6)

R=(-1,2,3)—(1,4,6)
= —2a, — 2a,—3a,

IR| = /@2 + )% + 3)? = V17

R
"

—2a, — 2a,—3a,
AR, = Ji7

Q10
Ft = K |R|2 ath

5 9%10%%5=%3 [—Zax — Zay—BaZ]
t =
(V17)° V17
F, = 7.0 10%(— > o)
= * —a
’ Nvaa \/_ V17

F, = 3.8%10%a, — 3.8 * 10%°a,—5.74 * 10°a, N
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3.5 Electric Fields Duo to Continuous Charge Distribution
So far we have only considered forces and electric fields due to point
charges, which are essentially charges occupying very small physical space. It is

also possible to have continuous charge distribution along a line, on a surface, or in
a volume as illustrated in Figure 3.3.

F¥ .
0 .
.1_
+® *+
Point Line Surface
charge Charge charge

Figure 3.3 Various charge distributions and charge elements.

It is customary to denote the
e line charge density by p; (in C/m),
e surface charge density by ps (in C/m?), and
e volume charge density by p, (in C/m3)

The electric field intensity due to each of the charge distributions p, , ps , and
p, are given by

= p dl
E = j ——ag (line charge)

L 4meg, |R |

- Ps ds
= ———ag (surface charge)

S 4me, |R |

- Py AV
E = ——ag (volume charge)
v
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a. Field of a Line Charge
Consider a line charge with uniform charge density p; extending from A to

B along the z-axis as shown in Figure 3.4. The charge element dQ associated with
elementdl = dz of the line is

dQ = p, dl=p, dz (0,0,z) T

the total charge Q is

0,0,z
Zp
Q= j pL dz
7\
from Figure 3.4 /ﬂ
X
dl =dz’ Figure 3.4 Evaluation of the E field due to a line charge

R = (x,y,z) —(0,0,2")
=xa, +ya,+(z—z")a,

or

R= pa,+(z—z")a,

R? = |R|’

=x2+y2+(z—2)2=p?+(z—2')?

R =\/p2+(z—z’)2

—

aR R pa,+(z—1z')a, _ pa,t(z—2z)a,

R RE R+ G2 2+ -2 P (o2 + (- 202
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Substituting all this into eq. of electric field intensity we get
~ dl
E — j pL—AZaR

L 4ns0|R|

o pay+(z~2)a,
ngo ) [p2 + (z - 2)2 2

E= dz' (¥

To evaluate this, it is convenient that we define a, a; and a, as in Figure 3.4.

\/pz + (z—2")?
p

) R
since  seca =—=
p

“R=p2+(z—2)2 =pseca

_ Tz' )
since  tana = 7 ~ Tz" = p tana

z' = OT — p tana dz' = —p sec’a da

=_h j“z p sec’a[cosa a, +sina a,| da

o 2 2
4me, s pe sec a

Hence, eq. (*) becomes

_ —PL
4me,

az
f [cos a@a, +sina az] da
a1

Thus for a finite line charge,

PL
4mregp

E= [—(sin a, —sinay) a, + (cosa, —cos a,) az] (+*)
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As a special case, for an infinite line charge, point B is at (0,0,c0) and A at

(0,0, —) so that ¢y = /2,a, = —m/2; the z-component vanishes and eq. (**)
becomes
E=—tL a
2TTEYP

Example: A uniform line charge, infinite in extent with p, = 20 nC/m lies along
z — axis. Find the E at (6,8,3)m.

Solution:

PL

E=
2TEYP

4

pL-\ F.)(6' 8' 3)
20nC/m

5 =(6,8,3)—(0,0,3)

p =6a,+8a,

ol = V62 + 8% = 10
p 6a,+8a,
ap:W:T=O.6ax+0.8ay
E= 20 x 1077 0.6a, +0.8 = 21.571a, + 28.761a, V
_2n><8.854><10—12><10[' Ax ' ay]_ ' Ay - a, V/m
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Example: Two uniform line charges of p, = 5 nC/m each are parallel to the
x axis,oneatz = 0,y = —2mandtheotheratz = 0,y = 4m.

Find E at (4,1,3) m?

Solution:
e
x
E=E, +E,
= PL
E. =
L 2megp o

51:(1_(_2))33/"'(3 —0)a,
p1 =3a,+3a,

|p1| =V32+32=118

_p1 _3a,+3a,

a, = —=
P py| V18

B 5x107° [Bay+3az]v
1= 27 x 8.8541 x 10-12 18 /i
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= PL
E, =
2 2TTEYP

4
p=(01-4)a,+3 —-0)a,
p =-3a,+3a,

15| = V3% + 32 =18

p _—3a,+3a,

p| V18

B 5% 10~° [—Say+3az]v
2T 2T X 8.8541 x 0-12 18 g

5x107° 6a,

E=2
"2 x 8.8541 x 10-12 18

=30a,V/m

b. Eield of a Sheet Charge
Consider an infinite sheet of charge in the xy-plane with uniform charge
density ps. The charge associated with an elemental area dS is

dQ = ps dS
F(0,0, /&)
from the eq.
A
_ ds
E =f pS——\ZaR . R
s 4me,|R|
@ Il
6 @ '

X

Figure 3.5 Evaluation of the E field due to an infinite sheet of charge.
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From eq. above, the contribution to the E field at point P(0, 0, h) by the elemental
surface 1 shown in Figure 3.5 is

- d
dE = —QZ ap (x*x)

47T€0|§|
From Figure 3.5,
R=p(-a,) +ha,

= —a,p+ha,

|§| = [p? + h2]1/2
R _ —a,ptha,
C|R] [p? +h2]V2

dQ = ps dS = ps pdd dp

substitution of these terms into eq. (***) gives

ps p dP dp

E =
d Amey[p? + h?]

—a,p+ha,
[p? + h2]1/2

_pspddp|—a,p+ha,]
Amey[p? + h2]3/2

dE = dE, + dE,
Since dﬁp = 0 from the symmetry of the charge distribution,

ps hpd®ddp a
4mey[p? + h2]3/2 7

2w oo
~ - p hpd®dp
E=jd@=45f f s he M
S T[SO @=0Jp=0 [p + h ]

42
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=_ Psh foo 2 21-3/2 1
E= 2 h?]73/2 = d(p?

_P h 2 21-1/21%
—E—[P + 272} Ca,
= _ Ps
E=—

ZSOaz

for an infinite sheet of charge
= _ Ps
E=—a
2¢& N

Examnple: Three mfinite uniform sheets of charge are located in free space as follows: 3nC/ m’ at
z=-4 60C/m’ at z = 1. and - 8nC/m’ at z = 4. Find E at the point: (2) Ps(2, 3. -3): (b)

Ps(4, 2. -3); (c) P(-1.-3. 2); (d) Pp(-2, 4. 5)?

Solution:
a— at
& I3 8 Py(24,9)
Becuse the infinite sheet charge the E = E= E.51
g 26, / pﬂ:—y
. [—311 6n En] 5653, 7/
= — a, =—56.5a,V/m 1-5-3)®
T 25, 285 26, z z P{-1.-5.-3)
1 Pa =)/}
b- at pg
3n 6n  Bn >
E‘=[ — ]az=282.Sanjm ¥
2eg 25y 25
® P42, 3)
c- atpg / 4 P 7/
Jn 6n Bn
= [ ]az = 960.45a_ V/m
EEU EED EEU ’ _P‘_I(?_j.. -5}
d— atpy
_[Sn_l_ﬁn En]  EAE T
l2g, 25, 2¢, 2= S, Vi
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Example: The finite sheet 0 < x < 1,0 < y < 1 on the z = 0 plane has a charge

3
density ps = xy(x? + y? + 25)z nC/m?. Find
a. The total charge on the sheet

b. The electric field (E) at (0,0, 5)?
c. The force experienced by a —1nc charge located at (0,0,5)?

Solution:

a) Q= f deS

3
] j xy(x? + y? + 25)2 dxdy

( 1
1 2] 4 y2 4258 d
= = —
Q=13"% yx y? 0
\ y=0
( 3\
12 ; 5 51
Q=1y5"% | ¥ (y*+26)2 — (y*+25)2|dy ;
. y ) ; )

i . ‘-
y [(¥? +26)2 — (y? + 25)2|dy ;

.

Il
N =
ull N

\
g\w—\g'\b—\
_/

\ y L
Q= { Ho?+ 260 - 7 + 2577 |

Q= [(27)2 +(25)% — 2(26)2] = 3315nC
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- d
b) E = fps—iZaR
4neO|R|

dS = dx dy

R = (0,0,5) — (x,y,0) = —xa, —ya,+5a,

R| = J/xZ +yZ+ 25

R —xa,—ya,+5a,
R|  JxZ+y?+25
3
xy(x? + y? + 25)2 —xax—yay+SaZ
=] j dx dy
=0 Jx=0 4g¢, (\/x2+y2+25) VX2 +y2+25

=
|
3
I

- 1x107° xy(x“ + +252
E=—p— f f e ) (—xa,—ya,+5a,) dxdy
to (x2 + y? +25)2
E—lxw_gfl fl ( +5a,)dxd
=~ o s xy (—xay—ya, a,) dx dy

_ 1x107°[ [t [? ot e
E = I—f f x?y dx dy a, — f f xy*dx dy a, + 5f f xy dx dy azl
47'[80 y=0Jx=0 y=0+Yx=0 y=0+7x=0

-2 L Bl oL

S 1x107°) 11 11 11 ]_1x10‘9[1 1S ]
T ame, | 322300 % T T ane, T T 6T

e5 1)

N

E=-15a,—-15a,+11.23 a, V/m

=QE=-1x10"°(-15a,—15a, +11.23a,) N

o
"m
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Example: A uniform sheet charge with ps = 1/3m nC/m? is located at z = 5m
and a uniform line charge with p, =25/9 nC/m at

y=3m and z=-3m.Find E at (x, —1,0)m

Solution:

ET = El + EZ
El due to surface charge

F?Z due to line charge

= Ps
El = 2_80 dy
- (1/3m)x107°
= PL
E, =
27 2meyp o

p=(x-1,0-(x3-3)=(-1-3)a, + (0 —(-3)) a,
|pl =V4%2 +32 =+25=5

p —4a,+3a,
ap = — =

o] 5
_— (25/9) x 107° —4ay,+3 az]
27 2mx8.854%x10-12x 5 5

§2=8ay+6az
Er=-6a,+8a,+6a,=8a, V/m
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Example: A circular ring of radius a carries a uniform charge pL C/m and is
placed on the xy — plane with axis the same as the z — axis.

(@) Show that
pL ah

E(0,0,h) = E
2&9[h? + a?]?

a,

(b) What values of h gives the maximum value of E?
(c) If the total charge on the ring is Q, find Easa — 0.

Solution:

@.dL=dpa,+pdday+dza,

Fromthe figure p=a ~dl=ad

§+aap=haz - ﬁz—aap+haz

~ R ag R —aa,+ha,
R = |R| =+ a? + h? , ap = — , — == =

|| : |R| |R|2 |R|3 [a2+h2]3/2
R dl
EZ] pL—AZaR

L 4neO|R|
B_ P 27T(—aolp+haz)ad®

4neo Joo [a? + h2)/2
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By symmetry, the contributions along a,, add up to zero.

pLahaz fznd(b pLahaz
0=0

E = —
4meoa? + h2]’/2 2¢0[a? + h2]*/2
(b).
dE| pya (10 + 1217201 - S282(02 + h21
dh  2¢, [aZ + h?]3
For maximum E, % = 0, which implies that

[a? + h?]/2 [a? + h? — 3h?] = 0

a’?—2h*=0 or h ii
V2

(c). Since the charge is uniformly distributed, the line charge density is

Q

pL:Zna

so that
~ h
E = ¢ 3 a,
Arreg[a? + h2] /2

Asa -0

ol
I

a
Ategh? 7

or in general

tm3)
Il

a
4ieor? R
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Example: Planes x = 2 andy = — 3, respectively, carry charges 10 nC /m?
and 15 nC/m?. Ifthe linex = 0, z = 2 carries charge 10w nC/m,
calculate E at (1,1, —1) due to the three charge distributions.

Solution:

@L x=0,z=2
23_73-'_.-' s E;
7 -"" P Ez

Ey

= Ps
E=—
2¢, an
~ Ps, 10-107°
E1 = 280 (—ax) = —W a, = —180m a,
361
= psz _ 15 . 10_9 _
E, = 2%, = n 109 W= 2707 a,
361
= PL
E. =
37 2meyp 4

p =(1,1,-1)-(0,1,2) = a, — 3 a,

5l =2+ 3 =0
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. _£= a,—3a,
?pl V10
= 10r-107° a,—3a, 18m( 3a)
3= - ’ = lom(a, —sa,
.107° V10
2 367 V10

E = -180m a, + 2707 a, + 18n(a, — 3 a,)

= —162m a, +270% a, — S54ma, V/m

a. Field Due to a Continuous Volume Charge Distribution

If we now visualize a region of space filled with a great number of charges
separated by minute distances, we see that we can replace this distribution of very
small particles with a smooth continuous distribution described by a volume
charge density p,, C/m3

Cliluay Lpans o Aladiall a3l (e Jila 230 33las § 180 (g dilaia Uiy guad 13)
DS Caun gy Galal )53 3 e Clapuad )5l 2 Plal bt Lild das 3 ya
...'J'.. M. ..-\;'. ':."

The total charge within some finite volume is obtained by integrating throughout
that volume,

Q= py Av
vol
~ dv
E =j pv—AzaR
vol 47‘[80|R|
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Home Work

1. A charge is distributed on y-axis of Cartesian system having a line charge
density of (5 y3>) uC/m. Find the total charge over length of 15 m.
Ans: 0.2178 C

2. A charge of 10 C is located at the point x =0 and y = 1 and charge of
—5 C is at the point x = 0 and y = —1. Find the point on y — axis at which

let E = 0.
Ans: (0, —5.828) or (0,—0.1716)

3. A point charge of 20 nC is located at the origin. Determine the magnitude
of E at point P(1,3,—4)m.
Ans: E = 1.357 a, + 4.073 a, — 547 aZ£

4. Onthe line x = 4 and y = —4, there is a uniform charge distribution with
density p, = 25 :ln—c . Determine E at (=2, —1,4)m.
Ans: E = —=59.92 a, +29.969 a, V/m

5. Four infinity sheets of charges with uniform charges density

20 %,—8 % ,6 % and —180 % are located at y=6y =2,
y=-2 and y=—5respectively. Find E at

a) (2,5,—6)

b) (0,0,0)

¢) (-1,-2.1,6)

] v v vV oV
d) (106,106,107) Ans: (—226 ay ;,—13555 ay Z'_ZOB ay ;'0 Z)
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3.5 Electric Flux Density Sl il ABLiS

Michael Faraday had a pair of concentric metallic spheres constructed, the outer
one consisting of two hemispheres that could be firmly clamped together. He also
prepared shells of insulating material (dielectric material) which would occupy the
entire volume between the concentric spheres

His experiment, then, consisted essentially of the following steps:

1. With the equipment dismantled, the inner sphere was given a known positive
charge.

2. The hemispheres were then clamped together around the charged sphere with
about 2 cm of dielectric material between them.

3. The outer sphere was discharged by connecting it momentarily to ground.

4. The outer space was separated carefully, using tools made of insulating material
in order not to disturb the induced charge on it, and the negative induced charge

on each hemisphere was measured.

Faraday found that the total charge on the outer sphere was equal in magnitude
to the original charge placed on the inner sphere and that this was true regardless of the
dielectric material separating the two spheres. He concluded that there was some sort
of "displacement” from the inner sphere to the outer which was independent of the
medium, and we now refer to this flux as displacement, displacement flux, or simply
electric flux.

Faraday's experiments also showed, of course, that a larger positive charge on
the inner sphere induced a correspondingly larger negative charge on the outer sphere,
leading to a direct proportionality between the electric flux and the charge on the inner
sphere

¥Y=0Q

Where W (psi) is electric flux in coulombs C
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We can obtain more quantitative information by considering an inner sphere of radius
a and an outer sphere of radius b, with charges of Q and —Q, respectively (Fig. 3.6).
The paths of

Metal Insulating or
conducting _ dielectric
spheres % // material
o

Figure 3.6: The electric flux in the region between a pair of charged concentric sphere

Electric flux W extending from the inner sphere to the outer sphere is indicated by the

symmetrically distributed streamlines drawn radially from one sphere to the other.

At the surface of the inner sphere, W coulombs of electric flux are produced by the
charge Q(= ¥ ) coulombs distributed uniformly over a surface having an area of
4ma’*m? . The density of the flux at this surface is W/4ma? or Q/4ma? C/m?, and

this is an important new quantity.

Referring again to Fig. 3.6, the electric flux density is in the radial direction and has a

value of
D(atr =a) = g & (inner shere)
— Q
D(atr =b) = A & (outer shere)
and at a radial distance r, wherea <r < b
- Q
b= amrz
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If we now let the inner sphere become smaller and smaller, while still retaining a
charge of Q, it becomes a point charge in the limit, but the electric flux density at a

point r meters from the point charge is still given by
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3.6 Gauss's Law

These generalizations of Faraday's experiment lead to the following

statement, which is known as Gauss's law:

“The electric flux passing through any closed surface is equal to the total

charge enclosed by that surface”
"rdad) Gl B) giaad) Apast) Adai) (g gbow (Blha pdam (o) SR Jlall Al gl il Gl 588

Y = Qenclosed

AY = Dg - AS
mp=jé D, - dS
S

t_ic.hud\\AAwdjwchm‘_;cLgd}ad.nls:\]\u\uj\M&M\M)\LGJQEW'B}\J@AJS
Ilet.; i mn

e The charge enclosed might be several point charges, in which case

D evetiosms — z s

e oraline charge

Qenclosed = ij dL

e or asurface charge

Qenclosed =j ps dS
S

e or avolume charge

Qenclosed = j Py dv

vol
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The last form is usually used, and we should agree now that it represents any or
all of the other forms. With this understanding Gauss's law may be written in terms

of the charge distribution as

f Es-d§=j Py dv
S vol

3.7 Applications of Gauss's Law

The procedure for applying Gauss's law to calculate the electric field involves
first knowing whether symmetry exists. Once symmetric charge distribution exists,
we construct a mathematical closed surface (known as a Gaussian surface). The
surface over which Gauss's law is applied must be closed, but it can be made up of
several surface elements. Thus the defining conditions of a special Gaussian
surface are

a- The surface is closed.
b- At each point of the surface D is either normal or tangential to the surface, so
that (Ds - dS) becomes either (Dg dS) or (zero), respectively

c- D is sectional constant over that part of the surface where D is normal.
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3.8 Symmetrical Charge Distributions:
3.8.1 Point Charge:

Suppose a point charge Q is located at the origin. To determine D at a point

P, it is easy to see that choosing a spherical surface containing P will satisfy
symmetry conditions. Thus, a spherical surface centered at the origin is the

Gaussian surface in this case and is shown in Figure 3.7.

.
¥ =¢ Ds-dS =D, ds p
S £
¢
2 W F

Y =D, jrzsine d6 dp =4nr?D,

=0 =0 Gaussian surface
Qenclosea = @ Figure 3.7 Gaussian surface about a point charge

¥ = Qenclosed

4ntr2D, = Q

. Q
D =
4112

a,
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3.8.2 Infinite Line Charge

Suppose the infinite line of uniform charge p; C/m lies along the z-axis. To

determine D at a point P, we choose a cylindrical surface containing P to satisfy

symmetry condition as shown in Figure 3.8. D is constant on and normal to the

cylindrical Gaussian surface; i.e., = D,a, . If we apply Gauss's law to an arbitrary

length L of the line

q’zjﬁs-d§=Dpjd§

Il 2m
Y=D, f jpd@dz

z=0 @=0
Y=2mplD,

Qenclosed = pr dl

l
Qenclosed = PL j dz=1p,
z=0

Y = Qenciosed

2rplD,=1p,
PL

D =

P 2mp

D=-—"lg,
21T p

b

_—line charge p, Cfm
_—~Gaussian surface

P

Figure 3.8 Gaussian surface about an infinite line
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3.8.3 Uniformly Charged Sphere

Consider a sphere of radius a with a uniform charge p, C/m3. To determine D
everywhere, we construct Gaussian surfaces for cases r < a, and r > a separately.
Since the charge has spherical symmetry, it is obvious that a spherical surface is
an appropriate Gaussian surface.

For r < a, the total charge enclosed by the spherical surface of radius r, as shown in

Figure 3.9 (a), is

2T T

‘P=3€55-d§=ﬁrjéd§=5r Jrzsin9d9d®=4nrzli

P=0 6=0

2T mT r 4
Qenclosed = f p, dv = p, f jrz sin 6 dod@ dr = 3Pv nr3
vot =0 6=00
Y = 0, ct05ed (Gauss's Law) Gaussian
4

4mtr?D, = 3Pv mr3
~ p
D, = ?vr
D= p?vr a, (r<a)

Figure 3.9 (a)
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For r > a, the Gaussian surface is shown in Figure 3.9(b). The charge enclosed by

the surface is the entire charge in this case, i.e.,

2T T a 4
Qenclosed = j Py dv = p, J f r?sinfdo do dr = 3P na’
vol %0 600
Y = Qenclosed (Gauss's Law)
4 surface
4mr?D, = =p,mad
3 /
/
N a3 '/
Pr =37 l‘
\
g3 \
D= 2 Pv Ar (r = a)

Figure 3.9 (b)
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Example: A uniform line charge of p; = 3 C/m lies along the z axis, and a concentric circular

cylinder of radius 2 m has p, = —4;: ©C/m”. Both distributions are infinite in extent

with z. Use Gauss's law to find D in all regions?
Solution:
1— Theregion0 < p <2

Using Gaussian surface cylinder p

Y= Qenclosed

1 2m

Y =D, f J- pd®dz = 2mpLD,

z=0 @=0

L
Qenclosea = prdL — po dz =L PL
z=0

2npLD, = L p;
oL 3x10°6 0477
D=%ap=—2n’p a, = 5 a, pC/m?

2 — Theregion 2<p
Qenclosed = Ql i QZ

Q.=Lp,

Q2 =jpsd5

L r2m
Q2=psf pdddz=2x2m XL X ps = 4nlLps
0 J0

Qencosea = Q1 + Q2 =L pLt 4'an.9

Y= Qenclosed

2npLD, = L py + 4mLps

_ put4mps sy 0.239

D 2rp P

a, uC/m?

P
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Example: 4 point charge Q=2m c at the origin, a volume charge density of 4 e/m” at the region

1 <r <3 and a sheet of charge -6 ¢/m” has r =4, Find D at v = 0.5, r = 2,

=057
Seolnfion:
Datryr =05

D is due to a point charge

a 2w

D=4«rrr2 ar=mﬂr=zar
Datr =12
Y= Qenctased
V= -‘lf:fr:r‘ZD,-
Qenc!ased — Qi + QE Gaussian surfice
20X M o2 312 112
Q2=[ pudy=4f f J‘ rzsinﬂdrdﬂdﬂi=4*2*23r*[r—] = K
ol 0 o -1 3 1 3
, 112n
~AnreD. = 2n +
3
D 39.33 545
= —7d, = 4. d
4(2)2 T T
Datr=5
Qenciosed = @1+ Q2 + Q3
2]

_ 416m
3

=4%x2x%2 —
Qz * 2 % }1’*[3

1

2w P70
0, = J-pst = —6J- f r2sinfdfd@ = —6 = (4)? » 2m = 2 = —384n
o Jo

416n
~Amr2D, = 2+ =T 3841 = —243.337

o _-24333c  —a4333
R e AT e At

65



Chapter three Electrostatic Field Asst. L ect.:Mayada J. Hamwdi

3.9 Differential Volume Element

We are now going to apply the methods of Gauss's law to a slightly different type
of problem, one which does not possess any symmetry at all. At first glance it
might seem that our case is hopeless, for without symmetry a simple Gaussian
surface cannot be chosen such that the normal component of D is constant or
zero everywhere on the surface. Without such a surface, the integral cannot be
evaluated. There is only one way to circumvent these difficulties, and that is to
choose such a very small closed surface that D is almost constant over the surface,
and the small change in D may be adequately represented by using the first two
terms of the Taylor's-series expansion for D. The result will become more nearly
correct as the volume enclosed by the Gaussian surface decreases, and we intend

eventually to allow this volume to approach zero.

dD, dD, 9D,
Charge enclosed in volume Av = + + X volume Av
dx dy o0z

The expression is an approximation which becomes better as Av becomes smaller.

Example: Find an approximate value for the total charge enclosed in an incremental volume of

10” o’ located at the origin, if D = ¢™ siny a, - €* cosy a, + 2za, C/m”

Solntion:
MWx _ X g G ot Dz _
ax_e siny , ay_e Slllyzaz—z

At the origin, the first two expressions are zero, and the last is 2. Thus, we find that
the charge enclosed in a small volume element there must be approximately 2 .If

Av is 10~°m3, then we have enclosed about 2nC.
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3.10 Divergence (div)

There are two main indicators of the manner in which a vector field changes
from point to point throughout space. The first of these is divergence, which will
be examined here. It is a scalar and bears a similarity to the derivative of a
function. The second is curl.

When the divergence of a vector field is nonzero, that region is said to contain
sources or sinks, sources when the divergence is positive, sinks when negative. In
static electric fields there is a correspondence between positive divergence,
sources, and positive electric charge Q. Electric flux W by definition originates on
positive charge. Thus, a region which contains positive charges contains the
sources of W. The divergence of the electric flux density D will be positive in this
region. A similar correspondence exists between negative divergence, sinks, and

negative electric charge

| o ga.ds
Divergence of A=div A= lim

Av—=0  Awp

oD, 0D, 4D
divD=V.D = ax"’+ a;+ a; ( Cartesian)

P 10 7 19D aD,
iv D=V. _pappPJ“pa@J’az

( cylindrical)

1 aD,
rsing oo

10 1 a4 .
divD=V.D = ——1r?D, + —(Siné Dy) +

. herical
r2or rsingaé (splhemie)

3.11 Maxwell's First Equation (Electrostatics)

We now wish to consolidate the gains of the last two sections and to provide
an interpretation of the divergence operation as it relates to electric flux density.

The expressions developed there may be written as
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D. .dS
div D= ]imsﬁ 5
ar=0 Awp
_ aD, aDy aD,
divD = o + 3y + 3
divD = p,
V.D=p,

This is the first of Maxwell's four equations as they apply to electrostatics and
steady magnetic fields, and it states that the electric flux per unit volume leaving a
vanishingly small volume unit is exactly equal to the volume charge density
there. This equation is called the point form of Gauss's law. Gauss's law relates the

flux leaving any closed surface to the charge enclosed,

—s Z2_ 42
Example: intheregiona <p <b, D=p, (p = )ap,

— 2_.2
and for p>b D:pg(b a)ap

for p<a D=0, find p,in all three regions?
Solution:

1— fortheregiona<p<bh

Pz_az
Dp:PnT ,  Dp=0, D, =0
V.D=p,
19 18D, oD,
py=V.D = =—pD +

+_—
pdp  F pap oz

10 p? —a? 14 pP—a*\ pod ., . po n
pu—Egp(pn( 2 ) —pappo( > )—55(,0 —QJ—ZXZP—P(]C/?H
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2 — fortheregion p>b

19 19 b? — a? 14 b*>—a®\ pod .,
Pv_V-D—;aPDp—E%P(Po( 25 ))——;%Po(T)—EE(b —a®) =0

3 — fortheregion p<a

pp=V.D=p,=V.0=0

Example: Let D = 5r%a, mC/m?2, for r < 0.08 m and D = %a,. mC/m?2, for r > 0.08 m. (a)

find p,, at r =0.06m, (b) find p, at r =0.1m, (c) what surface charge density could be
located at r =0.08m to caused D=0 for > 0.08 ?

Solution:

(a) p, atr = 0.06

forr <0.08 D = 5r2a, mC/m?
_vp-—2.2p 4L a('QD)+ L 9Dy
Pr = gy Y rsmeadg s T rsing 10
149 14 1
Py = T—zg'rz(Srz} = ﬁ§5T4 = 20r% = 20r mC/m®

Poatr_oos = 20(0.06) x 1073 = 1.2 mC /m?

(b) pyatr =10.1

forr >0.08
. 01 .
D:r2 a, mC/m
_VD_1a 2({),1)_1801_0
Pv U r29r r2) r2or
(C) D=0=>¥=0 =}'Q.sww.lc).sem‘=0

Qenciosea = 01 + Q2
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2m rm £0.08
Q=—-0,=- fpud'v = —f f f 20r r?sin 6 dr d6d®
0o “o Jo

-470.08
] = —2.57 uC
0

2 ~m ,0.08
QZ:—J’ J’ J’ 201r3sinfdr dAdd = — 20 X 2w X 2 %
o “o Jo 4

2n ~m
Q, = fpst = pSJ’ J’ r2sinf® d9d® = (0.08) x 2 x 2w X p;
0o Jo

—2.57 x 1076 = 0.0804 p,

ps = —32 uC/m?

3.12 The Divergence Theorem

Gauss' law states that the closed surface integral of D. dS is equal to the
charge enclosed. If the charge density function p, is known throughout the
volume, then the charge enclosed may be obtained from an integration of p,

throughout the volume. Thus

%DS .dS :J Ppdv
vol

ButV.D = p, and so

3595 .dS :f (V.D)dv
vol

This is the divergence theorem, also known as Gauss' divergence theorem. Of

course, the volume v is that which is enclosed by the surface S.
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Example: Given that D = (10p3/4) ap. (C/m®) in cylindrical coordinates, evaluate both sides

of the divergence theorem for the volume enclosed by p= 1m, p=2m,z=0and z=10

Solution:

The left side of divergence threorem is:

4 4
= 50w p* = 50m(2* — 1*) = 750m

The right side is:

10 19 [10p°
J (V.D)dvzf (——pr) d.vzf ——p( P ) dv
vol vol pap vol pap 4
1 a 10}04 10 ~2m -2
= —— d-uzf 102d'u=j j 1102 dp df dz
J;OI(P ap( 4 )) vo.’.( p) 0 0 1 s

472
=10><2n><10><[%] — 7507
1

10 Z?TIUPB 10
st‘d‘S':j f pd@dz = —x p* X 21 X 10
0 0

\C
Y
)

Example: Given thatD = 10sin6a, + 2 cos@ap. evaluate both sides of the divergence

theorem for the volume enclosed by the shell r =27

Solution:

The left side of divergence theorem is:

f D¢ .dS = %(10 sinfa, +2cosfag).r’sinf dodp a,

2 T T 1
§D5 .dS = J f 10r?sin? @ dodp = 10(2)? x 2w x f (— ——cos 29) do
0o Jo 0o 2 2

= 80 [19 1'29]H—80 [1 ]—402
= 80m |56 — 7 sin = m|5m| = 40m

The right side is:

(V.D)dv = [

rol

18'2D+ : a('QD) di
T_2§T L ?‘sinﬂﬁ S g v

s A

vol

71



Chapter three Electrostatic Field Asst. Lect.:Mayada J. Hamwdi

14 1 4
= ——1r2(10sin @) + — (sin62cos@) |d
J;ol (rz 37 (10sin 8) 030 (sinf 2 cos )) v

—f (18102'9+ L a'Zﬁ)d
B vol \I2 0T rosm Tsinﬁaﬁsm v

20 2
= f (— sin @ + ——cos 29) dv
rol 0

r T Sl

2 M o2 20 2
= f j f (—sin 8 + ——cos 29) r2sin 8 drd@d®
o Jo Jo \T 7 sin @
2 T 2 2t M 2
=f J’ f 207 sin? @ drdfdo +f f [ 2r cos 20 drdfdp
o Jo Jo o “Jo Jo

1 1 = 1 p
= [1072]3 [EB —Zsin 26‘]0 [B]3™ + [r2]3 [Esin 29]0 [@]2™

[10 x 4] En] [21] = 40m”
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3.9 Electrical Potential

Suppose we wish to move a point charge Q from point A to point B in an

electric field E as shown in Figure 3.10. From Coulomb's law, the force on Q is

F = QE so that the work done in displacing the charge by dl is
dw = —F -dL = — QE - dL

The negative sign indicates that the work is being done by an external agent. Thus
the total work done, or the potential energy required, in moving Q from A to B is

initial

Figure 3.10 Displacement of point charge Q in an electrostatic field E.

Example: An electrostatic field is given by E = (x/2 + 2y) a; + 2x a, (V/m). Find the work done
in moving a point charge @ =-20 uC (a) from the origin to (4, 0, 0) m. and (b) from
(4,0,0)mto (4, 2, 0) m?

Solution:
(a) The first path is along x-axis, so that the dL = dxa,

final & oz 4
W =—0Q E.dL = —(—20 x 10—6)f (E +2y).dx =20 X 107° l?] — 80uJ
0 0

inital

(b)  The second path is in the ay direction, so that the dL = dya,,

2
W = —(—20 X 10—6)f 2x.dy =20X 107° x 2 X 4[y]2 =160 X 1075 x 2 = 3207
0
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Example: Find the work done in moving a point charge Q = 5 pC from the origin to

10

rsin @

(2 m, m/4, n/2) spherical coordinates, in the field E = 5e~"/*a,. +

ag (V/m)?
Solution:
dL = dra, + rdfag + 1 sinf dPa,

final

W =—Q E.dL

inital

final 10
= —5u f (53_”4«% +——ay ) (dra, + rdfag + 1 sinf dp ag)
inital rsing

S22

2
= —5u J; S5e "/*dr — S,UJ; ey sin @ do

= —25(—4)|e™774|] — 5,1 (10)| 0[5

T
= 100u (e71/2 —e°) —50u X==—117.91]

Example: uniform line charge lie along z-axis, determine the work expended in carrying Q

from a to b along:

(a) Circular path?
(b)  Radial path?

z 2
Y y
Infinite line
charge p; PL
AT e
a b
dL E dp a,
dL=p, dpa,
{m (R

Figure: (a) A circular path and (b) a radial path along which a charge of Q is carried in the field

of an infinite line charge.
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Solution:

The electric field of a line charge is E = _PL 0
2mEyp
(a) for circular path dL = pd®a,
4 p
W = —QL 2MEp a,.pdPag =0 (a,-a5) =0
(b) forradial path dL = dpa,
final b d ad
W=—0 PL a, .dpa, = —Q M & _ o B J'_P
inital 27r£0p a 27{80 P 27-[‘90 b P
= b
W = QpL n
2me, a

3.10 Definition of Potential Difference and Potential

We are now ready to define a new concept from the expression for the
work done by an external source in moving a charge Q from one point to another

in an electric field E,

final

w=—0 j B.dl

initial

In much the same way as we defined the electric field intensity as the force on a
unit test charge, we now define potential difference V as the work done (by an
external source) in moving a unit positive charge from one point to another in an

electric field,

final
Potential Dif ference =V = — J E-dL
initial
Potential difference is measured in joules per coulomb, for which the volt is
defined as a more common unit, abbreviated as V. Hence the potential difference
between points A and B is
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A
VAB=_fEdZ
B

V45 1S positive if work is done in carrying the positive charge from B to A.

3.11 The Potential Field of a Point Charge

The potential difference between points located at v = r4, and r = ry in the field

of a point charge Q placed at the origin

= Q

E = a
4regr?

dL = dr a,

A

ra TA

VAB=—jF:-dZ=—j < ar-drar=—j C

B

or

Vap = V4 —Vp

ATrEyT? ATrEyT?

B B

Q —_— — ——

1 1
drteglry 13

Vap =

The potential difference between two points in the field of a point charge depends

only on the distance of each point from the charge and does not depend on the

particular path used to carry our unit charge from one point to the other
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How might we conveniently define a zero reference for potential? The simplest
possibility is to let V = 0 at infinity. If we let the point at » = 7 recede to

infinity the potential at r, becomes

0 1 1
TTEYT Y o

Since there is no reason to identify this point with the A subscript,

Q

V=
dreyr

This expression defines the potential at any point distant r from a point charge Q at

the origin, the potential at infinite radius being taken as the zero reference.

A convenient method to express the potential without selecting a specific zero

be a constant.

. . : Q
reference entails identifying 74 as r once again and letting py—
0"A

Then

V = Q + C1
drteyr

C, may be selected so that ¥ = 0 at any desired value of r. We could also select

the zero reference indirectly by electingto let V be Vy at r = 1.

The potential at any point is the potential difference between that point and a

chosen point in which the potential is zero.
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Example: Find the potential at »4 = 5 m with respect to 3 =15 m due to a point charge

© =500 pC at the origin and zero reference at infinity?

Solution:

Q 1 1
el
4me, \rA 1B

500x 1072 ,1 1
=—( )=0.6V

v i o
= 41e,

5 15

The zero reference at infinite must be used to find Vs and Vs

0 /1y 500x107%2 /1
)
41e, \15 4me, 5
P o Q (1)_500><10‘12(1)_03V
5 ane \r15) 4mne, 15/

Example: A 15-nC point charge 1s at the origin in free space. Calculate V; if point P; 1s located

at Py (-2, 3, -1) and: (@) V' =0 at (6, 5, 4); (b) V =0 at infinity; (c) V=5V at (2, 0, 4)?

Solution:
a‘-
i = ¢ T ®
Q
C= e
el Ame Ry
15 x 107°
C=0-— = —15.37
4e, V62 + 52 + 42
15 x 107°
2 Vpl = — 15.37
4me,N2%2 + 32 4+ 12
Vm =207V

78



Chapter three Electrostatic Field Asst. Lect.:Mayada J. Hamwdi

3.12 The Potential Field of a Line Charge

The potential difference between points located at p = a and p = b in the field of

a point charge Q placed at the origin

= PL
E=-t-_
2mEyp %
and dL = dpa,
A a a
= 7 PL PL
Vig= — | E-dL = — -dpa, = —
AB f j 2mEyp @ " AP j 2mENp
B b b
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3.13 The Potential Field of a System of Charges

The potential field of a single point charge, which we shall identify as Q;
and locate at r, involves only the distance |r — r;| from Q, to the point at r. For a

zero reference at infinity, we have

Q1

~Amey|r — 1|

V(r)

The potential due to two charges, Q, at r; and Q, at r,, is a function only of
|r — r1| and |r — r,|the distances from Q, and Q. to the field point, respectively.

Q1 + Q>

V(r) = —— ——=
) 4reg|r — |  Ameylr — 1y

If the charge distribution takes the form of a line charge, a surface charge, a

volume charge the integration is along the line or over the surface or volume:
dL
At & |R|

VZJPS—dSA
4neO|R|

S

sz de
41T £ |R|

vol
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Example: Five equal point charges, Q=2 nC, are located at x=2, 3, 4, 5, 6 m. Find the potential at
the origin?

Soluition:
V=V+V+V+V,+V

Q y -2

V.= )
4mte,y 41e,T,

_2><10_ (1 1T a1

rETETE +)_261V

dre, \2 3 4 5 6

Example: Find the potential V at (0, 0, K) for cylindrical surface charge p, = psp, 0 <z <h

and p = a?

Seolution:
- J psds
s 4me,|R|

ds=pdbdz = adddz

R=-aa,+ (k—2)a,

|R| =+/a? + (k — z)?

J J’z’r psoa AP dz
41, A/ a? + (k z)2

V pSG X 2 j
dme, vaz+ (k—z)?
—apso J‘ —dz
’1 + k Z
— k— 2t
V= Pso sinh™?! ( )]
Eo a 1]
k—h k
V= Pso [sinh_1 (—) —sinh ™! (—)]
28, a a

*sinh~Yu = In (u ++u? +1)
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Pso k—h k—h? k k\?
V=22t (—)+ (=) +1|-m| (5)+ [[5) +1
2¢, a a a a

P ( k+Va?z + k2 )
= n
k—h++a?+ (k—h)?

2€,

3.16 Gradient
The vector field VV (also written grad V) is called the gradient of the scalar

function V
vV = U/ + Y + i Cartesi
= o an PP ( Cartesian)
VV—aV _1_161/' +6‘V indrical
=% a, pﬂﬂ)a@ 5, & ( cylindrical)
W_@V +16V o 1 oV —_—
T T8 T rsingag (el

3.17 Relationship Between E and V

The electric field intensity E may be obtained when the potential function V
Is known by simply taking the negative of the gradient of V. The gradient was

found to be a vector normal to the equipotential surfaces, directed to a positive
change in V. With the negative sign here, the E field is found to be directed from

higher to lower levels of potential V

E=-VV

o«



Chapter Three Electrostatic Field Asst. L ect.:Mayada J. Hamwdi

Example: Given the potential field, ¥ = 2x* y — 5z, and a point P(-4, 3, 6), find at point P: the

potential 7, the electric field intensity E, the direction of E, the electric flux density D,

and the volume charge density p,,?

Solution:

The potential at P is:
V=2(-4)?3) —5(6)= 66V
The electric field intensity E is :

av av av
0x dy 7 9z

E=-TV =—(—ax+—a +

—0 —a —9
:a(2x2y — 5z)a, -[—5(2:(23/ — 5z)a, +E(2x2y — 57)a,

E = —4xya, — 2x° a, + 5a,

E at the point P is:

E=48a, —32a, + 5a,

D = ¢,E = ¢g,(—4xya, —2x%a, + 5a,)

_vD_ﬂDx_[_@Dy_l_ﬂDz_ p
Po = V-2 oy dy = 0z fo

— = 3
p”(at'paint p) —4g, (3) = —106.2 PC{m
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Example: Given the potential field in cylindrical coordinates V = , and point P

p=3m 0 =60°.z=2m, m free space find at point P: the potemlal V. the electric
field intensity E, the direction of E, the electric flux density D, and the volume charge

density p,?
Solution:

The potential field V at the point P is:

100

22 + 1 G

(EW 19V av )
E=-VV=— a, +—

2t oapde g,
_(8(100 @) +16(10{) @) +6(100 @) )
== 1pCDS d _E 1pCOS a@ E mpCDS ﬂz

dp \z% +
—100 —100 —200z
E:zz+1CDS®ap = +1sm®a@+(2 )zpt:ﬂs@az
) S ) e D el 7y
atp =3 c0s60 a, +—3——sin60 ay CEEIE cos 60 a,

EatP =-10a,-173ag +24a,

—100 —-100 —200z
D =¢,E = 60(22+1 cos @ ap+m sin @ ag+( T 1)2 pcos az)

_op 18 oD, + 19D, aD
& pap” pM

10 (—100 @)Jrl d (—100 _ @)Jr d ( —200z Q})
pv_pﬂpp 2410 0P \z2 + 1 — dz (22—1-1)2’(“:(}S

o = 2 2 - - 2
pﬁl( 100C ) 1( 100 cos®)+((z +1)% x (—200) — 200z X 4z(z% + 1)

p\z2 +1 (> +1)*

p €os Gﬁ)
p
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3.18 CURL OF AVECTOR
The curl of 4 is a rotational vector whose magnitude is the maximum

circulation of A per unit area as the area lends to zero and whose direction is the

normal direction of the area when the area is oriented so as to make the circulation

maximum.
v io § A-dL
curl A=VXA= AéToT a,. ..
a, a, a,
L d 4d 0
VXA= 5y dy 0z
Ay A, A,
or
- - (04, 04, d0A, O0A, dA, 0A, .
VxA:[ay — aZ]ax+ 5y axlay ox W a, Cartesian

a, pag a,

~ . 1}o d 0
LRk plop 00 0z
A, pAg A,
or
~ -~ [104, 04y 04, 04, 1|0(pAg) 04,
XA=|- — — — — ] ]
\Y LO 90 e ] a, + [ e op ag + o 90 a, Cylindrical
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Frequently useful are two properties of the curl operator:
1) If the divergence of a curl is zero; (V x A) = 0, then the vector field 4 is the

Electric Field.

2) The curl of a gradient is the zero vector; (V X (V/T) =0
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Home work

Q, Given that D=z p cos*@ a, mi calculate the charge density at

2
(1, %, 3) and the total charge enclosed by the cylinder of radius 1 m
with —2<z<2m.  Answer p,=05C/m® q=="¢  SD (134)

Q Find the volume charge density in a field D = (y + e®)a, — ye™a, + za, £

Q3 The flux density D = = &, nC/m? is in free space:
a) Find E atr = 0.2 m.

b) Find the total electric flux leaving the sphere of r = 0.2 m.
¢) Find the total charge with the sphere of r = 0.3 m.

Answer a) 7.52954a,.V/m b)@¢=33.51PC c)¢=113.097 PC

Q4 If a sphere of radius 10 cm has a charge density p, = 1573 C/m3 , then
determine D atr < 10 cmand r = 10 cm.

Answer
. 107r*
D= V
7 V/
_ 10°
D=—V/m
412 /

Qs A charge distribution in free space has p, =2rnC/m3 for0 <r <10cm

and zero otherwise, determine E atr = 2m and r = 12 m.

-9 N -5
2%x10 V/m ’ E= 10 /

Answer E = 20 288 g
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Q¢ Consider an infinite line charge along z-axis. Show the work done is zero if a

point charge Q is moving in a circular path of radius p central at the line

charge.
7604 Jba (udig 2aala @l palas)  Q.Q

Q- A point charge of 5 nC is located at the origin. If V = 2V at (0,6, —8), find
(@) The potential at A(—3, 2,6)
(b) The potential at B(1,5, 7)
(c) The potential difference V,z
Answer: (a) 3.929V, (b) 2.696 V, (c) —1.233 V. Sadeqo p(138)

Qg If three point charges, 3uC,—4uC and5uC are located at
(0,0,0),(2,—1,3)and (0,4, —2) respectively. Find the potential at
(-1, 5, 2) assuming V() =0 Answer 10.23 Kv
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CONDUCTORS AND DIELECTRICS

4.1 Current and Current Density

Electric charges in motion constitute a current. The unit of current is the
ampere (A), defined as a rate of movement of charge passing a given reference

point (or crossing a given reference plane) of one coulomb per second. Current is

symbolized by I, and therefore

_4Q

[ = —<
dt

We find the concept of current density, measured in amperes per square meter

(A/m?), more useful. Current density is a vector represented by J.

Total current is obtained by integrating,
I = j J-dS
S

Current density may be related to the velocity of volume charge density at a point.

J=p, U
Where is U velocity and is p,, volume charge density

This last result shows clearly that charge in motion constitutes a current. We call

this type of current convection current
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Example: Given the current density J=10p®z a, — 4p cos* @ ag mA/m’; determine the total

current flowing outward through the circular band p =3,0<@ <27z, 2<z<28.?

Solution:

I:J’J.dS:J’ f (10p*za, — 4p cos® @ ag).p dP dz a,
5

2.8
= 3.26 mA

ZZ

28 p2m
1= f f 10p3z dP dz = 10(3)* X 27 X
2 Jo

Example: Find the total current outward directed from a Im cube with one corner at the origin

and edge parallel to the coordinate axes if J=2x*a, + 2xy3ay s xv.as A/m*?

Solution:
Jf = f J.dS
S x=1

dS = dx dya, +dydza, +dzdxa,

I = J’f (2x%a, + 2xy3a, + 2xy a,) . (dx dya, + dy dza, +dzdxa,)

I :J’f 2x%dy dz +H 2xy3dz dx +H 2xy dx dy

(atx=1)—(atx=0) (aty=1)— (aty =0) (atz=1)—(atz=0)

1 o i o A o 1 i
I:J’ deydz—O +f fodzdx—O +J' J'nydxdy—f f2xydxdy
o Jo 0 Jo 0 Jo 0 Jo

I=2[ylglzlo+ [x°]g[z]5 —0=2+1=34
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4.2 Continuity of Current

The continuity equation follows when we consider any region bounded by a

closed surface. The current through the closed surface is

1=] J-dsS
S

and this outward flow of positive charge must be balanced by a decrease of
positive charge (or perhaps an increase of negative charge) within the closed
surface. If the charge inside the closed surface is denoted by Q; , then the rate of

decrease is —dQ;/dt and the principle of conservation of charge requires

B e —ag;
I—L Jds = —

f J-dS = (V- dv s«
S vol

We next represent the enclosed charge Q; by the volume integral of the charge

density

d
-Ddv=-=| pyav
vol dt vol
If we agree to keep the surface constant, the derivative becomes a partial derivative
and may appear within the integral

—0py

d
ac Y

- pdv=|

vol vol

from which we have our point form of the continuity equation,
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_ —0py

V-] = 3t dv

Remembering the physical interpretation of divergence, this equation indicates that
the current, or charge per second, diverging from a small volume per unit volume is

equal to the time rate of decrease of charge per unit volume at every point.

4.3 Metallic Conductors

Let us first consider the conductor. Here the valence electrons, or
conduction, or free, electrons, move under the influence of an electric field. With a

field E, an electron having a charge Q = —e will experience a force

In free space, the electron would accelerate and continuously increase its
velocity (and energy); in the crystalline material, the progress of the electron is

impeded by continual collisions with the thermally excited crystalline lattice
structure, and a constant average velocity is soon attained. This velocity U, is

termed the drift velocity, and it is linearly related to the electric field intensity by the

mobility of the electron in the given material.

Us=Epn,

Where pu, is the mobility of an electron, mobility is measured in the units of square

meters per volt-second; typical values are 0.0012 for aluminum, 0.0032 for copper,
and 0.0056 for silver.

Ug=—peE e
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where p, is the free-electron charge density
The relationship between J and E for a metallic conductor, however, is also

specified by the conductivity o (sigma),

0 = —Pe He

If a conductor of uniform cross-sectional area S and length L, as shown in Figure

below, has a voltage difference V between its ends, assume that J and E are uniform

Conductivily
—_—
Area=§
I;’
I=Js — k=
—

I=f]d5=ﬁ': J===0E
S

A
14
Kw=—jEdL=ﬂ, = E=-
B
v
5701
4 L
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The ratio of the potential difference between the two ends of the cylinder to the

current entering the more positive end,

= L
_GGS

¢ \When the fields are nonuniform,
%b_—ngu

R = ]
J; oE-ds

Example: Find the resistance between the inner and outer curved surfaces of the block shown in

Fig. below, where the material is silver for which 6 =6.17 x 10’ S/m. if J=k/p a,?

Solution:
J=0E
L J_k
o op o
3 k
_ J.cu.zﬁ dp
~ 0,05 50 k
Iy fy <5 pdodz
3
lnm

R = 30.0873 x 0.005

R = 1.01 x10"°Q

4.4 Conductor Properties and Boundary Conditions

For electrostatics, no charge and no electric field may exist at any point
within a conducting material. Charge may, however, appear on the surface as a
surface charge density, and our next investigation concerns the fields external to

the conductor.
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To summarize the principles which apply to conductors in electrostatic fields, we

may state that

a. The static electric field intensity inside a conductor is zero.
b. The static electric field intensity at the surface of a conductor is everywhere
directed normal to that surface.

c. The conductor surface is an equipotential surface.

4.4.1 Conductor-Dielectric Boundary Conditions

Under static conditions all net charge will be on the outer surfaces of a
conductor and both E and D are therefore zero within the conductor. Because the
electric field is a conservative field, the line integral of E.dL is zero for any closed

path. A rectangular path with corners 1, 2, 3, 4 is shown in Figure below.

Free space T ___ - E

Nl B — \
/ - ) Conductor

3€ E-dL=0

around the small closed path abcda. The integral must be broken up into four parts
b c da a

[+ ]+

a b c d
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If the path lengths b to ¢ and d to a are now permitted to approach zero, keeping

the interface between them, then the second and fourth integrals are zero.

The path from ¢ to d is within the conductor where E must be zero. This leaves
b b

a a

where E; is the tangential component of E at the surface of the dielectric. Since the
interval a to b can be chosen arbitrarily, at each point of the surface.
Et — Dt — O

To discover the conditions on the normal components, a small, closed, right circular

cylinder is placed across the interface; Gauss' law applied to this surface gives

%D'dSZQenc

j D-dS+j D-dS+j D-dS=jpS-dS
top bottom side A

The third integral is zero since, as just determined, D; = 0 on either side of the

interface. The second integral is also zero, since the bottom of the cylinder is within

the conductor, where D and E are zero. Then,

fD-dS: DNdS=f psdS
top A

top
Dy = ps

Dy = &EyN = ps
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The electric flux leaves the conductor in a direction normal to the surface, and the

value of the electric flux density is numerically equal to the surface charge density.

Example: A solid conductor has a surface described by x + y=3m and extends toward the origin.

At the surface the electric field intensity is 0.35 V/m. Express E and D at the surface

and find p,?
Solution:

The unit vector normal to the surface is :

L ayshay

a —
Yoz

b ar ay
E, = 0.35 = 0.247(a, +a
N \/’E ( x y)

Dy = g,Ey =219 X 107*2(a, + a,)

ps = |Dy| = 3.09 x 1072

4.5 The Nature of Dielectric Materials

A dielectric in an electric field can be viewed as a free-space arrangement
of microscopic electric dipoles, each of which is composed of a positive and a
negative charge whose centers do not quite coincide. These are not free charges,
and they cannot contribute to the conduction process. Rather, they are bound in
place by atomic and molecular forces and can only shift positions slightly in
response to external fields. They are called bound charges.

The characteristic that all dielectric materials have in common, whether
they are solid, liquid, or gas, and whether or not they are crystalline in nature, is

their ability to store electric energy. This storage takes place by means of a shift
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in the relative positions of the internal, bound positive and negative charges against

the normal molecular and atomic forces.

The dipole may be described by its dipole moment P

P=0d

where Q is the positive one of the two bound charges composing the dipole, and
d is the vector from the negative to the positive charge. We note again that the
units of P are coulomb-meters.
There is thus an added term to D that appears when polarizable material is present
D =¢c,E+P
The linear relationship between P and E is

P=y.eE

where y, is a dimensionless quantity called the electric susceptibility of the
material.

D = €OE+P =€0E+X680E
D = (Xe + 1)80 E
The expression within the parentheses is now defined as

E =Xet+1

This is another dimensionless quantity, and it is known as the relative permittivity,
or dielectric constant of the material. Thus

D =¢.6yE=¢E
£ =& &

where € is the permittivity
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Example Two point charges in a dielectric medium where e, = 5.2 interact with a force of

8.6 X10° N. What force could be expected if the charges were in free space??

Solution:
= @ in free space
1 4gme, R? ' pace
F, = Gl in dielectric
4me R?
F, e
FZ - €o
EoEr
F = F,=¢F,=52%Xx86X10"2=447x10"2N
80

4.6 Boundary Conditions for Perfect Dielectric Materials

Let us first consider the interface between two dielectrics having
permittivities and and occupying regions 1 and 2, as shown in Figure below. We
first examine the tangential components by using

LDy

Region 1

E-dL=0 U
f -\D.vz
chj;)nz

Around the small closed path on the left, obtaining
EtanlAW - Eta’l’leW == 0

The small contribution to the line integral by the normal component of E along the
sections of length Ah becomes negligible as Ah decreases and the closed path

crowds the surface. Immediately, then
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E tan; — E tan,

Dtan1 _ Dtanz

€1 &

The boundary conditions on the normal components are found by applying Gauss’s
law to the small “pillbox” shown at the right in the Figure. The sides are again very

short, and the flux leaving the top and bottom surfaces is the difference

Dy, AS — Dy, AS = AQ = ps AS
for no free charge is available in the perfect dielectrics, we may assume pg is zero

on the interface and

DN1 = DN2

Let D, (and E;) make an angle with 6;a normal to the surface (Figure below) .
Because the normal components

of D are continuous,

DN1 == DN2

~ Dy cosB; = D, cos b,
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The ratio of the tangential components is given by

Dtan1 81
= — & - =
Dian, &2 D,sin@, &,

D1 sin 01 &1

D1 Er sin 91 = DZ &1 sin 92
and the division of these equations gives

tan 6, &
tan 0, &,

Example The surface x = 0 separates two perfect dielectrics. For x > 0, let &4 = 3, while
&9 =5 wherex < 0. If E; = 80a, —60a, —30a, V/m, find (a) Ex;; (b) Eqy ; (c) E}; (d)
the angle 8, between E; and a normal to the surface; (e) Duy; (f) Dra; (2) D2, (h) Py,

(i) the angle O, between E; and a normal to the surface.?

Solutiion:

(a) Ex; = 80 ax

E
—3 ;
(b) Epy = — 60ay — 30az fr1 !
X
() |E1| = VBOZ + 602 + 302 = 104.4 V/m g
Era = 5 Eg‘/92<
(d) Ey, = E; cos 0,

oo ot o B
- 1P
E, 1044

6, = 40°

LU
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(e) Dyy = Dy

Dy, = & Epyqy = €p £1En; =3 X 8.85 X 10712 x 80 ax = 2.12 ax nC/m?

(f) Ery = Eqy
Dr1 _ D
& &

2] Er2

Dyy = Dy = .

1l Tl

D, =Dyy + Dpp

D, =212X10"%a, —60¢&, ga, —30&, 5 a,

() P, = (&, —1) g Ey

(i)
tanf; &
tan 6, W'e;
tan40 3
tan8, 5
8, = 54.5°

—30¢,, & ay)
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Example Region I, z<0 m, is free space where D = 5a, + 7a, C/m’. Region 2, 0< = <I m,

has €. = 2.5. And region 3, z> 1 m, has €. = 3 Find E5, P, and 05?

Seolution:
_ E
D, = (5a, +7a,) 6 38,,3 =3
DNl = D]_ COs 81 7=1
7
cosf, = ——— — &, =25
! V52 + 72 B/ 0,
| Z=0
— 0 -
Dyo =Dy =74, ‘ Free space
Ery = Ery
Dry _ Dra
£ L)
£ £ 2.5
&4 1 1

Dy = Dyy + Dpy
D,=125a, +7a,

7 D, 125a,+7a, 1 . 7
— [ —1— — _|_ [R—
? T & 2.5 ¢, €0 ( AN az)

DN2 — D2 COS 82

7,
= _1— = 0
0, = cos — 60.7

tanf, &

tanf, &,

£ 3
 tan 8, = — tan 60.7

tan @, =
0 Ero 235

0, = 64.93°
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4.7 Poisson’s and Laplace’s Equations

Poisson's and Laplace's equations are easily derived from Gauss's law (for

a linear material medium)
V:-D=V-¢E =p,
and

E=-VV

by substitution we have

V-D=V-cE=V-(—=€VV) =p,

Equation above is Poisson’s equation,

If p, = 0, indicating zero volume charge density, but allowing point charges, line
charge, and surface charge density to exist at singular locations as sources of the
field, then

V2V =0

which is Laplace’s equation. The V2 operation is called the Laplacian of V.

V2V = 32 + 37 + 7 ( Cartesian)
. 10, avy 1 [0*V\ 0d%*V o
VeV = 2% (p %) + 2\ 302 + s ( cylindrical)

V’ZV—Ia(ZaV)+ 1 6(_9611)_'_ 1 0%V N
T r2or d dr/) r2sin8 0o >t d08/) rZsin20 dp? (SplsmE)
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Chapter Four

Example

Determine whether or not the following potential fields satisfy the Laplace's equation
a)V =x?—y?+ z2 b)V =pcos@+z

Solution

0%V 9%V 9%V
_l_

2 =
vV 6x2+6y2 0z?
62 2 62
axz[x —y2+z°] + [x —y +zz]+ [x —y? 427
d d
= [2x]+—[ 2y]+ [22]—2
So VAV #0

Hence field V does not satisfy Laplace's equation.

b)
sz_1a( 0V)+1 0%V +62V
~ pdp ’Dap p? \0p? 0z2

v 6 [ e 5

0 p COS z] = cos

av .

30— a(Zj[pcos(b+z] —psin@
oV

3 —[pcos(2)+z]—1

10 ( GV) 10 9 0] = 1 ?
- Ccos —COS
pop\"3p) " pop ™ p

L g BT PR .
p2\ae?) ~ pzlap - P2 p
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GZV_ 0 (1]=0
9z2 0z -

cos @

1
V2V=Ecos®— +0=0

So this field satisfies Laplace's equation.

Home work

Q,: Find the Polarization in dielectric material with €, = 2.8 if

—_

D =3x10"7 C/m? Answer 1.92 X 1077 C/m?

Q,: Find the magnitude of D and P for dielectric material in which

|E| = 0.15mV/mand y, = 4.25.

Answer |D| = 6.9725 x 10715 C/m? |P| = 5.644 x 10715 ¢ /m?

Q3: The region with z < 0 is characterized by ¢,, =2 and z> 0 by ¢, =5.

If D, =2@,+5a, —3a; (nC/m?), find :
a) D, b) Dy,

d) the angle that D, makes with z axis

Answer a) 0.84d, +2ad, — 3 ad, (nC/m?)

d) 35.678° e) 0.599
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The Steady Magnetic Field
5.1 BIOT-SAVART Law

The source of the steady magnetic field may be a permanent magnet, an electric

field changing linearly with time, or a direct current. We will largely ignore the
permanent magnet and save the time-varying electric field for a later discussion. Our
present study will concern the magnetic field produced by a differential dc element

in free space

Biot-Savart's law states that “the magnetic field intensity dH produced at a point
P by the differential current element I dl is proportional to the product I dl and
the sine of the angle between the element and the line joining P to the element
and is inversely proportional to the square of the distance R between P and the

element”.

The direction of the magnetic field intensity is normal to the plane containing the
differential filament and the line drawn from the filament to the point P as shown in

Figure 5.1.

(a) (b)

Figure 5.1 the direction of dH using (a) the right-hand rule, or (b) the right-handed screw rule.
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It is customary to represent the direction of the magnetic field intensity H (or
current I) by a small circle with a dot or cross sign depending on whether H (or I)

IS out of, or into, the page as illustrated in Figure 5.2.

H (or I) is out H (or 7)is in
/

(a) (b)

Figure 5.2 Conventional representation of H (or I) (a) out of the page and (b) into the page.

We can have different current distributions: line current, surface current, and
volume current. If we define K as the surface current density (in A/m) and J as the

volume current density (in A/m?),

7 :ﬁde><aR
= Line current
AT R?
7 K dS X ap -
- Surface current
41T R>
7 Jdv X ap :
- Volume current
41T R>
Consider an infinitely long straight filament carrying a direct current I is located
along z-axis
j;IdL X dp
B 4 R?
dl, = dza,
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R=pa,—-za,
IR| =+/p* + 22

112

Free space

I dza pa,—za, A
H= f = x —L pa (Point 2)
= .
—e 4 (/p? + z2) Vp?+z?
|1
I (* pdz
H:E éﬂ@ ’ (ﬂzxap:ag) , (azxazzo)
~*(p? +2%)2
Let z = p tanu , dz = psec’u du
—Co - co T
u=tan = u =tanl—=—, up = tan 1 —=—
p 2 P
z 2
I {2 ppsec“udu
H ~ar 3 dg
ST (0% + p?tan?u)?
T
I (2 p psec?u du
H == 3 dg
41 J—7 2
=z (p? + p?tan?u)z
u [si ]g 1 [ T ., T
—4?1_ Slnu%ﬁ_ﬁl-ﬂ'p SlITl2 51n )
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I
H=— in cylindrical
2 ag in cylindrica
I I /—ya, + xa, _ ) )
H=——a; = — ( > ) in cartesian along z axis
21 p 2\ x?% 4+ y?

The finite-length current element is shown in Figure below. The magnetic field
intensity H is most easily expressed in terms of the angles a; and «a,, as identified in

the figure. The result is

I

H=——
4mtp

sina, — sin aq)a
2 149

To find unit vector ag in egs. above, a simple approach is use to determine it

from

= 1

ag =a; +a,
where a; is a unit vector along the line

current and a

, is a unit vector along the

perpendicular line from the line current to the

field point.

R N
P Point 2

24}
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Example: Determine H at P (0.4, 0.3, 0) in the field of an § A filamentary current 1s directed
inward from mfinity to the origin on the positive x axis, and then outward to infinity

along the y axis. As shown in Figure.

Solution:
H = Hl + HZ R_A..
H [1 ( . ] )
=——(sina, —sina \
- dmp, 2 - 8A \a,

\‘\?h
(;»2(04 0.3,0)

0.4
p;=03 , ;=-90 , a,= tan—lﬁ =53.1

H 8 (sin53.1+ sin90 12 =
= A dg = —ap = —a
1 4?‘[0.3(5111 sin90)ag —ap —a,
I
H, = (sina, —sinay)
4mp;

0.3
p;=04 , ;=90 , a;= —tan_lﬁ = —36.9

-8 8
H, = 204 (sin90 + sin 36.9)ay = ?a@ = Eaz
—12 8 —20
H=H +H,=—a,+—a, =—a,
s T T
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Example: Find H at the center of a square current loop of side L is located on xy-plane?

Solution:
IdL % ag z
- 3[; ATR2 4
dL = d}r ay /(Ug.? Y._.D:]
_L / -‘..‘___.
R = ?ax —ya, - .

) /17

d e .
_ Idyay 7 Y3y
HI_J‘ 12 132
w(@) +2) G+
I (3 Edv
le—fz 28 = a, . (ayxa,=-a;) ., (a,xa,=0)
4m J, N2 5
.2
((E) MR )
\,’Ef
Hj=—ma
YLt
V21 221
H=8H =8+ - a, = = a,
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Example: Two 1dentical circular current loops of radius p = 3 and I = 20A are in parallel planes,
separated on their common axis by 10 m. Find H at a point midway between the two

loops? 4

=20
®5

Idly x a
H1=§; 1 R1 :

47R,*
dL, = pdda, = 3d0a, /
>
95

Solution:

Ry = —3a,—5a;

|R| = /32 + 52 =34

I+ 3dpa, —3a,—5 a; _ Zie 2

H, = f a3t~ = f 3doa, + f —5dpa,| = 0.453a,
o MEF RS 47+ 343 0

H,=H, , H=0908a,

5.2 AMPERE’S Circuital Law

Ampere’s circuital law states that “the line integral of H about any closed

path is exactly equal to the direct current enclosed by that path”

f HdL=1,,

We choose a path, to any section of which H is either perpendicular or
tangential, and along which H is constant. The first requirement (perpendicularity
or tangency) allows us to replace the dot product of Ampere’s circuital law with the
product of the scalar magnitudes, except along that portion of the path where H is
normal to the path and the dot product is zero; the second requirement (constancy)
then permits us to remove the magnetic field intensity from the integral sign. The
integration required is usually trivial and consists of finding the length of that
portion of the path to which H is parallel.
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Let us again find the magnetic field intensity produced by an infinitely long filament
carrying a current I. The filament lies on the z axis in free space, and the current

flows in the direction given by a, .

The path must be a circle of radius p, and Ampere’s circuital law becomes

?g HdL=1,,

21 2
0

a

2 Hpgp =1
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Example: A thin eylindrical conductor of radius a, infinite in length, earries a current I. Find H

at all points using Ampere's law?
Solution:

For path 1 inside eylinder

};H. dL=1,,.
Iene =10
~H=0

For path 2 outside cylinder

I

enc

=

2m 2
};H.rﬂ.=f Hy pd® =ngf d@® = 2np Hy
0 0

2npHg =1

Example: Determine H for a solid cylindrical conductor of radius a, where the current I 1s

uniformly distributed over the cross section?

Solution:
forp<a
[
enc _ﬂ_az [12

Zn 2T
j;HdL=f H@Pd@ =ng[ d@=2’mpHg
[} o

2

p
2]’[;:) Hg ZFI

Ip
Hs =
® = oma?
{

forp>a : I..=1I . Hm=m
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Example: consider an infinitely long coaxial transmission line carrying a uniformly distributed
total current 7 in the center conductor and —F in the outer conductor, Find H at all

points using Ampere's law?

Solution:
farp <a e
2 2 - -
g 2
Ione = Iﬂ_az - aZ /’-f*;-f_--_".ﬁ'fa_..__\
4 = (S
Z'JT 2_rr illl 'l. .-'. e ':"I g
a o % Ly
:/ H‘\{;;\& &
2 T
p S
2np Hg = EI
Ip
H; =——
& 2ma?
fora<p<bhb
I
Ione =1 » Hp = 7 p
forb <p<c
I
lone = I » Hp = 2 p
forb < p<c
Ien:: = JE'1 + I2
T 2 - bz
Iy = e =)
m(c2 — b2)
z_p2 c2 — pZ
lope =1 —1 ,02 = P I
c2— b2 2 —h?
c2 — p2
ZTIP HIB = m[
I C2 — pZ

Ho :an cZ — b2
forec<p

Ippe=I+1, =I—I=0 ,~ H=0
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Example: consider a sheet of current flowing in the positive y direction and located in the 2 =0

plane as shown in Figure below. Find H?

Selution:

H = H,a, + Hya, + Ha,

1 R ——-
Hy = Hz =) ‘M* K=k, —r
)
H==Ha, NS
lene=K1L

ng.dL = foaa..dIax + f H.a,.dza. = H.L+H.L =2H.L

fHdL=uM
2H L=KL
. K
S
In general the H for infinite sheet current is given by:
1
H = EK X ay

Example: A current sheet, K=10a; A/m, lies in the x = Sm plane and a second sheet, K= -10a,

A/m, is at x = -5 m. Find H at all points?

Solution:
for —5<x <5
K=IDa,
1 I
H, = Elﬁaz X —a, = —ba, b" L
1 ] I3 [r. '*j_'-r
H, = 37 10a, x a, = —5a, T__m'
H=H, +H, = —10a, |/ ’ /

forx < -5

1
Hy = Elﬁaz X —a, = —bay

1
H, = ol 10a, X —a, = 5a,

H:H1+H2:_53y+53y:[}
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(a) An ideal solenoid of infinite length with a circular current sheet K.

(b) An N-turn solenoid of finite length d.

o>

/

\
—\\ K=K, ity
™

i

A
p=a
NI
H=K, a,p<a =52
H=.p>a (well inside coil)
(@ )]
H=K H="2
~Ka, p<a “a% PTa

For the toroid shown in Figure below, it can be shown that the magnetic field intensity for

the ideal case

K=K, a.atp=p;—a,z=0

= % ay (well inside toroid)

H=K, '”0;“ a,, (inside toroid)

n=0 (outside)
@ )
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