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The aim : 
After studying the introduction of heat transfer, the 

student will be able to:- 

1. Define the heat transfer. 

2. Know the types of heat transfer. 

3. Determine the mechanism of calculation of each type 

heat transfer. 

 

 

First Week:- 

Introduction of heat    

Transfer 
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Fill the following blanks by correct answer.  

1. The ----------------  of a material is the rate of heat transfer through a unit thickness of 

the material per unit area and per unit temperature difference 

 

a) Density     b) specific heat   c) thermal conductivity   d) thermal diffusivity  

 

2. Conduction is expressed by ----------------------- of conduction as #Q kA
dT

dx
cond=-  

a) Newton's law of cooling     b) Fourier's law      c) The Kirchhoff's law  d) stefan-

Boltzmanôs law 

 

3. The thermal conductivity of gases is proportional to the --------------  of absolute 

temperature. 

a) square root  b) different   c) triple root  d) single root 

 

4. Radiation is expressed by -------------------------as )( 44
surrssrad TTAQ -=es# . 

a) Stefan-Boltzman law   b) Newton's law of cooling  c) Fourier's law      d) The Kirchhoff's 

law 

 

 

5. Convection is expressed by ------------------------as )( ¤-= TThAQ ssconv
# . 

 

a) Newton's law of cooling     b) Fourier's law      c) The Kirchhoff's law  d) stefan-

Boltzmanôs law 

 

 

 

 

 

 

 

Pre - test 
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Introduction  
 

       Heat transfer is the science that seeks to predict that energy transfer that may take place 

between materials bodies are result of a temperature difference.  Thermodynamics teaches that 

this energy transfer is defined as heat. The science of heat transfer seeks not merely to explain 

how heat energy may be transferred, but also to predict the rate at which the exchange will take 

place under certain specific conditions. The fact that heat transfer rate is the desired objective of 

an analysis points out difference between heat transfer and thermodynamics. Thermodynamics 

deals with systems in equilibrium stat to another; it may not be used to predict how fast a change 

will take place since the system is not in equilibrium during the process. Heat transfer 

supplements the first and second principles of thermodynamics by providing additional 

experimental rules which may be used to establish energy transfer rates. As in the science of 

thermodynamics, the experimental rules used as basis of the subject of heat transfer are rather 

simple and easily expanded to encompass a variety of practical situations.  

Most readers will be familiar with the terms used to denote the three modes of heat transfer; 

conduction, convection, and radiation. In this chapter we seek to explain the mechanism of these 

modes qualitatively so that each may be considered in its proper perspective. Subsequent 

chapters treat the three types of heat transfer in detail.  

 

 

 

1. Conduction Heat Transfer  

         When a temperature gradient exists in a body, experience has shown that there is an energy 

transfer from the high temperature region to how temperature region. We say that the energy is 

transferred by conduction and that the heat transfer rate per unit area is proportional to the 

normal temperature gradient: 

 

ͯ      

 

When the proportionality constant is inserted, 

 

ή Ὧὃ                                                                                            ééééé..(1-1) 

 

Where q is the heat transfer rate and  is the temperature gradient in the direction of the heat 

flow.  The positive constant k is called the thermal conductivity of the martial, and the minus 

sign is inserted to that the second principle of thermodynamics will be satisfied; i.e... Heat must 

flow downhill on the temperature scale, as indicated in the coordinate system of fig (1-1). 

Equation (1-1) is called Fourier Law of heat conduction after the French mathematical physicist 

Josef Fourier, who made very significant contribution to the analytical treatment of heat transfer. 

It is important to note that equation (1-1) is the defining equation for thermal conductivity and 
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that k has the units of watt per meter per Celsius degree in a typical system of units in which the 

heat flow is expressed in watt.              

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the one-dimensional system shown in fig (1-2). If the system is a steady state i.e.. If the 

temperature does not change with time, then the problem is a simple one, and we need only 

integrate eq.(1-1) and substitute the appropriate values to solve for and desired quantity. We 

consider general case where the temperature may be changing with time and heat source may be 

present within the body. For element of thickness dx the following energy balance may be made:  

 

Energy conducted in the left face + Heat generated within element = 

Change in internal energy + Energy conducted out right face  
 

These energy quantities are given as follows: 

 

             Energy in left face = ή Ὧὃ  

 

Energy generated within element=ήϽὃὨὼ 
        

   Change in internal energy=”ὧὃὨὼ 

 

Energy out right face= ή Ὧὃ ὃὯ Ὧ Ὠὼ 

 

Where  

ήϽ : Energy generated per unit volume W/m3 

c: specific heat of material, J/kg.oC 

ɟ: density, kg/m3 
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Combine the relation above gives 

 Ὧὃ ήϽὃὨὼ”ὧὃ ὃὯ Ὧ Ὠὼ 

Ὧ ήϽ ”ὧ                                                               (1-2) 

 
This is the one ï dimensional heat conduction equation. To treat more than one dimensional heat 

flow, we need consider only the heat conducted in and out of a unit volume in all three 

coordinate directions, as shown in fig 1-3a. The energy balance yields  

 

ή ή ή ή ή ή ή   

 

And the energy quantities are given by  
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ή ὯὨώὨᾀ  

ή Ὧ Ὧ ὨὼὨώὨᾀ  

ή ὯὨὼὨᾀ  

ή Ὧ Ὧ ὨώὨὼὨᾀ  

ή ὯὨώὨὼ  

ή Ὧ Ὧ ὨᾀὨώὨὼ  

ή  ήϽὨὼὨώὨᾀ  

”ὧὨὼὨώὨᾀ  

 

So that the general three-dimensional heat conduction equation is  

 

Ὧ Ὧ Ὧ ήϽ ”ὧ                                     (1-3) 

 

For constant thermal conductivity equation (1-3) is written  

 
Ͻ

                                                       (1-3a) 

 
Where the quantity   Ὧ

”ὧ  is called the thermal diffusivity of the material. 

Equation (1-3a) may be transformed into either cylindrical or spherical coordinates by standards 

calculus techniques. The results are as follows. 

 

Cylindrical coordinates:   
 

 
ᶮ

Ͻ

                                               (1-3b) 

 

Spherical coordinates: 

 

ὶὝ ÓÉÎ—
ᶮ

Ͻ

     (1-3c) 
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Steady state one dimensional heat flow (no heat generated)  

 
▀╣

▀●
=0                                                                                     (1-4) 

 

Note that this equation is the same as equation (1-1) when q=constant 

 

Steady state one dimensional heat flow in cylindrical coordinates (no heat 

generation): 

 

π                                                                     (1-5) 

 
Steady state one dimensional heat flow with heat source  

 
Ͻ

π                                                                       (1-6) 

 
Two dimensional steady state conduction without heat sources 

 

π                                                                   (1-7) 

 

1-2 Thermal conductivity 

 
         Equation (1-1) is defining equation for thermal conductivity.  One the base of this 

definition, experimental measurement may be made to determine the thermal conductivity of 

different materials. The mechanism of thermal conduction in a gas is a simple one we identify 

the kinetic energy of a molecular with its temperature; thus, in a high- temperature region, the 

molecular have higher velocities than in same lower temperature region. The molecules are in 

continuous random motion, colliding with another and exchanging energy and momentum. The 

molecules have this random motion whether or not a temperature gradient exists in the gas. Table 

(1-1) lists typical values of thermal conductivities for several materials to indicate the relative 

orders of magnitude to be expected in practices. Thermal conductivities of typical gases are 

shown in figure (1-4). For most gases at moderate pressures the thermal conductivity is a 

function of temperature alone. The physical mechanism of thermal energy conduction in liquid is 

qualitatively the same as in gases. However, the situation is considerably more complex the 

molecules are more closely spaced and molecular force exerts a strong influence on the energy 

exchange in the collision process. Thermal conductivities of some typical liquids are shown in 

fig (1-5).  We noted that thermal conductivity has the units of (w/m.oC), and in the English 

system of units is (Btu/h.ft.oF). 
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1-3 Convection heat transfer 
It is well known that a hot plate of metal will cool faster when placed in front of a fan than when 

exposed to still air. We say that the heat is convicted away, and we call the process convection 

heat transfer. The term convection provides the reader with an intuitive notation concerning the 

heat- transfer process; however, this intuitive notation must be expanded to enable one to arrive 

at anything like an adequate analytical treatment of the problem.  For example, we know that the 

velocity at which the air blows over the hot plate obviously influences the heat transfer rate. But 

does influence the cooling in a linear way; i.e.. if the velocity is doubled, will the heat transfer 

rate double? We should suspect that the heat transfer rate might be different if we cooled the 

plate with water instead of air. 

        
Consider the heated plate shown in fig (1-7). The temperature of the plate is Tw , and the 

temperature of the fluid is TÐ. the velocity of the flow will appear as shown, being reduced to 

zero at the plate as a result of viscose action. Since the velocity of the fluid layer at the wall be 
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zero, the heat must be transferred only by conduction at that point. Thus we might compute the 

heat transfer, using equation (1-1), with the thermal conductivity of the fluid and the fluid 

temperature gradient at the wall. Thus the temperature gradient at the wall depends on the flow 

field, and we must develop in our later analysis an expression relating the two quantities. 

Nevertheless, it must be remembered that the typical mechanism of heat transfer at the wall is a 

conduction process. 

  To express the overall effect of convection, we use Newtonôs law of cooling: 

  

ή ὬὃὝ Ὕ                                                                (1-8) 
 

Here the heat transfer rate is related to overall temperature difference between the wall and fluid 

and the surface area A. the quantity h is called the convection heat transfer coefficient, and 

Equation (1-8) is the defining equation. If a heated plate were exposed to ambient room air 

without an external source of motion, a movement of the air would be experience as a result of 

density gradient near the plate. We called this natural or free convection as opposed to force 

convection, which is experienced in the case of the fan blowing air over a plate, boiling and 

condensation phenomena are also grouped under the general subject of convection heat transfer. 

The approximate ranges of convection heat transfer coefficient are indicated in table (1-3). 

 
Convection Energy Balance on a Flow Channel 
          The energy transfer expressed by equation (1-8) is used for evaluating the convection loss 

for flow over an external surface. Of equal importance is the convection gain or loss resulting 

from a fluid flowing inside a channel or tube as shown in fig( 1-8). In this case the heated wall at 

Tw loses heat to the cooler fluid which consequently rises in temperature as flows from inlet 
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condition at Ti to exit condition Te. Using the symbol i to designate enthalpy (to avoid confusion 

with h, the convection coefficient), the energy balance on the fluid is  

 

 ήϽ άϽὭ Ὥ 

 
Where m. is the fluid mass flow rate. For many signal phase liquids and gases operating over 

reasonable temperature range æi=cp æT 

 

ή άϽὧ Ὕ Ὕ   
 

This may be equated to a convection relation like equation (1-8) 

 

ή άϽὧ Ὕ Ὕ  =ὬὃὝȟ Ὕ  ééééééé. (1-8a) 

 

1-4 Radiation Heat Transfer     
In contrast to mechanisms of conduction and convection, where energy transfer through a 

material medium is involved, heat may also be transferred through regions where a perfect 

vacuum exits. The mechanism in this case is electromagnetic radiation which is propagated as a 

result of temperature difference; this is called thermal radiation.  

Thermodynamic considerations show that an ideal thermal radiator, or black body, will emit 

energy at a rate proportional to the fourth power of absolute temperature of the body and direct 

proportional to its surface area. Thus  

 

ή „ὃὝ                                                    (1-9) 
Where ů is proportionality constant and is called the Stefan-Boltzmann constant with the value 

of 5.669×10-8W/m2.oK. equation (1-9)is called the Stefan-Boltzmann Law of thermal radiation, 

and is applies only on black bodies. It is important to note that this equation is valid only for 

thermal radiation; other types of electromagnetic radiation may not be treated so simply. 

Equation (1-9) governs only radiation emitted by blackbody. The net radiant exchange between 

two surfaces will be proportional to the difference in absolute temperature to the fourth power, 

i.e.., 

ᶿ„Ὕ Ὕ                 (1-10)  

ή ὊὊ„ὃὝ Ὕ                                (1-11) 
 

Where Fc is an emissivity function and FG is a geometric (view factor) function  
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Radiation in an Enclosure  

A simple radiation problem is encountered when we have a heat transfer surface at temperature 

T1 completely enclosed by a much large surface maintained at T2. The net radiant heat exchange 

in this case can e calculated with  

 

ή „ὃ Ὕ Ὕ                                                                                              (1-12) 

 

Dimensions and units  

 
       In this section we outline the systems of units that are used throughout the book. One must 

be careful not to confuse the meaning of the units and dimensions. A dimension is a physical 

variable used to specify the behavior of a particular system. For example the length of the rod is 

a dimension of the rod. In like manner, the temperature of a gas may be considered one of the 

thermodynamic dimensions of the gas. In our development of heat transfer we use the 

dimensions: 

L= length (m- meter) 

M= mass (kg-kilogram ) 

F= force (N-Newton) 

Ű= time (sec- second) 

T=  temperature (oK, oC) 

Temperature conversions are performed with familiar formulas 
oF= 9/5 oC+32            oR= oF+459.69 

                                                                        oK= oC+273.16            oR=9/5 oK 

 

Some conversions factors for the various units of work and energy are  

                                              1 Btu=778.1 Ibf.ft          1 Btu= 1055 J 

1 Kcal= 4182 J               1 Ibf.ft= 1.356 J 

1 Btu= 252 cal   
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1-1 The inner and outer surfaces of a brick wall are maintained at specified temperatures. The 

rate of heat transfer through the wall is to be determined. 

 Assumptions 1 steady operating condition exist since the surface temperatures of the wall 

remain constant at the specified values. 2 Thermal properties of the wall are constant. 

Properties The thermal conductivity of the wall is given to be k = 0.69 W/mȪC.  

Analysis Under steady conditions, the rate of heat transfer through the wall is 

       

 

 

     W1035=
¯-

³Ȫ=
D

=
m0.3

C5)(20
)m6C)(5W/m(0.69 2

L

T
kAQcond

#  

 

 

 

 
1-2 The thermal conductivity of a material is to be determined by ensuring one-

dimensional heat conduction, and by measuring temperatures when steady operating 

conditions are reached. 

Assumptions 1 steady operating condition exist since the temperature readings do not change 

with time. 2 Heat losses through the lateral surfaces of the apparatus are negligible since those 

surfaces are well-insulated, and thus the entire heat generated by the heater is conducted through 

the samples. 3 The apparatus possesses thermal symmetry. 

Analysis For each sample we have 

 

# /

( . . .

Q

A

T

= =

= =

= - =¯

28 2 14

01 01 001

82 74 8

 W

 m)(  m)  m

C

2

D

 

Then the thermal conductivity of the material becomes 

30 cm 

20̄ C 5 C̄ 

Brick 

wall 

0.3 m 

Examples 

Q#

 

Q# 

L L 

A 
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 #
# (

( . )(8 )
Q kA

T

L
k

QL

A T
= ½½ = =

¯
= ¯

D

D

14

001

 W)(0.005 m)

 m C2
0.875 W/ m. C  

1-3 A 200-ft long section of a steam pipe passes through an open space at a specified 

temperature. The rate of heat loss from the steam pipe and the annual cost of this energy 

lost are to be determined.  

Assumptions 1 Steady operating conditions exist. 2 Heat transfer by radiation is disregarded. 3 

The convection heat transfer coefficient is constant and uniform over the surface.  

Analysis (a) The rate of heat loss from the steam pipe is 

          2ft 4.209ft) 200(ft) 12/4( === ppDLAs  

    
Btu/h 289,000=

F)50280)(ft 4.209(F).Btu/h.ft 6()( 22
pipe ¯-¯=-= airss TThAQ#

 

(b) The amount of heat loss per year is 

  

The amount of gas consumption per year in the furnace that has an efficiency of 86% is 

  therms/yr438,29
Btu 100,000

 therm1

86.0

Btu/yr 10532.2
LossEnergy  Annual

9

=öö
÷

õ
ææ
ç

å³
=  

Then the annual cost of the energy lost becomes 

  

 

1-4 The rate of radiation heat transfers between a person and the surrounding surfaces at 

specified temperatures is to be determined in summer and in winter. 

Assumptions 1 steady operating condition exists. 2 Heat transfer by convection is not 

considered. 3 The person is completely surrounded by the interior surfaces of the room. 4 The 

surrounding surfaces are at a uniform temperature. 

Properties The emissivity of a person is given to be e = 0.95 

Analysis Noting that the person is completely enclosed by the surrounding surfaces, the net rates 

of radiation heat transfer from the body to the surrounding walls, ceiling, and the floor in both 

cases are: 

(a) Summer: Tsurr = 23+273=296  

 

 W84.2=

]KK) (296273)+)[(32m )(1.6.KW/m 1067.5)(95.0(

)(

4442428

4
surr

4
rad

-³=

-=

-

TTAQ sses#

 

(b) Winter:   Tsurr = 12+273= 285 K 

 W177.2=

]KK) (285273)+)[(32m )(1.6.KW/m 1067.5)(95.0(

)(

4442428

4
surr

4
rad

-³=

-=

-

TTAQ sses#

 

 

Discussion Note that the radiation heat transfers from the person more than doubles in winter. 

 

surrT 

radQ 

D =4 in 

280̄ F 

L=200 

ft 

Q 

Air,50¯

F 
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1-1 Heat is transferred steadily to boiling water in the pan through its bottom. The inner surface 

of the bottom of the pan is given. The temperature of the outer surface is to be determined. 

(Ans. T2  =  105.43 oC) 

 

 

 

 
 

 

1-2    The thermal conductivity of a refrigerator door is to be determined by measuring the 

surface temperatures and heat flux when steady operating conditions are reached. (Ans. 

Q=0.09375 W) 

  

    

 

 

 

 

 

 

 

 

1-3 The heat generated in the circuitry on the surface of a 3-W silicon chip is conducted to the 

ceramic substrate. The temperature difference across the chip in steady operation is to be 

determined. (Ans.ЎὝ =0.32oC) 

 

 

 

 

 

 

 

 

105̄ C 

800 W 0.4 cm 

200 cm 

Problems  

Door

ass 

7 C̄ 15̄ C 

L = 3 cm 

q# 

3 W 

Chip 
6 ³ 6 ³ 0.5 mm 

Ceramic 
substrate 

Q#
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1-4 A hot water pipe at 80°C is losing heat to the surrounding air at 5°C by natural convection 

with a heat transfer coefficient of 25 W/ m2.°C. The rate of heat loss from the pipe by convection 

is to be determined.(Ans.Q=2945W) 

 

 

 

 

 

 

1-5 Four power transistors are mounted on a thin vertical square aluminum plate (22 cm) that is 

cooled by a fan. The temperature of the aluminum plate is to be determined, if the coefficient of 

heat transfer is 25 W/m2.oC . (Ans. Ts=74.6o) 

 

 

 

 

 

1-6 A sealed electronic box of (0.4*0.4*0.2) m. dissipating a total of 100 W of power is placed in 

a vacuum chamber. If this box is to be cooled by radiation alone and the outer surface 

temperature of the box is not to exceed 55C̄, the temperature the surrounding surfaces must be 

kept is to be determined. (Ans Ὕ ςσȢσЈὅ) 

 

 

 

 

 

 

1-7 The backside of the thin metal plate is insulated and the front side is exposed to solar 

radiation. The surface temperature of the plate is to be determined when it stabilizes. (Ans 

Ts=26.3oC) 

 

 

 

 

 

 

 

 

 

 

 

D =5 cm 

80̄ C 

L = 10 m Q 

Air,  5 C̄ 

sT 

15  W Ὕ ςυὅ 

100 W 

e = 0.95 

C̄=55 sT 

 

2W/m 700 

a = 0.7 
air, 10̄ C 

  . 
radQ 

h=30W/m2.oC 
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Steady - State 

Conduction One-

Dimension 

Second Week to 

Eighth Week 
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Steady - State Conduction One Dimension 
2-1 Introduction  
We now wish to examine the applications of Fourierôs law of heat conduction to calculation of 

heat flow in some simple one-dimensional system, several different physical shapes may fall in 

the category of one-dimension system; cylindrical and spherical systems are one dimensional 

when the temperature in the body is function only of radial distance and independent of azimuth 

angle or axial distance. In two-dimension problems the effect of a second ï space coordinate may 

be so small as to justify its neglect, and the multidimensional heat flow problem may be 

approximated with a one-dimension analysis. In these cases the differential equations are 

simplified, and we are led to a much easier solution as result of this simplification. 

 

2-2 The Plane Wall    
First consider the plane wall where a direct application of Fourierôs law [Equation (1-1)] may be 

made.  Integration yields 

▲
▓═

Ў●
╣ ╣                                (2-1) 

When the thermal conductivity is considered constant. The wall thickness Ўὼ , and T1 and T2 are 

the wall face temperature. If the thermal conductivity varies with temperature according to some 

linear relation Ὧ ρ Ὕ , the resultant equation for the heat flow is  

▲
▓▫═

Ў●
╣ ╣

♫
╣ ╣         (2-2) 

If more than one material is present, as in the multilayer wall shown in fig (2-1), the analysis 

would proceed as follows; the temperature gradients in the three materials are shown and the 

heat flow may be written 

 

▲
▓══

Ў●═
╣ ╣

▓║═ 

Ў●║
╣ ╣

▓╬═

Ў●╒
╣ ╣       

Note that the heat flow must be the same through all sections 

Solving these three equations simultaneously, the heat flow is written  

▲
╣ ╣

Ў●═
▓══

Ў●║
▓║═

Ў●╒
▓╒═

                  (2-3) 
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At this point we retrace our development slightly to introduce a different conceptual viewpoint 

for Fourierôs law. The heat-transfer rate may be considered as a flow, and the combination of 

thermal conductivity, thickness of material, and area as a resistance to this flow. The temperature 

is the potential, or driving, function for the heat flow, and the Fourierôs law equation may be 

written 

╗▄╪◄ ╕■▫◌
◄▐▄►□╪■ ▬▫◄▄▪◄░╪■ ▀░██▄►▄▪╬▄

◄▐▄►□╪■ ►▄▼░▼◄╪▪╬▄
         (2-4) 

a relation quite like Ohmôs law in electric circuit theory. In equation (2-1) the thermal resistance 

is 
Ў

 , and in equation (2-3) it is the sum of the three terms in the denominator. We should expect 

this situation in equation (2-3) because the three walls side by side act as three thermal 

resistances in series. The equivalent electric circuit is shown in fig (2-1b). The electrical analogy 

may be used to solve more complex problems involving both series and parallel thermal 

resistances. A typical problem and its analogous electric circuit are shown in fig (2-2). The one-

dimensional heat flow equation for this type of problem may be written 

 

▲
Ў╣▫○▄►╪■■

В╡◄▐
                   (2-5) 

Where the Rth are the thermal resistances of various material. The units for the thermal resistance 

are oC.m2 /W or oF. h/Btu. It is well to mention that in some systems like that in fig (2-2) two 

dimensional heat flows may result if the thermal conductivities of materials B, C, and D differ by 

an appreciable amount. In these cases, other techniques must be employed to effect a solution.  

 

2-3 Insulation and R Value 
 In chapter 1 we noted that the thermal conductivities for a number of insulating materials are 

given in appendix A. in classifying the performance of insulation, it is a common practice in the 

building industry to use a term called the R value, which is define as  

╡
Ў╣
▲
═
                  (2-6) 

The units for R are oC.m2/W or oF. ft2.h/Btu. Note that this differs from the thermal-resistance 

concept disused above in that a heat flow per unit area is used. At this point it is worth to classify 

insulation materials in terms of their application and allowable temperature ranges. Table (2-1) 

furnishes such information and may be used as a guide for the selection of insulating material.  
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2-4 Radial Systems 

 

Cylinders 
Consider a long cylinder of inside radius r i, outside radius ro, and length L, such as the one 

shown in fig (2-3). We expose the cylinder to a temperature differential Ti ï To and ask what the 

heat flow will be. For a cylinder with length very large compared to diameter, it may be assumed 

that the heat flows only in a radial direction, so that the only space coordinate needed to specify 

the system is r. again, Fourierôs law is used inserting the proper area relation. The area for heat 

flow in the cylindrical system is       
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═► Ⱬ╛            

So that Fourierôs law is written 

▲► ▓═►
▀╣

▀►
                 (2-7) 

Or   

▲► Ⱬ►╛▓
▀╣

▀►
 

With boundary conditions 

T = Ti          at r = r i 

T =To           at r = r o 

 The solution of equation (2-7) is  

▲
Ⱬ▓╛╣░ ╣▫

ἴἶ
►▫
►░

         (2-8) 

And the thermal resistance in this case is  

╡◄▐

ἴἶ
►▫
►░
Ⱬ▓╛
   

The thermal resistance concept may be used for multiple-layer cylindrical walls just as it was 

used for plane walls. For the three layers system shown in fig (2-4) the solution is  
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▲
Ⱬ╛╣░ ╣▫ 

ἴἶ
►
►

▓═

ἴἶ
►
►

▓║

ἴἶ
►
►

▓╬

          (2-9) 

The thermal circuit is shown in fig 2-4b 

 

Spheres  
Spherical systems may also be treated as one-dimensional when the temperature is function of 

radius only. The heat flow is then  

 

▲
Ⱬ▓╣░╣▫

►░ ►▫

                       (2-10) 

The derivation of equation (2-10) is left as an exercise.  

 

Convection Boundary Condition 

We have already seen in chapter 1 that convection heat transfer can be calculated from  

▲╬▫▪○▐═╣◌ ╣Ð  
An electric-resistance analogy can also be drawn for the convection process by rewriting the 

equation as  

▲╬▫▪○
╣◌ ╣

▐═
         (2-11) 

where now the ρὬὃ term become the convection resistance. 
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2-5 The Overall Heat Transfer Coefficient 
Consider the plane wall shown in fig (2-5) exposed to a hot fluid A one side and a cooler fluid B 

on the other side. The heat transfer is expressed by 

 

▲ ▐═╣═ ╣
▓═

Ў●
╣ ╣ ▐═╣ ╣║           

The heat transfer process may be represented by the resistance network in fig 2-5b, and the 

overall heat transfer is calculated as the ratio of the overall temperature difference to the sum of 

the thermal resistances: 

▲
╣═ ╣║

▐═
Ў●
▓═ ▐═

        (2-12) 

Observe that the value ρὬὃ  is used to represent the convection resistance. The overall heat 

transfer by combined conduction is frequently expressed in terms of an overall heat transfer 

coefficient U, defined by the relation  

▲ ╤═Ў╣▫○▄►╪■■          (2-13) 

where A is some suitable area for the heat flow, in accordance with equation (2-12) , the overall 

heat transfer coefficient would be  

╤
▐
Ў●
▓ ▐

       

The overall heat transfer coefficient is also related to the R value of equation (2-6) through  

Ὗ
ρ

Ὑ ὺὥὰόὩ
 

For a hollow cylinder exposed to convection environment on its inner and outer surface, the 

electric resistance analogy would appear as in fig.(2-6) where, again, TA and TB are the two fluid 

temperatures. Note that the area for convection is not the same for both fluids in this case, these 

areas depending on the inside tube diameter and wall thickness, in this case the overall heat 

transfer would be expressed by  
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▲
╣═ ╣║

▐░═░

ἴἶ
►▫
►░
Ⱬ▓╛ ▐▫═▫

                 (2-14) 

in accordance with the thermal network shown in fig. (2-6). The terms Ao and Ai represent the 

inside and outside areas of inner tube. The overall heat-transfer coefficient may be based on 

either the inside or the outside area of the tube. Accordingly, 

╤░
▐░

═░■▪
►▫
►░

Ⱬ▓╛
 
═░
═▫▐▫

 

                   (2-15) 

 

╤▫
═▫
═░▐░

═▫ἴἶ
►▫
►░

Ⱬ▓╛ ▐▫

     (2-16) 

The general notion, for either the plane wall or cylindrical coordinate system, is that  

╤═
В╡◄▐ ╡◄▐ȟ▫○▄►╪■■

     

 

2-6 Critical Thickness of Insulation 
Let us consider a layer of insulation which might be insulated around a circular pipe, as shown in 

fig (2-7). The inner temperature of the insulation is fixed at Ti, and the outer surface is exposed 

to a convection environment at TÐ. From the thermal network the heat transfer is 
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▲
Ⱬ╛╣░╣

ἴἶ
►▫
►░

▓ ►▫▐

              (2-17) 

Now let us manipulate this expression to determine the outer radius of insulation ro which will 

maximum the heat transfer. The maximization condition is  

▀▲

▀►▫

Ⱬ╛╣░╣ ▓►▫ ▓►▫

ἴἶ
►▫
►░

▓ ►▫▐

          

This gives the result  

►▫
▓

▐
                      (2-18) 

Equation (2-18) expresses the critical radius of insulation concept. 

          

 

2-7 Conduction-Convection Systems 
The heat is conducted through a body must frequently be removed (or delivered) by some 

convection process. For example, the heat lost by conduction through a furnace wall must be 

dissipated to the surrounding through convection. In heat exchange applications a finned-tube 

arrangement might be used to remove heat from a hot liquid. The heat transfer from the liquid to 

the liquid to the finned tube is by convection. The heat is conducted through the material and 

finally dissipated to the surroundings by convection. Obviously, an analysis of combined 

conduction system is very important from a practical standpoint. 

Consider the one dimensional fin exposed to surrounding fluid at a temperature TÐ as shown in 

fig. (2-9). The temperature of the base of the fine is To. We approach the problem by making an 

energy balance on an element of the fin of thickness dx as shown in the fig. thus  

 
Energy in the left face = Energy out right face + Energy lost by convection  

The defining equation for the convection heat transfer coefficient is recalled as 

▲╬▫▪ ▐═╣◌ ╣         (2-29) 
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Where the area in this equation is the surface area for convection. Let the cross-sectional area of 

the fine be A and the perimeter be P. Then the energy quantities are 

Energy in the left face =   ▲● ▓═
▀╣

▀●
  

Energy in right face = ▲● ▀● ▓═
▀╣

▀●● ▀●
  

                                                  ▓═
▀╣

▀●

▀╣

▀●
▀●    

Energy lost by convection = ▐▬▀●╣ ╣     
When we combined the quantities, the energy balance yields 

▀╣

▀●

▐╟

▓═
╣ ╣       (2-30a) 

Let Ὕ Ὕ  . the equation (2-30a) becomes 

▀╣

▀●

▐╟

▓═
Ᵽ      (2-30b) 

One boundary condition is  

— — Ὕ Ὕ      ὥὸ ὼ π 
The other boundary condition depends on the physical situation. Several cases may be 

considered:  

Case 1 : The fine is very long, and the temperature at the end of the fin is essentially that of the 

surrounding fluid. 

 Case 2  : The fin is of finite length and loses heat by  convection from its end. 

Case 3 : The end of the fin is insulated so that dT/dx =0 at x=L. 

If we let m2=hP/kA, the general solution for equation (2-30b) may be written  

Ᵽ ╒▄□● ╒▄□●    (2-31) 

For case 1 the boundary conditions are 

— —      ὥὸ ὼ π 
— π       ὥὸ ὼ Њ 

  

  And solution becomes  
Ᵽ

Ᵽ▫

╣ ╣

╣▫  ╣
▄□●          (2-32) 

For case 3 boundary conditions are  

— —        ὥὸ ὼ π 

π       ὥὸ ὼ ὒ     

Thus  

— ὅ ὅ 

π ά ὅὩ ὅὩ  

Solving for the constant s C1 and C2, we obtain  
Ᵽ

Ᵽ

▄□●

▄ □╛

▄□●

▄ □╛
        (2-33a) 

╬▫▼▐□ ╛ ●

╬▫▼▐□╛
                     (2-33b) 

 

The solution for case 2 is more involved algebraically, and the result is  
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Ⱦ
     (2-34) 

All of the heat lost by the fin must be connected into the base x=0. Using the equation for the 

temperature distribution, we can compute the heat loss from   

ή Ὧὃ
ὨὝ

Ὠὼ
 

An alternative method of integrating the convection heat loss could be used: 

ή ὬὖὃὝ Ὕ Ὠὼ Ὤὖὃ—Ὠὼ 

In most cases, however, the first equation is easier to apply, for case 1 

ή Ὧὃ ά—Ὡ ЍὬὖὯὃ—         (2-35) 

For case 3, 

ή Ὧὃ—ά
ρ

ρ Ὡ

ρ

ρ Ὡ
 

ή ЍὬὖὯὃ—ÔÁÎÈάὒ                       (2-36) 

The heat flow for case 2 is 

ή ЍὬὖὯὃὝ Ὕ
Ⱦ

Ⱦ
      (2-37) 

 

2-8 Fins 
In the foregoing development we derived relations for the heat transfer from rod or fin of 

uniform cross-sectional area protruding from a flat wall. In practical applications, fins may have 

varying cross-sectional area may be attached to circular surface, in either case the area must be 

considered as variable in the derivation, and solution of the basic differential equation and 

mathematical techniques become more tedious. We present only the results for these more 

complex situations. To indicated the effectiveness of the fin in transferring a given quantity of 

heat, a new parameter called fin efficiency is defined by 

ὪὭὲ ὩὪὪὭὧὭὩὲὧώ
ὥὧὸόὥὰ ὬὩὥὸ ὸὶὥὲίὪὩὶὶὩὨ

ὬὩὥὸ ύὬὧὬ ύέόὰὨ ὦὩ ὸὶὥὲίὪὩὶὶὩὨ ὭὪ ὩὲὸὭὶὩ ὪὭὲ ὥὶὩὥ ύὩὶὩ ὥὸ ὦὥίὩ ὸὩάὴὩὶὥὸόὶὩ 
 

For case 3 above, the fin efficiency becomes 

ɖf 
Ѝ

 =      (2-38) 

The fins discussed above were assumed to be sufficiently deep that the heat flow could be 

considered one-dimensional. The expression for mL may be written 

άὒ ὒ ὒ  

where the z is the depth of the fin, and t is the thickness. Now if the fin is sufficiently deep, the 

term 2z will be large compared with 2t, and 

άὰ ὒ ὒ  

Multiplying numerator and denominator by L1/2 gives  

άὒ ὒ     

Lt  is called the profile area of the fin, which we define as  

ὃ ὒὸ 
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so that                                                          άὒ ὒ               (2-39) 

Harper and Brown have shown that the solution in case 2 above may be expressed in the same 

form as equation (2-38) when the length of the fin is extended by one-half the thickness of the 

fin. In effect, lengthening of the fin by t/2 is assumed to represent the same convection heat 

transfer as half the tip area placed on the top and bottom of the fin. A correct length Lc is then 

used in all equations that apply for the case of the fin with an insulated tip. Thus   

ὒ ὒ         (2-40) 

The error which results from this approximation will be less than 8% when 
Ⱦ

           (2-41) 

If a straight cylindrical rod extends from a wall, the corrected fin length is calculated from 

ὒ ὒ
Ⱦ

ὒ          (2-42) 

2-9 Thermal Contact Resistance  
Imagine two solid bars brought into contact as indicated in figure (2-15), with the sides of the 

bars insulated so that heat flows only in the one direction. The materials have different thermal 

conductivities, but if the sides are insulated, the heat flux must be same through both materials 

under steady state condition. Experience shows that the actual temperature profile through two 

materials varies approximately as shown in figure (2-15b). The temperature drop at plane 2, the 

contact plane between the two materials is said to be the result of a thermal contact resistance. 

Performing an energy balance on the two materials, we obtain 
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ή Ὧὃ
Ў Ⱦ

Ὧὃ
Ў

      

ή Ў Ў        (2-43) 

 

 

 

where 1/hcA is called the thermal contact resistance, and hc is called the contact coefficient. This 

factor can be extremely in a number of applications because of the many heat-transfer situations 

which involved mechanical joining of two materials. 

Designating the contact area by Ac and the void area by Av, we may write for the heat flow across 

join shown in figure (2-16) 

 

ή Ὧὃ
Ⱦ

      

where Lg is the thickness of the void space and kf is the thermal conductivity of the fluid which 

fills the void space, we obtain 

Ὤ Ὧ        (2-44)  
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2-1The power consumed by the resistance wire of an iron is given. The heat generation and the 

heat flux are to be determined. 

Assumptions Heat is generated uniformly in the resistance wire. 

Analysis   A 1000 W iron will convert electrical energy into heat in the 

wire at a rate of 1000 W. Therefore, the rate of heat generation in a 

resistance wire is simply equal to the power rating of a resistance heater. 

Then the rate of heat generation in the wire per unit volume is 

determined by dividing the total rate of heat generation by the volume of 

the wire to be 

37
ftBtu/h 107.820 Ö³=ö

÷

õ
æ
ç

å

p
=

p
==

 W1

Btu/h 412.3

ft) 12/15](4/ft) 12/08.0([

 W1000

)4/( 22
wire LD

G

V

G
g

##
#  

Similarly, heat flux on the outer surface of the wire as a result of this heat generation is determined by dividing the 

total rate of heat generation by the surface area of the wire to be 

 25
ftBtu/h 101.303 Ö³=ö

÷

õ
æ
ç

å
===

W 1

Btu/h 412.3

ft) 12/15(ft) 12/08.0(

W 1000

wire ppDL

G

A

G
q

##
#  

Discussion Note that heat generation is expressed per unit volume in Btu/hÖft3 whereas heat flux is expressed per 

unit surface area in Btu/hÖft2. 

 

2-2   A plate with variable conductivity is subjected to specified temperatures on both sides. The 

rate of heat transfer through the plate is to be determined. 

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 Thermal conductivity varies linearly.  3 

There is no heat generation. 

Properties The thermal conductivity is given to be k T k T( ) ( )= +0 1 b . 

Analysis The average thermal 

conductivity of the medium in this case is 

simply the conductivity value at the 

average temperature since the thermal 

conductivity varies linearly with 

temperature, and is determined to be 

Examples 

q = 1000 W 

= 15 in L 

= 0.08 in D 

2T 

k(T) 

1T 

 L 
L 

L 
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Then the rate of heat conduction through the plate becomes 

  W30,820=
-

³Ö=
-

=
m 15.0

0)K35(500
m) 0.6  m K)(1.5W/m 24.34(21

ave
L

TT
AkQ#  

2-3 The two surfaces of a window are maintained at specified temperatures. The rate of heat loss 

through the window and the inner surface temperature are to be determined. 

Assumptions 1 Heat transfer through the window is steady since the surface temperatures remain constant at the 

specified values. 2 Heat transfer is one-dimensional since any significant temperature gradients will exist in the 

direction from the indoors to the outdoors. 3 Thermal conductivity is constant. 4 Heat transfer by radiation is 

negligible. 

Properties The thermal conductivity of the glass is given to be k = 0.78 W/mÖ°C. 

Analysis The area of the window and the individual resistances are 

A= ³ =( . ( .12 2 24 m)  m)  m2  

C/W 06155.001667.000321.004167.0

C/W 01667.0
)m 4.2(C).W/m 25(

11

C/W 00321.0
)m 4.2(C)W/m. 78.0(

m 006.0

C/W 04167.0
)m 4.2(C).W/m 10(

11

2,1,

22
2

2,o

2
1
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22
1

1,i

¯=++=

++=

¯=
¯

===

¯=
¯

==

¯=
¯

===

convglassconvtotal

conv
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RRRR

Ah
RR
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The steady rate of heat transfer through window glass is then 

 # [ ( )]

.
Q

T T

Rtotal

=
-

=
-- ¯

¯
=¤ ¤1 2 24 5

006155

C

 C/ W
471 W  

The inner surface temperature of the window glass can be determined from 

 # # (
,

,Q
T T

R
T T QR

conv
conv=

-
½½ = - = ¯ - ¯ = ¯¤

¤
1 1

1
1 1 1 24 471C  W)(0.04167 C/ W) 4.4 C  

2-4 A thick-walled tube of stainless steel (k=19W/m2.oC) with 2-cm inner diameter and 4-cm 

outer diameter is covered with a 3-cm layer of asbestos insulation (k=0.2 19W/m2.oC). If  the 

inside wall temperature of the pipe is maintained at 600oC and outside surface of the insulation 

temperature is 100oC, calculate the heat loss per meter of length, and also calculate the tube-

insulation interface temperature. 

Solution: 

Figure example (2-6) shown the thermal network for this problem. The heat flow is given by  

Ȣ

φψπὡȾά       

The heat flow may be used to calculate the interface temperature between the outside tube wall 

and the insulation. We have  

1T 

Q#

 

Glass 

iR glassR oR 

1¤T 2¤T 

L 
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 φψπὡȾά  

Ta is interface temperature, which may be obtained as  

Ta= 595.8oC  

2-5 A current of 200A is passed through a stainless-steel (k=19W/m.oC) 3mm in diameter. The 

resistivity of the steel may be taken as 70ɛɋ.cm, and the length of the wire is 1m. The wire is 

submerged in a liquid at 110oC and experiences a convection heat-transfer coefficient of  

4 kW/m2.oC.  Calculate the center temperature of the wire.  

 

Solution  

All the power generated in the wire must be dissipated by convection to the liquid  

ὖ ὍὙ ή ὬὃὝ Ὕ                         a 

The resistance of the wire is calculated from 

Ὑ ”
Ȣ

πȢπωωɱ  

The surface area of the wire is “Ὠὒ, so from eq (a)  

(200)2(0.099)=τππ“σ ρπ ρ Ὕ ρρπ σωφπὡ 

Tw=215oC 

The heat generated per unit volume q. is calculated from 

P=q.V=q. ŕ2L 

ήϽ
Ȣ

υφπȢς ὓὡȾά   

Finally, the center temperature of the wire is calculated from equation  (2-26) 

Ὕ
Ͻ

Ὕ   

To= 231.6oC 

 

2-6 An aluminum fin (k=200 W/m.oC) 3 mm thick and 7.5 cm long protrudes from a wall, as in 

fig. 2-9. The base is maintained at 300oC, and the ambient temperature is 50oC with 

h=10W/m2.oC. Calculate the heat loss from the fin per unit depth of material.   

 

Solution 

 ὒ ὒ χȢυ πȢρυ χȢφυὧά 

ά       

When the fin depth  ᾀḻὸ. So  

ά  = 5.774  

ή ÔÁÎÈάὒ ЍὬὖὯὃ —  
For 1m depth  

ὃ ρσ ρπ σ ρπά   

ή υȢχχτςππσ ρπ σππυπÔÁÎÈ υȢχχτzπȢπχφυ  
q= 359W/m 
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2-1 A certain material 2.5cm thick, with a cross-sectional area of 0.1m2, has one side maintained 

at 35oC and other at 95oC. The temperature at the center plane of the material is 62oC, and the 

heat flow through the material is 1kW. Obtain an expression for the thermal conductivity of the 

material as a function of temperature. 

 

2-2 A composite wall is formed of a 2.5cm copper plate, a3.2mm layer of asbestos, and a 5cm 

layer of fiberglass. The wall is subjected to an overall temperature difference of 560oC. Calculate 

the heat flow per unit area through the composite structure. 

 

2-3 Find the heat transfer per unit area through the composite wall in figure below. Assume one-

dimensional heat flow. 

 

 

 
 

 

2-4 A steel tube having k=46W/m.oC has an inside diameter of 3.0cm and a tube wall thickness 

of 2mm. a fluid flows on the inside of the tube producing a convection coefficient of 1500 

W/m2.oC on the inside surface, while a second fluid flows across the outside of the side of the 

tube surface. The inside fluid temperature is 233oC while the outside fluid temperature is 57oC. 

Calculate the heat lost by tube per meter of length.  

 

  

Problems  
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2-5 A plain wall is constructed of a material having a thermal conductivity that varies as the 

square of the temperature according to the temperature according to the relation Ὧ
Ὧ ρ Ὕ  . Derive an expression for the heat transfer in such a wall. 

 

2-6 A 10 mm- diameter wire is maintained at a temperature of 400oC and exposed to a 

convection environment at 40oC with h=120 W/m2.oC. Calculate the thermal conductivity which 

will just cause an insulation thickness of 0.2mm to produce a critical radius. How much of this 

insulation must be added to reduce the heat transfer by 75% from that which would be 

experienced by the bare wire? 

 

2-7 Derive an expression for the temperature distribution in a plain wall in which distribution 

heat source varies according to the linear relation ήȢ ήȢρ Ὕ Ὕ  where ήȢ a constant 

is and equal to the heat generated per unit volume at the wall temperatureὝ , and the plate 

thickness is 2L. 

 

 

2-8 A circumferential fin of rectangular profile has thickness of 0.7 mm and is installed on a tube 

having a diameter of 3cm that is maintained at a temperature of 200oC. the length of the fin is 2 

cm and the fin material is copper. Calculate the heat lost by the fin to a surrounding convection 

environment at 100oC with a convection heat-transfer coefficient of 524 W/m.oC. 

 

2-9 A straight fin of rectangular profile has a thermal conductivity of 14 W/m.oC, thickness of 

20mm, and length of 23mm. the base of the fin is maintained at a temperature of 220oC while the 

fin is exposed to a convection environment at 23oC with h=25 W/m2.oC. Calculate the heat lost 

per meter of fin depth. 

 

2-10 A circumferential fin of rectangular profile surrounding a 2cm diameter tube. The length of 

the fin is 5 mm, and the thickness is 2.5mm. the fin is constructed of mild steel, if air blows over 

the fin so that a heat transfer coefficient of 25 W/m2.oC is experienced and the temperature of the 

base and air are 260 and 93oC, respectively, calculate the heat transfer from the fin.   
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3-1 Numerical Method of Analysis 
An immense number of analytical solutions for conduction heat transfer problems have been 

accumulated in the literature over the past 100 years. Even so, in many practical situations the 

geometry or boundary conditions are such that an analytical solution has not been obtain at all, or 

if the solution has been developed, it involves such a complex series solution that numerical 

evaluation becomes exceedingly difficult, for such situations the most fruitful approach to the 

problem is one based on finite difference techniques, the basic principles of which we shall 

outline in this section. Consider a two-dimensional body that is to be divided into equal 

increments in both the x and the y directions, as shown in figure (3-5). The nodal points are 

designed as shown, the m locations indicating the x increment and the n location indicating the y 

increment. We wish to establish the temperature at any of these nodal points within the body, 

using equation (3-1) as a governing condition. Finite differences are used to approximate 

differential increments in the temperature and space coordinates; and smaller we choose these 

finite increments, the more closely the true temperature distribution will be approximated. 

 

 

π            (3-1) 

 
The temperature gradient may be written as follows: 
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This is finite difference approximation for equation (3-1) 
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If Ўὼ Ўώ, then 

Ὕ ȟ Ὕ ȟ Ὕȟ Ὕȟ τὝȟ π             (3-2) 

 
Since we are considering the case of constant thermal conductivity, the heat flows may all be 

exposed in terms of temperature differentials. We can also devise a finite difference scheme to 

take heat generation into account. We merely add the term q./k into the general equation and 

obtain     
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Then for a square grid in whichЎὼ Ўώ,  
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When the solid is exposed to some convection boundary condition, the temperatures at the 

surface must be computed differently from the method given above. Consider the boundary 

shown in figure 3-7. The energy balance on node (m,n) is  
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If Ўὼ Ўώ, the boundary temperature is exposed in the equation  
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Equation (3-25) applies to a plane surface exposed to a convection boundary condition. It will 

not apply for other situations. Consider the corner, section shown in figure 3-8. The energy 

balance for the corner section is  
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ςὝȟ
Ў

ρ ς
Ў
Ὕ Ὕ ȟ Ὕȟ π          (3-5) 

Other boundary conditions may be treated in a similar fashion, and a convenient summary of 

nodal equations is given in table 3-4 for different geometrical and boundary conditions.   
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3-1 A long solid body is subjected to steady two-dimensional heat transfer. The unknown nodal 

temperatures and the rate of heat loss from the bottom surface through a 1-m long section are to 

be determined.  

Assumptions 1 Heat transfer through the body is given to be steady and two-dimensional. 2 Heat is generated 

uniformly in the body. 3 Radiation heat transfer is negligible.   

Properties The thermal conductivity is given to be k = 45 W/mÖ°C. 

Analysis  The nodal spacing is given to be Dx=Dx=l=0.05 m, and the general finite difference form of an interior 

node for steady two-dimensional heat conduction is expressed as  
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The finite difference equations for boundary nodes are obtained by applying an energy balance 

on the volume elements and taking the direction of all heat transfers to be towards the node 

under consideration: 
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where C20   , W/m108   C,. W/m50   C, W/m.45 362 ¯=³=¯=¯= ¤Tghk #  

Substituting,  T1 = 280.9°C,  T2 = 397.1°C,  T3 = 330.8°C,   

 (b) The rate of heat loss from the bottom surface through a 1-m long section is 
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3-2 A long solid body is subjected to steady two-dimensional heat transfer. The unknown nodal 

temperatures are to be determined. 

Assumptions 1 Heat transfer through the body is given to be steady and two-dimensional. 2 There is no heat 

generation in the body.   

Properties The thermal conductivity is given to be k = 20 W/mÖ°C. 

Analysis  The nodal spacing is given to be Dx=Dx=l=0.02 m, and the general finite difference form of an interior 

node for steady two-dimensional heat conduction for the case of no heat generation is expressed as  
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(a) There is symmetry about the insulated surfaces as well as about the diagonal line. Therefore 23 TT = , and 

421  and ,, TTT are the only 3 unknown nodal temperatures. Thus we need only 3 equations to determine them 

uniquely. Also, we can replace the symmetry lines by insulation and utilize the mirror-image concept when writing 

the finite difference equations for the interior nodes. 
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Also,   23 TT =  

Solving the equations above simultaneously gives  
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(b) There is symmetry about the insulated surface as well as the diagonal line. Replacing the symmetry lines by 

insulation, and utilizing the mirror-image concept, the finite difference equations for the interior nodes can be 

written as 
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Solving the equations above simultaneously gives  
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Discussion Note that taking advantage of symmetry simplified the problem greatly. 
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3-3 Heat conduction through a long L-shaped solid bar with specified boundary conditions is 

considered. The unknown nodal temperatures are to be determined with the finite difference 

method.  

Assumptions 1 Heat transfer through the body is given to be steady and two-dimensional. 2 Thermal conductivity is 

constant. 3 Heat generation is uniform. 

Properties The thermal conductivity is given to be k = 45 

W/mÖ°C. 

Analysis  (a) The nodal spacing is given to be 

Dx=Dx=l=0.015 m, and the general finite difference form 

of an interior node for steady two-dimensional heat 

conduction for the case of constant heat generation is 

expressed as  
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2
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lg
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#
 

We observe that all nodes are boundary nodes except node 5 that is an interior node. Therefore, we will have to rely 

on energy balances to obtain the finite difference equations. Using energy balances, the finite difference equations 

for each of the 8 nodes are obtained as follows:  
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where , W/m8000  , W/m105 236
0 =³= Lqg ##  l = 0.015 m, k = 45 W/mȪC, h = 55 W/m2ȪC, and T¤ =30̄ C. This 

system of 8 equations with 8 unknowns is the finite difference formulation of the problem. 

(b) The 8 nodal temperatures under steady conditions are determined by solving the 8 equations above 

simultaneously with an equation solver to be 

T1 =163.6̄ C,    T2 =160.5̄ C,    T3 =156.4̄ C,    T4 =154.0̄ C,    T5 =151.0̄ C,    T6 =144.4̄C,      

 T7 =134.5̄ C,  T8 =132.6̄ C  
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3-1A long solid body is subjected to steady two-dimensional 

 heat transfer. The unknown nodal temperatures and the rate  

of heat loss from the top surface are to be determined. 

 Properties 

g=107 W/m3 

k=180 W/m.oC 

 

 

 

3-2 A long solid bar is subjected to steady two-dimensional  

heat transfer. The unknown nodal temperatures and the rate 

 of heat loss from the bar through a 1-ft long section are to 

 be determined. 

Properties 

35
0 ftBtu/h 1019.0 Ö³=g# , 

 l = 0.2 ft, 

 k = 16 Btu/h.ftȪF,  

h =7.9 Btu/h.ft2ȪF, and  

T¤ =70̄ F 

 

3-3 A rectangular block is subjected to uniform heat  

flux at thetop, and iced water at 0̄C at the sides. The 

 steady finite difference formulation of the problem is 

 to be obtained, and the unknown nodal temperatures  

as well as the rate of heat transfer to the iced water are  

to be determined. 

Properties 

l = 0.1 m, k = 23 W/mȪC, T0 =0 C̄ 

Dx=Dx=l=0.1 m 
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Unsteady ï State Conduction 
Introduction   
If a solid is suddenly subjected to a change in environment, some time must elapse before an 

equilibrium temperature condition will prevail in the body. We refer to the equilibrium condition 

as the steady state and calculate the temperature distribution and heat transfer by methods 

described in chapters 2 and 3. In the transient heating and cooling process which takes place in 

the interim period before equilibrium is established, the analysis must be modified to take into 

account the change in internal energy of the body with time, and the boundary conditions must 

be adjusted to match the physical situation which is apparent in the steady-state heat transfer 

problem. To analyze a transient heat-transfer problem, we could proceed by solving the general 

heat conduction equation by separation of variables method, similar to the analytical treatment 

used for the two dimensional steady state problems discussed in section 3-2. We give one 

illustration of this method of solution for a case  of simple geometry and then refer the reader to 

the reference for analysis of more complicated cases. Consider the infinite plate of thickness 2L 

shown in figure 4-1. Initially the plate is at a uniform temperature Ti, and at time zero the surface 

are suddenly lowered to T= T1. The differential equation is  
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The equation may be arranged in a more convenient from by introduction of the variable —
Ὕ Ὕ. Then  
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with the initial and boundary conditions 
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Assuming a product solution —ὼȟ† ὢὼ…† produces the two ordinary differential 

equations 

Ὠὢ

Ὠὼ
‗ὢ π 

‗… π    

where ‗ is the separation constant. in order to satisfy the boundary conditions it is necessary 

that ‗>0 so that the form of the solution becomes  
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From boundary condition (b), C1=0 for Ű>0. Because C2 cannot also be zero, we find from 

boundary condition (c) that sin 2Lɚ =0, or  

ⱦ  
Îʌ

ς,
              Î ρȟςȢσȟȣȣȢ 

The final series from the solution is therefore 

— ὅὩ Ⱦ ÓÉÎ
ὲ“ὼ

ςὒ
 

This equation may be recognized as a Fourier sine expansion with the constant Cn determined 

from the initial condition (a) and the following equation: 

ὅ
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ὒ
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—                           ὲ ρȟςȟσȟȣȣȢ 

The final series solution is therefore  

В Ὡ Ⱦ ÓÉÎ               ὲ ρȟςȟσȟȣȣȣ        (4-3) 

We note, of course, that at time zero (Ű=0) the series on the right side of equation (4-3) must 

converge to unity for all values of x. 

4-2 Lumped-Heat-Capacity System 
 We continue our discussion of transient heat conduction by analyzing that may be considered 

uniform in temperature. This type of analysis is called the lumped-heat-capacity    method. Such 

system is obviously idealized because a temperature gradient must exist in a material if heat is to 

be conducted into or out of the material. In general, the smaller the physical size of the body, the 

more realistic the assumption of a uniform temperature throughout; in the limit a differential 

volume could be employed as in the derivation of the general heat conduction equation. 

     If a hot steel ball were immersed in a cool pan of water, the lumped-heat-capacity method of 

analysis might be used if we could justify an assumption of uniform ball temperature during 

cooling process. Clearly, the temperature distribution in the ball would depend in the thermal 

conductivity of the ball material and the heat transfer condition from surface of the ball to the 

surrounding fluid. We shall obtain a reasonably uniform temperature distribution in the ball if the 

resistance to heat transfer by conduction were small compared with convection resistance at the 

surface, so that the major temperature gradient would occur through the fluid layer at the surface. 

The lamped-heat-capacity analysis, then, is one assumes that the internal resistance of the body is 

negligible in comparison with the external resistance. The convection heat loss from the body is 

evidenced as a decrease in the internal energy of the body, as shown in figure 4-2. Thus,                  
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where A is the surface area for convection and V is the volume. The initial condition is written  

Ὕ Ὕ            ὥὸ † π 

 



HEAT TRANSFER                                                                                EHSAN FADHIL ABBAS 

                  

 

50 

Kirkuk Technical College                                                       Ref & Air Condi. Dept. 

So that the solution to equation (4-4) is  

Ὡ Ⱦ      (4-5) 

where TÐ is the temperature of the convection environment. The thermal network for the single-

capacity system shown in figure 4-2b. In this network we notice that the thermal capacity of the 

system is ñchargedò  initially at potential To by closing the switch S. then, the switch opened the 

energy stored in the thermal capacities is dissipated through the resistance 1/hA. The analogy 

between the thermal system and an electric system is apparent, and we could easily construct an 

electric system that would behave exactly like the thermal system a long as we made the ratio 

         Ὑ           ὅ ”ὧὠ   

equal to 1/ReCe, where Re and Ce are the electric resistance and capacitance, respectively. In the 

thermal system we store energy and in the electric system we store electric charge. The flow of 

energy in thermal system is called heat, and the flow of charge is called electric current. The 

quantity ”ὧὠȾὬὃ is called the time constant of the system because it has the dimension of time. 

When  

†       

Applicability of Lumped -Capacity Analysis  
We have already noted that the lumped-capacity type of analysis assumes a uniform temperature 

distribution throughout the solid body and that assumption is equivalent to saying that the surface 

convection resistance is large compared with internal conduction resistance. Such analysis be 

expected to yield reasonable estimates within 5% when the following condition is met: 
Ⱦ

πȢρ             (4-6) 

where k is the thermal conductivity of the solid , if we considers the ratio V/A=s as a 

characteristic dimension of the solid, the dimensionless group in equation 4-6 is called the Biot 

Number: 
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4-1 Relations are to be obtained for the characteristic lengths of a large plane wall of thickness 

2L, a very long cylinder of radius  and a sphere of radius   

Analysis Relations for the characteristic lengths of a large plane wall of thickness 2L, a very long cylinder of radius  

and a sphere of radius  are 
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4-2 The temperature of a gas stream is to be measured by a thermocouple. The time it takes to 

register 99 percent of the initial DT is to be determined.  

Assumptions 1 The junction is spherical in shape with a diameter of D = 0.0012 m. 2 The thermal properties of the 

junction are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface. 4 Radiation 

effects are negligible. 5 The Biot number is Bi < 0.1 so that the lumped system analysis is applicable (this 

assumption will be verified). 

Properties The properties of the junction are given to be k= ¯35 W/ m. C, r=8500 kg/ m3, and 

Cp = ¯320 J/ kg. C. 

Analysis The characteristic length of the junction and the Biot number are 
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Since  < 0.1Bi , the lumped system analysis is applicable. Then the 

time period for the thermocouple to read 99% of the initial temperature 

difference is determined from 
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4.3 Milk in a thin-walled glass container is to be warmed up by placing it into a large pan filled 

with hot water. The warming time of the milk is to be determined. 

Assumptions 1 The glass container is cylindrical in shape with a radius of r0 = 

3 cm. 2 The thermal properties of the milk are taken to be the same as those of 

water. 3 Thermal properties of the milk are constant at room temperature. 4 

The heat transfer coefficient is constant and uniform over the entire surface. 5 

The Biot number in this case is large (much larger than 0.1). However, the 

lumped system analysis is still applicable since the milk is stirred constantly, so 

that its temperature remains uniform at all times.  

Properties The thermal conductivity, density, and specific heat of the milk at 

20̄ C are k = 0.607 W/m.̄C, r = 998 kg/m3, and Cp = 4.182 kJ/kg.̄C (Table A-

9). 

Analysis The characteristic length and Biot number for the glass of milk are 
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For the reason explained above we can use the lumped system analysis to determine how long it will take for the 

milk to warm up to 38̄C: 
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Therefore, it will take about 6 minutes to warm the milk from 3 to 38C̄. 
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4-4 An iron whose base plate is made of an aluminum alloy is turned on. The time for the plate 

temperature to reach 140̄C and whether it is realistic to assume the plate temperature to be 

uniform at all times are to be determined.  

Assumptions 1 85 percent of the heat generated in the resistance wires is transferred to the plate. 2 The thermal 

properties of the plate are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface.  

Properties The density, specific heat, and thermal diffusivity of the aluminum alloy plate are given to be r = 2770 

kg/m3, Cp = 875 kJ/kg.̄C, and a = 7.3³10-5 m2/s. The thermal conductivity of the plate can be determined from  a = 

k/(rCp)= 177 W/m.̄C (or it can be read from Table A-3).  

Analysis The mass of the iron's base plate is 

 m V LA= = = =r r ( )( . )( . ) .2770 0005 003 04155 kg/ m  m  m  kg3 2
 

Noting that only 85 percent of the heat generated is transferred to the plate, the rate 

of heat transfer to the iron's base plate is 

  # .Qin  W  W= ³ =085 1000 850  

The temperature of the plate, and thus the rate of heat transfer from the plate, 

changes during the process. Using the average plate temperature, the average rate 

of heat loss from the plate is determined from 

  W21.2=C22
2

22140
)m 03.0)(C. W/m12()( 22

ave plate,loss ȫ
÷

õ
æ
ç

å
-

+
¯=-= ¤TThAQ#  

Energy balance on the plate can be expressed as 

 E E E Q t Q t E mC Tpin out plate in out plate plate     - =  - = =D D D D D# #  

Solving for Dt and substituting,  

 D
D

t
mC T

Q Q

p
=

-

¯ - ¯

-

plate

in out

=
 kg  J/ kg. C C

(850 21.2) J/ s
=  

# #
( . )( )( )04155 875 140 22

51.8 s  

which is the time required for the plate temperature to reach 140C̄ . To determine whether it is realistic to assume 

the plate temperature to be uniform at all times, we need to calculate the Biot number, 
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It is realistic to assume uniform temperature for the plate since Bi < 0.1. 

Discussion This problem can also be solved by obtaining the differential equation from an energy balance on the 

plate for a differential  time interval, and solving the differential equation. It gives 

ö
ö

÷

õ

æ
æ

ç

å
--+= ¤ )exp(1)( in t
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TtT

p

#
 

Substituting the known quantities and solving for t again gives 51.8 s. 
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4-1 An egg is dropped into boiling water. The egg is spherical in shape with a radius of r0 = 2.75 

cm; the cooking time of the egg is to be determined.  

Properties The thermal conductivity and diffusivity of the eggs are given to be k = 0.6 W/m.̄C 

and a = 0.14³10-6 m2/s. 9969.1   and   0877.3 11 == Al ; 

 

 

 

 

 

 
 

4-2 A person shakes a can of drink in a iced water to cool it. The can containing the drink is 

cylindrical in shape with a radius of r0 = 1.25 in. The cooling time of the drink is to be 

determined. 

Properties The density and specific heat of water at  

room temperature are r = 62.22 lbm/ft3, 

 and Cp = 0.999 Btu/lbm.̄F 
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PRINCIPLE OF CONVETION  
5-1 Introduction   

Convection was considered only insofar as it related to the boundary conditions imposed on a 

conduction problem. We now wish to examine the method of calculating convection heat transfer 

and, in particular, the value of the convection heat transfer coefficient h. the subject of 

convection heat transfer requires an energy balance along with an analysis of the fluid dynamics 

of the problems concerned. Our discussion in this chapter will first consider some of the simple 

relations of the fluid dynamics and boundary layer analysis which is important for basic 

understanding of convection heat transfer.          

5-2 Viscous Flow 

Consider the flow over a flat plate as shown in figures 5-1, and 5-2. Beginning at the leading 

edge of the plate, a region develops where the influence of viscose forces is lift. These viscose 

forces are described in terms of a shear stress Ű between the fluid layers. If this stress is assumed 

to be proportional to the normal velocity gradient, we have the defining equation for the velocity. 

 

  

  

 

 

 

 

 

† ‘            (5-1) 

 

 

 

 

The constant of proportionality ‘  is called the dynamic viscosity. A typical set of units is N-s/m2; 

however, many sets of units are used for viscosity, and care be taken to select the proper group 

that will be consistent with the formulation at hand. The region of flow that develops from the 

leading edge of the plate in which the effects of viscosity are observed is called the boundary 

layer. Some arbitrary point is used to designate the y position where the boundary layer ends; 

this point is usually chosen as the y coordinate where the velocity becomes 99% of the free 

stream value. Initially, the boundary layer development is laminar, but at some critical distance 

from the leading edge, depending on the flow field and fluid properties, small disturbances in the 

flow begin to become amplified, and a transition process takes place until the flow becomes 

turbulent. The turbulent flow region may be pictured as random churning action with chunks 

fluid moving to and fro in all directions. The transition from laminar to turbulent flow occurs 

when 

υ ρπ     

where  

ό  = free stream velocity, m/s 

ὼ  = distance from leading edge, m  

’  = ‘Ⱦ ” = kinematic viscosity, m2/s   
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This particular grouping of terms is called the Reynolds Number, and dimensionless if a 

consistent set of units is used for all the properties: 

ὙὩ                  (5-2) 

Consider the flow in a tube as shown in figure 5-3. A boundary layer developing on the entrance, 

as shown. Eventually the boundary layer fills the entire tube, and the flow is said to be fully 

developed. If the flow is laminar, a parabolic velocity profile is experienced, as shown in figure 

5-3a.  When the flow is turbulent, a somewhat blunter profile is observed, as shown in figure     

5-3b. In a tube, the Reynolds number is a gain used as a criterion for laminar and turbulent flow. 

For  

 

 

 

 

 

 

 

ὙὩ ςσππ     (5-3) 

 

 

 

the flow is usually observed to be turbulent, d is the tube diameter. A gain, a range of Reynolds 

numbers for transition may be observed, depending on the pipe roughness and smoothness of the 

flow. The generally accepted range for transition is  

ςπππὙὩ τπππ 
The continuity relation for one dimensional flow in a tube is  

άȢ ”όὃ         (5-4) 

where  

άȢ= mass flow rate  

ό = mean velocity  

ὃ= cross section area  

We define the mass velocity  as 

ὓὥίί ὺὩέὧὭὸώὋ
Ȣ

”ό              (5-5) 

So that the Reynolds number may also be written   

                     ὙὩ                                 (5-6) 

5-3 Laminar Boundary Layer on a Flat Plate 

 Consider the elemental control volume shown in figure 5-4. We derive the equation of motion 

for the boundary layer by making a force-end-momentum balance on this element. The simplify 

the analysis we assume: 

1. The fluid is incompressible and the flow is steady. 

2. There are no pressure variations in the direction perpendicular to the plate. 

3.  The viscosity is constant. 

4. Viscose shear forces in the y direction are negligible. 

we apply Newtonôs second law of motion, 
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ВὊ      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The momentum flux in the x direction is the product of the mass flow through a particular 

side of the control volume and the x component of velocity at that point. 

The mass entering the left force of the element per unit time is 

”ό Ὠώ 
if we assume unit depth in the z direction. Thus the moment flux entering the  left face per 

unit time is  

”ό Ὠώ ό ”όὨώ 
The mass flow leaving the right face is  

”ό ὨὼὨώ  

and the momentum flux leaving the right face is  

”ό
ό

ὼ
Ὠώ 

The mass flow entering the bottom face is  

”’ Ὠὼ   
and the mass flow leaving the face is  

”’
’

ώ
ὨώὨὼ 

A mass balance on the element yields  

”ό Ὠώ ”’ Ὠὼ ”ό
ό

ὼ
ὨὼὨώ  ”’

’

ώ
ὨώὨὼ 

or  

π                   5-7 

This is the mass continuity equation for the boundary layer. 

Return to the momentum and force analysis, the momentum flux in the x direction that 

entries the bottom face is  

”’ό Ὠὼ 
and the momentum in the x direction that leaves the top face is  
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 ”’ Ὠώ ό ὨὼὨὼ 

The pressure force on the left face is ὖὨώ, and that on the right is ɀὖ ὖȾὼὨὼὨώ , so 

that the net pressure force in the direction of motion is  

ὨὼὨώ     

The viscous shear force on the bottom face is  

‘ Ὠὼ       

and the shear force on the top is  

‘Ὠὼ
ό

ώ



ώ

ό

ώ
Ὠώ 

The net viscous shear force in the direction of motion is the sum of the two terms: 

ὔὩὸ ὺὭίὧέόί ίὬὩὥὶ ὪέὶὧὩ‘ ὨὼὨώ    

Equating the sum of the viscous shear and pressure forces to the net momentum transfer in 

the x direction, we have 

‘
ό

ώ
ὨὼὨώ

ὖ

ὼ
ὨὼὨώ

”ό
ό

ὼ
ὨὼὨώ ”όὨώ ”’

’

ώ
Ὠώ ό

ό

ὼ
ὨὼὨὼ ”’ό Ὠὼ 

 

    Clearing terms, making use of the continuity relation 5-7 and neglecting second order 

differentials, gives 

”ό ’ ‘           (5-8) 

This is the momentum equation of the laminar boundary layer with constant properties  

         Consider the boundary layer flow stream shown in figure 5-5. The free stream velocity 

outside the boundary layer is ό  , and the boundary thickness is . We wish to make a 

momentum and force balance on the control volume bounded by the planes 1,2,A-A, and the 

solid wall. The velocity components normal to the wall are neglected, and only those in the x 

direction are considered. We assume that the control volume is sufficiently high that it always 

enclosed the boundary layer, that is, Ὄ         Ȣ
    

 

 

 

 

  

 

 

 

 

The mass flow through plane 1 is 

᷿”ό Ὠώ                               [a] 

and the momentum flow through plane 1 is 
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᷿”ό Ὠώ                             [b] 

᷿ ”ό Ὠώ ᷿”ό ὨώὨὼ                [c] 

 

the mass flow through plane 2 is 

᷿”ό Ὠώ ᷿ ”ό ὨώὨὼ         [d] 

Considering conservation of mass and the face that no mass can enter the control volume through 

the solid the solid wall, the additional mass flow in expression (d) over that in (a) must enter 

through plan A-A. this mass flow carries with it a momentum in the x direction equal to  

ό
Ὠ

Ὠὼ
”ό ὨώὨὼ 

The momentum flow out of the control volume is therefore  

Ὠ

Ὠὼ
”ό ὨώὨὼ ό

Ὠ

Ὠὼ
”ό Ὠώ Ὠὼ 

This expression may be plus in a somewhat more useful from by recalling the product formula 

from the differential calculus: 

Ὠ–   –Ὠ  Ὠ– 
or 

–Ὠ Ὠ–   Ὠ– 
In the momentum expression given above, the integral  

”ό Ὠώ 

is the   function and ό  is the – function. Thus  

ό
Ὠ

Ὠὼ
”ό ὨώὨὼ

Ὠ

Ὠὼ
ό ”ό ὨώὨὼ

Ὠό

Ὠὼ
”ό ὨώὨὼ 

᷿ ”όό ὨώὨὼ ᷿ ”ό ὨώὨὼ               (5-9) 

 

 

The ό may be placed inside the integral since it is not a function of y and thus may  be treated as 

a constant insofar as an integral with respected to y is concerned.  The shear force at the wall is  

† ‘Ὠὼ     

There is no shear force at plane A-A since the velocity gradient is zero outside the boundary 

layer. Setting the force on the element equal to the net increase in momentum and collecting 

terms gives 

† Ὄ ” ᷿ ό όό Ὠώ ᷿”ό Ὠώ      (5-10) 

This is the integral momentum equation of the boundary layer, if the pressure is constant 

throughout the flow  

π ”ό                       (5-11) 

since the pressure and free stream velocity are related by the Bernoulli equation. For the constant 

pressure condition the integral boundary layer equation becomes  

” ᷿ ό όὨώ † ‘         (5-12) 
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For our approximate analysis we first write down some conditions that the velocity function must 

satisfy: 

ό π                           ὥὸ ώ π              [a] 

ό ό                               ὥὸ ώ ɿ         [b] 

π        ὥὸ ώ  [c]            

For the constant pressure condition equation 5-8 yields  

π          ὥὸ ώ π      [d] 

since the velocity ό and ɜ are zero at y=0. We assume that the velocity profile at various x 

position are similar; that is they have the same functional dependence on the y coordinate. there 

are four conditions to satisfy. The simplest function that we can choose to satisfy these 

conditions is a polynomial with four arbitrary constants. Thus  

ό ὅ ὅώ ὅώ ὅώ            (5-13) 

Appling the four conditions (a) to (b), 

              (5-14) 

Interesting the expression for the velocity into equation (5-12) 

”ό ᷿ ρ Ὠώ ‘   

Carrying out the integration leads to 
Ὠ

Ὠὼ

σω

ςψπ
”όɿ

σ

ς

‘ό

ɿ
 

Since ”and ό  are constant, the variable may be separated to give  

ɿ Ὠɿ
ρτπ

ρσ

‘

”ό
Ὠὼ

ρτπ

ρσ

’

ό
Ὠὼ 

and    

ɿ

ς

ρτπ

ρσ

’ὼ

ό
ὧέὲίὸὥὲὸ 

At ὼ πȟɿ πȟ so that  

ɿ τȢφτ                 (5-15) 

this may be written in terms of Reynolds number as  
ɿ

ὼ

τȢφτ

ὙὩ
Ⱦ

 

where  

ὙὩ             (5-16) 

 

 

5-5 Energy Equation of the Boundary Layer 
The foregoing analysis considered the fluid dynamics of laminar layer flow system. We shall 

now develop the energy equation for this system and then proceed to an integral method of 

solution. Consider the element control volume shown in figure 5-6. To simplify the analysis we 

assume  
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1. Incompressible steady flow  

2. Constant viscosity, thermal  conductivity, and specific heat 

3. Negligible heat conduction in the direction of flow (x direction) 

Then for the element shown, the energy balance may be written  

                 Energy convected in the left face +Energy convected in the bottom face 

                +Heat conducted in the bottom face + Net viscous work done on element 

                = Energy convected out right face + Energy convected out top face  

                                                                       + Heat conducted out top face 

The viscous work may be computed as product of the net viscous shear force and the distance 

this fore moves in unit time. The viscous shear force is product of the shear stress and the area dx 

‘ Ὠὼ     

and the distance through which it move per unit time in respect to the element control volume   

dx dy is  

Ὠώ      

so that the net viscous energy delivered to the element is  

‘
ό

ώ
Ὠὼ Ὠώ 

Writing the energy balance corresponding to the quantities shown in figure 5-6, assuming unit 

depth in the z direction, and neglecting second order differentials yield  

”ὧ ό
Ὕ

ὼ
’
Ὕ

ώ
Ὕ
ό

ὼ

’

ώ
Ὠὼ Ὠώ Ὧ

Ὕ

ώ
‘
ό

ώ
Ὠὼ Ὠώ 

Using the continuity relation 5-7 
ό

ὼ

’

ώ
π 

and dividing by ”ὧ gives 

ό ’         (5-17) 
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This is the energy equation of the laminar boundary layer. the left side represent the net transport 

of energy into control volume, the right side represents the sum of net heat conducted out control 

volume and the net viscous work done on the element.  The viscous work term is of importance 

only a high velocity since its magnitude will be small compared with the other terms when low ï 

velocity flow is studied. This may be shown with an order of magnitude analysis of the two 

terms on the right side of equation 5-17. For this order of magnitude analysis we might consider 

the velocity as having the order of the free stream velocity  ό  and the y dimension of the order 

of ŭ. Thus  

όͯ ό       ὥὲὨ   ώͯ ɿ  

 ͯ
 
    

so that  

ͯ       

If the ratio of these quantities is small, that is 

Ḻρ                (5-18) 

ὖὶ   

where ὖὶ is called Prandtl number, which we shall discussion later equation 5-18 becomes  

ὴὶ Ḻρ          (5-19) 

An example, consider the flow of air at   

ό   χπ      Ὕ ςπᴈ ςωσὑ  ὖ ρ ὥὸά     

For these conditions cp=1005J/kg.oC   and pr=0.7 

ὴὶ
ό

ὧὝ

πȢχ χπ

ρππυςωσ
πȢπρςḺρ 

indicating that the viscous dissipation is small for even this rather large flow velocity of  

70 m/s. thus , for low velocity incompressible flow , we have  

ό ’              (5-19) 

There is a striking similarity between equation 5-19 and the momentum equation for constant 

pressure, 

ό ’ ’         (5-20) 

5-6 The Thermal Boundary Layer 
Just as the hydrodynamic boundary layer was defined as that region of the flow where viscous 

force are felt, a thermal boundary layer may be define as that region where temperature gradient 

are present in the flow. These temperature gradients would result from a heat-exchange process 

between the fluid and the wall. Consider the system shown in figure 5-7. The temperature of the 

wall is TÐ, the temperature of the liquid outside boundary layer is TÐ, and the thickness of the 

thermal boundary layer is designed as   . At the wall the velocity is zero and the heat transfer 

into the fluid takes place by conduction. Thus the local heat flux per unit area, qò, is      
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ήͼ Ὧ             (5-21) 

From Newtonôs law of cooling  

ήͼ ὬὝ Ὕ          (5-22) 

Ὤ
 
           (5-23) 

 

 The conditions that the temperature distribution must satisfy are  

Ὕ Ὕ           ὥὸ ώ π              [a] 

π          ὥὸ ώ  [b]        

Ὕ Ὕ                         ὥὸ ώ  [c]       

and by writing equation 5-19 at y=0 with no viscous heating we find  

π          ὥὸ ώ π          [d] 

since the velocities must be zero at the wall. 

      Condition (a) to (d) may be fitted to cubic polynomial as in this case of velocity profile, so 

that  

        (5-24] 

where — Ὕ Ὕ   

Consider the control volume boundary by the planes 1, 2, A-A, and the wall as shown in figure 

5-8. It is assumed that the thermal boundary layer is thinner than the hydrodynamic boundary 

layer, as shown, the wall temperature isὝ , the free stream temperatureὝ , and the heat given up 

to the fluid over the length dx is dqw. We wish to make the energy balance 
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Energy convicted in +viscous work done within element 

+heat transfer at wall=energy convicted out        (5-25) 

The energy convicted in the plane 1 is  

”ὧ όὝ Ὠώ 

and the energy convicted out through plane 2 is  

”ὧ όὝ Ὠώ
Ὠ

Ὠὼ
”ὧ όὝ Ὠώ Ὠὼ 

The mass flow through plane A-A is  

Ὠ

Ὠὼ
”ό ὨώὨὼ 

and this carries with it an energy equal to 

ὧ”
Ὠ

Ὠὼ
”ό ὨώὨὼ 

The net viscous work done within the element is  

‘
Ὠό

Ὠώ
 Ὠώ Ὠὼ 

and the heat transfer at the wall is  

Ὠή ὯὨὼ
Ὕ

ώ
 

Combining these energy quantities according to equation (5-25) 

᷿ Ὕ Ὕό Ὠώ ᷿ Ὠώ        (5-26) 

This is the integral energy equation of the boundary layer for constant properties and constant 

free-stream temperatureὝ . To calculate the heat transfer at the wall, we need to drive an 

expression for the thermal boundary layer thickness which may be used in conjunction with 

equation 5-23 and equation 5-24 to determine the heat transfer coefficient. For now, we neglect 

the viscous dissipation term; this term is very small unless of high velocity of the flow field 

become very large. 

      

 

 

 

 

  

 

 

The plate under consideration need not be heated over its entire length. The situation that we 

shall analyze is shown in figure 5-9 where the hydrodynamic boundary layer develops from the 

leading edge of the plate, while heating does not begin until ὼ ὼ. Inserting the temperature 

distribution equation 5-24 and velocity distribution equation 5-14 into equation 5-26 and 

neglecting the viscous dissipation term, gives 

   ᷿ Ὕ Ὕό Ὠώ ᷿ — —ό Ὠώ 
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                                      —ό ᷿ ρ  Ὠώ         

                                             

Let us assume that the thermal boundary layer is thinner than the hydrodynamic boundary layer. 

then we only need to carry out the integration to ώ since the integrand is zero forώ   Ȣ 
performing the necessary algebraic manipulation. Carrying out the integration and making the 

substitution ‒  yields  

—ό  ‒ ‒           (5-27) 

Because ‒ȟ  ρ, and the term involving ‒ is small compared with the ‒ term, we neglect 

the ‒ term and write  

—ό ‒                (5-28) 

Performing the differentiation gives  

ό ς‒ ‒     

or  

ό ς‒ ‒     

But  

Ὠ Ὠὼ      

so that we have  

‒ τὼ‒            (5-29) 

Noting that  

‒ ‒     

We see that equation (5-29) is a linear differential equation of the first order in ‒ , and the 

solution is   

‒ ὅὼ Ⱦ     

When the boundary condition  

 π         ὥὸ ὼ ὼ 

‒ π             ὥὸ ὼ ὼ 
is applied, the final solution becomes 

‒
Ȣ
ὖὶȾ ρ

Ⱦ Ⱦ

      (5-30) 

When the plate is heated over the entire length, ὼ π  

‒




ρ

ρȢπςφ
ὖὶȾ 

Returning now to analysis, we have  

Ὤ
 

            (5-31) 

Substituting for the hydrodynamic boundary layer thickness from equation (5-2) and using 

equation (5-30) 
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Ὤ πȢσσςὖὶȾ
Ⱦ

ρ
Ⱦ Ⱦ

      (5-32) 

The equation may be non-dimensional by multiplying both sides byὼȾὯ, producing the 

dimensionless group on the left side, 

ὔό                (5-33) 

called the Nusselt number  

ὔό πȢσσςὖὶȾὙὩȾ ρ
Ⱦ Ⱦ

         (5-34) 

or, for the plate heated over its entire length, ὼ π and  

ὔό πȢσσςὖὶȾὙὩȾ           (5-35) 

Equation (5-32), (5-34), and (5-35) express the local values of heat the heat transfer coefficient 

in terms of the distance from the leading edge of the plate and the fluid properties. For the case 

where ὼ π  the average heat-transfer coefficient and Nusselt number may be obtained by 

integrating over the length of the plate: 

Ὤ
᷿

᷿
ςὬ               (5-36) 

ὔό ςὔό        (5-37) 

ὔό πȢφφτὙὩ
Ⱦ
ὖὶȾ         (5-38) 

ὙὩ      

 

Constant heat flux 
In many practical problems the surface heat flux is essentially constant, and the objective is to 

find the distribution of the plate ï surface temperature for given fluid ï flow condition. For the 

constant heat flux case it can be shown that the local Nusselt number is given by 

ὔό
Ȣ
πȢτυσὙὩ ὖὶ         5-39 

This may be expressed in terms of the wall heat flux and temperature difference as  

                  ὔό              5-40 

The average temperature difference along the plate, for constant heat flux condition may be 

obtained by performing the integration   

Ὕ Ὕ ᷿ Ὕ Ὕ Ὠὼ ᷿ Ὠὼ       5-41 

 Ⱦ

Ȣ  

                         5-42 

ή Ὤ Ὕ Ὕ     5-43 

 

Other Relations: 
For a very wide range of prandtl numbers have correlated a large amount of data to give the 

following relation for laminar flow on an isothermal flat plate:  
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ὔό
Ȣ

Ȣ

         5-44 

For constant heat flux case, 0.3387 is changed to 0.4637 and 0.0468 changed to 0.0207 
 

 

  

   

 

 

 

 

 

5-1 Air at 27oC and 1 atm flows over a flat plate at a speed of 2m/s. calculate the boundary layer 

thickness at distances of 20 and 40 cm from the leading edge of the plate. calculate the mass flow 

the enters the boundary layer between x=20 cm and x=40 cm. the viscosity of the air at 27oC  is 

1.85×10-5 kg/m.s. assume unit depth in the Z direction.   

Solution: 

The density of air is calculated from  

”
ὖ

ὙὝ

ρȢπρσςρπ

ςψχσππ
ρȢρχχὯὫȾά  

The Reynolds number is calculated as  

At x=20cm        ὙὩ
Ȣ Ȣ Ȣ

Ȣ
ςχυψπ  

At x=40 cm        ὙὩ
Ȣ Ȣ Ȣ

Ȣ
υυρφπ 

The boundary thickness is calculated as 

ὥὸ ὼ ςπ ὧά           
Ȣ Ȣ

πȢππυυωά  

ὥὸ ὼ τπὧά           
Ȣ Ȣ

πȢππχωά  

 

To calculated the mass flow the enters the boundary layer from the free stream between x=0 and 

x=40 cm 

”όὨώ 

ό ό
σ

ς

ώ



ρ

ς

ώ


 

Evaluated the integral with this velocity distribution, we have 

᷿” ό Ὠώ ”ό 

Thus the mass flow entering the boundary layer is 

Ўά
υ

ψ
”ό ό ό σȢσωωρπὯὫȾί 

 

 

Examples 
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5-2 Air at 27oC and 0.7 MPa pressure is expanded isentropic from a tank until the velocity is 

300m/s. Assume that the plate is heated over its entire length to a temperature at 60oC. Calculate 

the heat transferred in (a) the first 20 cm of the plate and (b) the first 40 cm the plate. 

Solution: 

Evaluating the properties at the film temperature 

Ὕ
ςχ φπ

ς
τσȢυὅ σρφȢυὑ 

From appendix A the properties are 

 ’ ρχȢσφρπ  

Ὧ πȢπςχωτω ὡȾά.oC 

ὖὶ πȢχ  
ὧ ρȢππφ ὯὐȾὯὫ.oC 

At x=20 cm  

ὙὩ
όὼ

’

ς πȢς

ρχȢσφρπ
ςσπτρ 

ὔό πȢσσςὙὩȢὖὶ   

ὔό ττȢχτ 

Ὤ
Ȣ Ȣ

Ȣ
φȢρυὡȾά .oC  

The average value of the heat transfer coefficient is twice this value or  

Ὤ
Ȣ Ȣ

Ȣ
φȢρυὡȾά .oC  

Ὤ ς φȢρυ ρςȢσ ὡȾά  .oC 

ή ὬὃὝ Ὕ ρςȢσ πȢςφπςχ ψρȢρψὡ 
At x=40 cm  

 

ὙὩ
όὼ

’

ς πȢτ

ρχȢσφρπ
τφπψς 

 

ὔό
Ὤὼ

Ὧ
πȢσσςὙὩȢὖὶ  

ὔό φσȢςψ 

 Ὤ
Ȣ Ȣ

Ȣ
τȢστωὡȾά .oC  

 

Ὤ ς τȢστωψȢφωψ ὡȾά  
 

ή ὬὃὝ Ὕ ψȢφωψπȢτφπ ςχ ρρτȢψὡ 
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5-3 A 1.0 kW heater is constructed of a glass plate with an electrically conducting film which 

produces a constant heat flux. The plate is 60 by 60 cm and placed in an airstream at 27oC, 1 atm 

with Ὗ υάȾί. Calculate the average temperature difference along the plate and the 

temperature difference at the trailing edge. 

Solution:- 

Properties should be evaluated at the film temperature, but we do not know the plate temperature 

so for an initial calculation we take the properties at the free stream conditions of : 

Ὕ ςχЈὅ=300K 

’ ρυȢφωρπά Ⱦί 
ὖὶ πȢχπψ 

Ὧ πȢπςφςτὡȾάȢoC 

ὙὩ
Ȣ

Ȣ
ρȢωρρπ  

From equation 5-42 the average temperature difference is  

Ὕ Ὕ
Ⱦ Ȣ ȢȾȢ

Ȣ Ȣ Ȣ Ⱦ
ςτπὅ  

Now , we  evaluated properties at 

Ὕ ρτχὅ τςπὑ  

And obtain  

’ ςψȢςςρπά Ⱦί 
ὖὶ πȢφψχ 

Ὧ πȢπσυὡȾάȢoC 

 

ὙὩ
πȢφ υ

ςψȢςςρπ
ρȢπφρπ 

Ὕ Ὕ
ρπππȾπȢφ πȢφȾπȢπσυ

πȢφχωυρȢπφρπ πȢφψχȾ
ςτσὅ 

5-4 Air at 1 atm and 300K flows across a 20cm square plate at free stream velocity of 20m/s. the 

last half of the plate heated to a constant temperature of 350K .calculate the heat lost by the plate. 

Solution: 

First, we evaluated the air properties at film temperature 

Ὕ
Ὕ Ὕ

ς

συπσππ

ς
σςυὑ 

And obtain  

 

’ ρψȢςσρπά Ⱦί 
ὖὶ πȢχ 

Ὧ πȢπςψρτὡȾάȢoC 

ὙὩ
ςππȢς

ρψȢςσρπ
ςȢρωτρπ 

Or, laminar flow over the length of the plate  

  Heating does not start until the last half of the plate, or at apposition xo=0.1m. The local heat 

transfer coefficient for this condition is given by eq(5-34) 

ὔό πȢσσςὖὶȾὙὩȾ ρ
ὼ

ὼ

Ⱦ Ⱦ
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Or  

Ὤ πȢσσςὯὖὶȾ
ό

ὼ’

Ⱦ

ρ
ὼ

ὼ

Ⱦ Ⱦ

 

Inserting the property values along with xo=0.1, gives 

Ὤ ψȢφψψσὼȾ ρ πȢρχχψσὼ Ȣ Ⱦ 
The plate is 0.2m wide so the heat transfer is obtained by integrating over the heated length 

xo<x<L 

ή πȢςὝ Ὕ ὬὨὼ
Ȣ

Ȣ

 

ή πȢς ψȢφψψσπȢτψτυσυπσππ τςρὡ 
The average value of the heat transfer coefficient over the heated length is given by 

Ὤ
ή

ὒ ὼ Ὕ Ὕ ὡ
 

Where W is width and equal to 0.2m, then 

Ὤ τςρὡȾm2.oC 

5-5 Engine oil at 20oC is forced over a 20cm- square plate at velocity of 1.2 m/s. Plate is heated 

to a uniform temperature of 60oC. Calculate the heat lost by the plate. 

Solution: 

We first evaluated the film temperature 

  

Ὕ
Ὕ Ὕ

ς

ςπ φπ

ς
τπὅ σρσὑ 

The properties of engine oil are  

 

’ πȢπππςτά Ⱦί 
ὖὶ ςψχπ 

Ὧ πȢρττὡȾάȢoC 

ὙὩ
ρȢς πȢς

πȢπππςτ
ρπππ 

Because the prandtl number is so large we will employ equation  

ὔό
πȢσσψχὙὩὖὶ

ρ
πȢπτφψ
ὖὶ

ρυςȢς 

Ὤ
Ȣ Ȣ

Ȣ
ρπωȢφ ὡȾά ȢoC 

The average value of heat transfer coefficient is  

Ὤ ς ρπωȢφ ὡȾά .oC 

ή ὬὃὝ Ὕ συπȢφ ὡ 
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5-1 Air at standard conditions of 1 atm and 27oC flows over a flat plate of 20m/s. the plate is 

60cm-square and maintained at 97oC. Calculate the heat transfer from the plate. 

 

5-2 Air at 7 kPa and 35oC flows across a 50cm-square flat plate at 7.5 m/s. The plate is 

maintained at 65oC. Estimate the heat lost from the plate. 

 

5-3 Air flows across a 20 cm-square plate with velocity of 5 m/s. free stream condition are 10oC 

and 0.2 atm. a heater in the plate surface furnishes a constant heat flux  condition at the wall so 

that the average wall temperature is 100oC. Calculate the surface heat flux and the value of h at x 

position of 10 cm. 

 

5-4 Air at 1 atm and 30oC flows across a 15 cm-square flat plate at 10 m/s. Calculate the 

maximum boundary layer thickness. 

 

5-5 For water flowing over a flat plate at 15oC and 3m/s, calculate the mass flow through the 

boundary layer at a distance of 5 cm from the leading edge of the plate. 

 

5-6 Air at 5oC and 70 kPa flows over a flat plate at 6m/s. A heater strip 2.5 cm long is placed on 

the plate at distance of 15 cm from the leading edge. Calculate the heat lost from strip per unit 

depth for a heater surface temperature of 65oC.  

 

5-7 water flows across a 30 cm-square flat plate at a velocity of 6m/s. the plate maintained at a 

constant temperature of 54oC. Calculate the heat lost by the plate. 

 

5-8 Air at 300K and 4 atm blows across a 10 cm-square plate at a velocity of 35 m/s. the plate is 

maintained at constant temperature of 400K; calculate the heat lost from the plate. If an electric 

heater is installed on the plate , which produce a constant heat flux of 1000W/m2 . What is the 

maximum temperature that will be experienced by the plate surface? 

  

        

 

 

 

 

 

 

 

Problems 
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Empirical and Practical Relation for Forced ï 

Convection Heat Transfer 
6-1 Introduction  
   Results of excremental data are usually expressed in the form of either empirical formulas or 

graphical charts so that they may be utilized with maximum of generality. It is in the process of 

trying to generalize the results of oneôs experiments, in the form of some empirical correlation, 

that difficulty is encountered. If an analytical solution is available for similar problem, the 

correlation of data is much easier, since one may guess of the functional from of the results, and 

hence use the experimental data value to obtain values of constants or exponents for certain 

significant parameters such as the Reynolds or Prandtl  number. If an analytical solution is 

similar problem is not available, the individual must resort to intuition based on physical 

understanding of the problem, or shrewd inferences that one may be able to draw from 

differential equations of the flow processes based upon dimensional or order-of-magnitude 

estimates. 

    To show how one might proceed to analyze a new problem to obtain an important functional 

relationship from the differential equation, the problem of determining the hydrodynamic-

boundary thickness for flow over a flat plate. This problem was solved in previous chapter, but 

we now wish to make an order-of-magnitude analysis of the differential equation to obtain the 

functional from of the solution. The momentum equation: 

ό
ό

ὼ
’
ό

ώ
’
ό

ώ
 

must be solved in conjunction with the continuity equation 
ό

ὼ

’

ώ
π 

Within the boundary layer we layer we may say that the velocity u is of the order of the free-

stream velocityό . Similarly, the y dimension is of the boundary-layer thickness ŭ. thus  

ό ͯ ό  

ώ ͯ   
and we might write the continuity equation in an approximate form as  

 
ό

ὼ

’

ώ
π 

ό

ὼ

’


π 

or  

’ͯ
ό

ὼ
 

Then, by using this order of magnitude for  ’, the analysis of the momentum equation would 

yield 

   

ό
ό

ὼ
’
ό

ώ
’
ό

ώ
 

ό
ό

ὼ
’
ό

ὼ
’
ό
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or     

ͯ
’ὼ

ό
 

ͯ
’ὼ

ό
 

Dividing by x to express the result in the dimensionless from gives  



ὼ
ͯ

’

όὼ

ρ

ὙὩ
 

6-2 Empirical Relations for Pipe and Tube Flow 
 The cases of undeveloped laminar flow, flow systems where the fluid properties vary with 

temperature, and turbulent-flow systems are considerably more complicated but are of very 

important practical interest in the design of heat exchangers and associated heat transfer 

equipment. These more complicated problems may sometimes be solved analytically, but the 

solutions, when possible, are very tedious  

The Bulk Temperature  

First let us give some further consideration to the bulk temperature concept that is important in 

all heat transfer problems involving flow inside closed channel. In previous chapter we noted 

that the bulk temperature represents energy average or ñmixing cupò conditions. Thus, for the 

tube flow depicted in figure 6-1the total energy added can be expressed in terms of a bulk-

temperature difference by 

ή άὧ Ὕ Ὕ                            (1) 

 

 
 

provided ὧ is reasonably constant over length. In some differential length dx the heat added dq 

can be expressed either in terms of a bulk- temperature difference or in terms of the heat transfer 

coefficient 

Ὠή άὧὨὝ Ὤς“ὶὨὼὝ Ὕ         (2) 

where  ὝὥὲὨ Ὕ are the wall and bulk temperatures at particular x location. The total heat 

transfer can also be expressed as  

               ή ὬὃὝ Ὕ                       (3) 
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where A is the total surface area for heat transfer. Because both ὝὥὲὨ Ὕ  can vary along the 

length of the tube, a suitable averaging process must be adopted for use with Eq.(3). A traditional 

expression for calculation of heat transfer in fully developed turbulent flow in smooth tubes is 

that recommended by Dittus and Boelter. 

          ὔό πȢπςσ ὙὩȢὖὶ             (4a) 

The properties in this equation are evaluated at the average fluid bulk temperature, and the 

exponent n has the following values: 

ὲ
πȢτ     Ὢέὶ ὬὩὥὸὭὲὫ έὪ ὸὬὩ ὪὰόὭὨ
πȢσ      Ὢέὶ ὧέέὰὭὲὫ έὪ ὸὬὩ ὪὰόὭὨ   

 

Equation (4a) is valid for fully developed turbulent flow in smooth tubes for fluids with Prandtl 

number ranging from about 0.6 to 100 and with moderate temperature differences between wall 

and fluid conditions. more recent information by Gnielinski suggests that better results for 

turbulent flow in smooth tubes may be obtained from the following: 

ὔό πȢπςρὙὩȢ ρππὖὶȢ          (4b) 

Ὢέὶ πȢφ ὖὶ ρȢυ ὥὲὨ ρπ ὙὩ υ ρπ      or 

ὔό πȢπρςὙὩȢ ςψπὖὶȢ        (4c) 

Ὢέὶ ρȢυ ὖὶ υππ ὥὲὨ σπππὙὩ ρπ  
If wide temperature differences are present in the flow, there may be an appreciable change in 

the fluid properties between the wall of the tube and the central flow. These property variations 

may be evidenced by change in the velocity profile as indicated in figure 6-3. The deviations 

from the velocity profile for isothermal flow as shown in this figure are result of the fact that the 

viscosity of gases increase with an increase in temperature, while the viscosities of liquids 

decrease with an increase in temperature.  

 
 To take into account the property variation, Sieder and Tate recommend the following relation: 

ὔό πȢπςχὙὩȢὖὶ
Ȣ

        (5) 

All properties are evaluated at bulk temperature condition, except    ‘ , which is evaluated at the 

wall temperature. Equations (4 to 5) apply to fully developed flow in tubes. In the entrance 

region the flow is not developed, Nusselt recommended the following equation:  

ὔό πȢπσφὙὩȢὖὶ
Ȣ

       (6) 

For 10<L/d<400 

where L is the length of the tube and d is the tube diameter. The properties in eq.(6) are 

evaluated at mean bulk temperature. Petukhov has developed a more accurate, although more 

complicated, expression for fully developed turbulent flow in smooth tubes: 
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ὔό
Ⱦ  

Ȣ Ȣ Ⱦ
  

    (7) 

Where n= 0.11 for Tw>Tb, n=0.25 for Tw<Tb , and n=0 for constant heat flux or gases. All 

properties are evaluated at Tf =( Tw+Tb )/2 except for ‘ ὥὲὨ ‘ . The friction factor may be 

obtained either from figure (6-4) or for smooth tubes: 

Ὢ ρȢψς ÌÏÇὙὩ ρȢφτ           (8) 
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