The Ministry of Higher Education \& Scientific Research
Northern Technical University
Technical College / Kirkuk
Mechanical Power Technique Eng. Dept.

Thermodynamic

For first year students

Subject	Year of study	Hours in week			Units
Thermodynamic	First year students	Theory	Practical	Total	
	2	2	4	6	

Aim of the subject: - Define the students the foundation of thermo- dynamic which A/C equipment working unit, also studying the relation \& rules of $1^{\text {st }} \& 2^{\text {nd }}$ law of thermodynamic.

Course Weekly out line

Week No.	Syllabus
1	Introduction - Reference - Units
2	Important definition - force - pressure - system
3	Atmospheric , gauge \& absolute pressure - unit of pressure
4	Temperature, its units \& transformation, zero law.
5	Definition of energy - kinetic \& potential energies work - power flow \& internal energy - enthalpyenergy diagram
6	Definition of state - property, process - property diagrams $-1^{\text {st }}$ law of thermo dynamic, ($\mathrm{P}-\mathrm{V}$) diagram.
7	General equation of an ideal gasses - energy equation cyclic process -work done for closed system
8	Ideal gases - ideal gasses laws (boyle, Charles , Gaylosic)
9	Gas constant - Avogadro law specific heat at constant volume \&pressure
10	Particular closed system processes - constant volume \&constant pressure processes
11	Constant temperature
12	- adiabatic \&polytrophic processes
13	Open flow system application of open flow system
14	Steam ,steam formation, the (p,v) phase diagram
15	Dryness fraction ,liquid line ,steam line, wet steam
16	Calculation of steam ,steam table
17	Superheated steam, super heated steam table
18	Steam process with drawing each processes on (P-

	V)diagram
19	2 $^{\text {nd }}$ law of thermodynamic -heat engine heat pump
20	Statement of2 nd Plaw of thermodynamic (Kelvin,
21	Carnot cycle - reversed Carnot cycle
22	Reversible \&i Reversible processes
23	Entropy - calculation - (T-S) diagram
24	Entropy equation for an ideal gasses.
25	representation on (T-S) diagram all system processes
26	Entropy change in irreversible process
27	Air standard cycles - Otto cycles
28	Diesel cycle -dual cycle
29	Steam cycles - simple Rankine cycle
30	Rankine cycle with super heated

References:-

1- Foundation of thermodynamics $.5^{\text {th }}$. Edition by sonntay
2- Engineering thermodynamics by Yunus A. Çengel, 4th. Edition
3- Applied thermodynamic for engineering tech. by Eastop, $3^{\text {rd }}$. Edition
4- Thermodynamic and transport properties of fluid SI units, arranged by Y .R. Mayhew \& G.F, C. Rogers

Unit one

Introduction of thermodynamic

Mechanical engineering thermodynamic:-

Energy transferred between heat and work.
Heat transferred to work by heat engine.
Work transferred to heat by heat pump or ref.
Force (F): - the force acting 1 kg mass moving with acceleration of $\mathrm{m} / \mathrm{sec}^{2}$.
Force S.I unit (N).
$\mathrm{N}=\left(\mathrm{kg} . \mathrm{m} / \mathrm{sec}^{2}\right)$.
Mass S.I unit (kg), symbol (m).
Acceleration S.I unit ($\mathrm{m} / \mathrm{sec}^{2}$), symbol (a).
Gravitational acceleration, symbol (g). $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{sec}^{2}$.

$$
\mathrm{F}=\mathrm{m}^{*} \mathrm{a}
$$

$$
=\mathrm{kg} * \mathrm{~m} / \mathrm{sec}^{2}=\mathrm{N}
$$

For weight $(\mathrm{w})=\mathrm{m}^{*} \mathrm{~g}=\mathrm{N}$
Pressure (p): - defined as the force per unit area, symbol.
$\mathrm{P}=\mathrm{F} / \mathrm{A}=\mathrm{N} / \mathrm{m}^{2}$, where $\mathrm{A}=\operatorname{area}\left(\mathrm{m}^{2}\right)$.
Absolute pressure ($\mathbf{p}_{\mathbf{a}}$):- weight of liquid column per unit area.
$\mathrm{Pa}=\frac{\mathrm{F}}{\mathrm{A}}=\frac{\mathrm{m} * \mathrm{~g}}{\mathrm{~A}}=\frac{\rho * \mathrm{~V}^{* g}}{\mathrm{~A}}=\frac{\rho * \mathrm{~A}^{*} \mathrm{~h} * \mathrm{~g}}{\mathrm{~A}}=\rho * \mathrm{~h} * \mathrm{~g}$
$\mathrm{Pa}=\rho * \mathrm{~h} * \mathrm{~g}$
Where:-
$\rho=$ density of liquid $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.
$V=$ volume of liquid $\left(m^{3}\right)$.
$h=$ height of liquid (m).
$\mathrm{Pa}=\left(\mathrm{kg} / \mathrm{m}^{3}\right) * \mathrm{~m} *\left(\mathrm{~m} / \mathrm{sec}^{2}\right)=(\mathrm{kg})^{*}\left(\mathrm{~m} / \mathrm{sec}^{2}\right) / \mathrm{m}^{2}=\mathrm{N} / \mathrm{m}^{2}$.

Atmospheric pressure (patm) :- weight of atmospheric per unit area of earth's surface.
The standard instrument for recording of ($\mathrm{p}_{\mathrm{atm}}$) is the barometer as shown in fig.

The density of mercury $(\mathrm{Hg})=13616 \mathrm{~kg} / \mathrm{m}^{3}$.
$\mathrm{P}_{\mathrm{atm}}$ is measure in meters of mercury (m.Hg).
The conversion from $(\mathrm{m} . \mathrm{Hg})$ to $\left(\mathrm{N} / \mathrm{m}^{2}\right)$ is given by: - for example,
$1(\mathrm{~m} . \mathrm{Hg})=\rho^{*} \mathrm{~h} * \mathrm{~g}$

$$
=13616 * 9.81 * 1
$$

$$
=133660 \mathrm{~N} / \mathrm{m}^{2}
$$

$$
=1.3366 * 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1.3366 \mathrm{bar}=133.66 \mathrm{KN} / \mathrm{m}^{2}
$$

$$
1 \mathrm{bar}=10^{5} \mathrm{~N} / \mathrm{m}^{2}=10^{2} \mathrm{KN} / \mathrm{m}^{2}
$$

$\mathrm{P}_{\mathrm{atm}}=1$ atmosphere $=1.01325$ bar

$$
\begin{aligned}
=101.325 \mathrm{KN} / \mathrm{m}^{2} & =76 \mathrm{~cm} \mathrm{Hg}=0.76 \mathrm{~m} . \mathrm{Hg} \\
& =13616 * 0.76 * 9.81 \\
& =101325 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Gauge pressure ($\mathbf{p g}$):- it is defined as:-

$$
\mathbf{p}_{\mathrm{g}}=\mathbf{P a}-\mathbf{P}_{\mathrm{atm}}
$$

Where:-
$\mathrm{P}_{\mathrm{atm}}=1.01325 \mathrm{bar}$
1- \mathbf{p}_{g} is measured by differential manometer in which the P to be measured applied to one line of U tube containing barometer fluid to the other side as shown in fig.

(Differentional manometer)

2- $\mathbf{p g}$ is measured with bourdon gauge :-

To convert the pressure reading from a bourdon gauge to a (p) measured we used,
$\mathrm{p}_{\mathrm{g}}=\mathrm{pa}_{\mathrm{a}}-\mathrm{p}_{\mathrm{atm}}$
$\mathrm{p}_{\mathrm{g}}=+$ vie when $\mathrm{p}_{\mathrm{a}}-\mathrm{p}_{\mathrm{atm}}>0$
$\mathrm{p}_{\mathrm{g}}=-$ vie when $\mathrm{p}_{\mathrm{a}}-\mathrm{p}_{\text {atm }}<0$ or $\mathrm{patm}-\mathrm{p}_{\mathrm{a}}>0$
Both bourdon gauge \& manometers can be read either positive or negative $\left(\mathrm{pg}_{\mathrm{g}}\right)$ as shown in fig.

The (-ve) value of p_{g} is called vacuum which given by,
$\mathrm{p}_{\mathrm{g}}=\mathrm{p}_{\mathrm{atm}}-\mathrm{p}_{\mathrm{a}}$
Vacuum $=p_{\text {atm }}-p_{a}$
EX: - A steam turbine exhausted in to a condenser the gauge on which read ($0.65 \mathrm{~m} . \mathrm{Hg}$) vacuum. Express this in absolute pressure, assuming the atmosphere pressure is 1.013bar.

Sol:-
Vacuum $=p_{\text {atm }}-p_{a}$
Vacuum $=0.65 * 13616 * 9.81$

$$
=86822.4 \mathrm{~N} / \mathrm{m}^{2}
$$

$$
=0.868224 \mathrm{bar}
$$

$$
\begin{aligned}
\mathrm{p}_{\mathrm{a}} & =\mathrm{p}_{\mathrm{atm}}-\text { Vacuum } \\
& =1.013-0.868224 \\
& =0.145 \mathrm{bar}
\end{aligned}
$$

EX: - A turbine is supplying with steam at a gauge pressure of 14 bar, after expansion in the turbine the steam passed to a condenser which is maintained at a vacuum of $710 \mathrm{~mm} . \mathbf{H g}$ by means of pumps the barometer pressure is $770 \mathrm{~mm} . \mathrm{Hg}$. Express the inlet \& exhaust steam absolute pressure in $\mathrm{N} / \mathrm{m}^{2}$.

Sol:-

Inlet turbine

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{p}_{\mathrm{g}}=\mathrm{p}_{\mathrm{a}}-\mathrm{p}_{\mathrm{atm}} \\
& \begin{aligned}
\mathrm{p}_{\mathrm{atm}} & =770 \mathrm{~mm} \cdot \mathrm{Hg}
\end{aligned}=0.77 \mathrm{~m} \cdot \mathrm{Hg} * 13616 * 9.81 \\
&=102851 \mathrm{~N} / \mathrm{m}^{2} \\
&=1.02851 * 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1.02851 \mathrm{bar} \\
& \mathrm{p}_{\mathrm{a}}=\mathrm{p}_{\mathrm{g}}+\mathrm{p}_{\mathrm{atm}} \\
&=14+1.02851
\end{aligned} \\
& =15.0285 \mathrm{bar}=15.0285 * 10^{5} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Exhausted from turbine
Vacuum $=710 \mathrm{~mm} \cdot \mathrm{Hg}=0.71 \mathrm{~m} \cdot \mathrm{Hg} * 13616 * 9.81$

$$
=94836 \mathrm{~N} / \mathrm{m}^{2}=0.94836 \mathrm{bar}
$$

$\mathrm{p}_{\mathrm{a}}=\mathrm{patm}-$ vacuum

$$
=1.02851-0.94836=0.08015 \mathrm{bar}=0.08015 * 10^{5} \mathrm{~N} / \mathrm{m}^{2}=8.015 * 10^{3} \mathrm{~N} / \mathrm{m}^{2}
$$

EX:- If the vacuum in the condenser is $720 \mathrm{~mm} . \mathrm{Hg}$ and barometer reading is $763 \mathrm{~mm} . \mathrm{Hg}$ find the condenser absolute pressure and atmosphere pressure in bar.

Sol:-
Vacuum $=720 \mathrm{~mm} . \mathrm{Hg}=0.72 \mathrm{~m} . \mathrm{Hg} * 13616 * 9.81$

$$
=0.961725312 \mathrm{bar}
$$

$\mathrm{p}_{\mathrm{atm}}=763 \mathrm{~mm} . \mathrm{Hg}=0.763 \mathrm{~m} . \mathrm{Hg} * 13616 * 9.81$

$$
\begin{aligned}
& =102851 \mathrm{~N} / \mathrm{m}^{2} \\
& =1.019161685 * 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1.019161685 \mathrm{bar}
\end{aligned}
$$

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{patm}-\text { vacuum }=1.019161685-0.961725312=0.0574336373 \mathrm{bar}
$$

EX: - Find the pressure in bar for an oil of density is $0.8 \mathrm{~kg} / \mathrm{m}^{3}$ and height of 30 cm .
Sol:

$$
\begin{aligned}
\mathrm{P} & =\rho * \mathrm{~h} * \mathrm{~g} \\
& =0.8 * 0.3 * 9.81=2.3544 \mathrm{~N} / \mathrm{m}^{2}=0.000023544 \mathrm{bar}
\end{aligned}
$$

EX:- A vessel is connected to tube manometer the difference in the liquid level is $\mathbf{2 0} \mathbf{~ m m}$ find the pressure in the vessel if the liquid is: - (a) water, (b) $\mathbf{H g}$

Sol:-
(a) Water
$\mathrm{P}=\rho^{*} \mathrm{~h} * \mathrm{~g}$
$=1000 * 0.02 * 9.81=196.2 \mathrm{~N} / \mathrm{m}^{2}=0.001962 \mathrm{bar}$
(b) Hg .
$\mathrm{P}=\rho^{*} \mathrm{~h} * \mathrm{~g}$
$=13616 * 0.02 * 9.81=2671.4592 \mathrm{~N} / \mathrm{m}^{2}=0.026714592 \mathrm{bar}$

Temperature

Temperature: - Is the property which determines the ability of the system to transfer heat.
Temperature scale: - Is an arbitrary set of number and method for assigning each number to a definition level of temperature for example the melting point of ice and boiling point of water at standard atmosphere pressure

Thermometer: - is a measuring device yielding a number at each temperature level the number is functionally related to the temperature.

Actual thermometer is based on changes of certain property with temperature. For example:-
a- Volumetric expansion of gases, liquid, and solids.
b- Pressure exerted by gases.
c- Electrical resistance of solids.
d- Vapor pressure of liquids.
e- Thermo electricity.

- The mercury in glass thermometer provides an example of the observed quantity and height of the column of mercury dependent not only on temperature but also the external pressure acting on the bulb and stem.
- The ice point or freezing point of water occurs at $273.15^{\circ} \mathrm{K}=0^{\circ} \mathrm{C}$ and the steam point of boiling point of water occurs at $373.15^{\circ} \mathrm{K}=100^{\circ} \mathrm{C}$. The interval is $100^{\circ} \mathrm{C}$ and this basis of Celsius scale whose determine ice point $0^{\circ} \mathrm{C}$.
- On the Fahrenheit scale interval between the ice and steam point is divided in to 180° while the datum is the freezing point at $32^{\circ} \mathrm{F}$ and steam point at $212^{\circ} \mathrm{F}$.
- The absolute scale corresponding to the Fahrenheit scale is the Rankine scale.

Fahrenheit thermometer

Celsius thermometer

EX: - At patm the boiling point of water is $100^{\circ} \mathrm{C}$ and for helium $15^{\circ} \mathrm{K}$. Express these in $^{\circ} \mathrm{F}$.
Sol:-
For water
${ }^{\circ} \mathrm{F}=9 / 5^{\circ} \mathrm{C}+32=9 / 5 * 100+32=212{ }^{\circ} \mathrm{F}$ boiling point of water.

For helium

$$
\begin{aligned}
{ }^{\circ} \mathrm{C} & ={ }^{\circ} \mathrm{K}-273 \\
& =15-273=-258{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
{ }^{\circ} \mathrm{F}=9 / 5^{\circ} \mathrm{C}+32
$$

$$
=9 / 5 *(-258)+32=-432.4^{\circ} \mathrm{F} \text { boiling point of helium }
$$

EX: - The following fixed point at patm are given in ${ }^{\circ} \mathrm{F} \&{ }^{\circ} \mathrm{R}$. Express them to degree
Celsius. Oxygen point $297.32{ }^{\circ} \mathrm{F}$, gold point $2400^{\circ} \mathrm{R}$, sulfur point $832.28{ }^{\circ} \mathrm{F}$, Antimony 1620
${ }^{\mathrm{o}}$ R.
Sol:-
Oxygen point
$\frac{{ }^{\circ} \mathrm{C}-0}{100}=\frac{{ }^{\circ} \mathrm{F}-32}{180}$
$\frac{{ }^{\circ} \mathrm{C}}{100}=\frac{297.32-32}{180}$
${ }^{\circ} \mathrm{C}=147.4^{\circ}$
gold point
$\frac{{ }^{\circ} \mathrm{C}-0}{100}=\frac{{ }^{\circ} \mathrm{R}-492}{180}$

$$
\frac{{ }^{\circ} \mathrm{C}}{100}=\frac{2400-492}{180}
$$

$$
{ }^{\circ} \mathrm{C}=1060^{\circ}
$$

Sulfur point
$\frac{{ }^{\circ} \mathrm{C}-0}{100}=\frac{{ }^{\circ} \mathrm{F}-32}{180}$
$\frac{{ }^{\circ} \mathrm{C}}{100}=\frac{832.28-32}{180}$

$$
{ }^{\circ} \mathrm{C}=444.6^{\circ}
$$

For Antimony
$\frac{{ }^{\circ} \mathrm{C}-0}{100}=\frac{{ }^{\circ} \mathrm{R}-492}{180}$
$\frac{{ }^{\circ} \mathrm{C}}{100}=\frac{1620-32}{180}$
${ }^{\circ} \mathrm{C}=882.222^{\circ}$
Thermal Equilibrium: - If a temperature of two bodies is equal when heat flows between them, two bodies is called bodies at thermal equilibrium.

Zero law of thermodynamics: - when there are two bodies in thermal equilibrium with third body, the two bodies is become in state of thermal equilibrium and this defined as (Zero Law of thermodynamic).

Energy

Energy: - Is the capacity either latent or apparent to exert a force through the distance.

$$
\begin{equation*}
\mathbf{E}=\mathbf{F} * \mathbf{S} \tag{N.m}
\end{equation*}
$$

Where:-
$\mathrm{E}=$ Energy
F = Force
$\mathrm{S}=$ distance
Potential Energy "pot. E.":- It is energy stored in a mass by virtue of its position in gravitational.

Pot. E = m. g.Z ... Joule (N.m)
Where:-
$\mathrm{Z}=$ height

Kinetic energy "K.E":- it is energy wanted to move a mass with velocity.

$$
\mathbf{K} . \mathbf{E}=1 / 2 \mathbf{m ~ V}^{\mathbf{2}} \quad \ldots \ldots . . \text { Joule (N.m) }
$$

Where:-
$\mathrm{V}=$ velocity $\mathrm{m} / \mathrm{sec}$

Heat "Q":- is regarded as energy in thermo. If it crossing the boundary of the system by virtue of temperature difference.
$\mathrm{Q}=\mathrm{KJ}$ or Kcal
$\mathrm{q}=\mathrm{KJ} / \mathrm{kg}$ or $\mathrm{Kcal} / \mathrm{kg}$

$\mathrm{Q}=(+\mathrm{ve})$ when added to the system.
$Q=(-v e)$ when rejected from system.
System: - Is a region neither necessary of constant volume nor fixed in space, where transfer of mass \& energy are to be studied.

Boundary: - The actual envelope in closing the system is defined as boundary.
Surrounding: - The region out side the system is defined as surrounding.
Work: - It is the mechanical energy crossing the boundary of system and the only effect of which is rising of a weight out side or inside the system.

Work is $(+\mathrm{ve})$ if it is done by the system on the surrounding.
Work is (-ve) if it is done on the system from the surrounding.
Internal energy (U):- It is energy stored in the mass of substance in the system.

```
\(\mathrm{U}=\mathrm{kJ}\)
\(\mathrm{u}=\mathrm{kJ} / \mathrm{kg}\)
```

du
$-=\mathrm{Cv}$
dT
$\mathrm{du}=\mathrm{Cv} . \mathrm{dT}$
$u_{1} \int^{u_{2}} d u=T_{1} \int^{T_{2}} \int v . d T$
$\mathrm{u}_{2}-\mathrm{u}_{1}=\mathrm{Cv}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \quad$ or

$$
\Delta \mathbf{u}=\mathbf{C v} . \Delta \mathrm{T}
$$

$\mathrm{U}_{2}-\mathrm{U}_{1}=\mathrm{m} . \mathrm{Cv}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ or

$$
\Delta \mathbf{u}=\mathbf{m} \cdot \mathbf{C v} \cdot \Delta \mathbf{T}
$$

Flow energy (F.E):- It is energy necessary to flow or to move a fluid at steady rate without changing its state.
The force necessary to move the piston without changing $\mathrm{P}, \mathrm{V}, \mathrm{T}$ of the gas.
$\mathrm{F}=\mathrm{p} * \mathrm{~A}$
The energy necessary to move the gas without changing its state $=$ the energy necessary to move piston a distance "L".
F.E $=p^{*} A^{*} L=p^{*} V=m^{*} p^{*} v$ (Joule)

Where $(v)=$ specific volume $\mathrm{m}^{3} / \mathrm{kg}=1 / \rho$, where $(\rho)=$ density $\mathrm{kg} / \mathrm{m}^{3}$.

Flow energy per unit mass of the gas $(\mathrm{F} . \mathrm{E} / \mathrm{m})=\mathrm{p} . \mathrm{v}(\mathrm{J} / \mathrm{kg})$

$$
\text { F.E/mass }=10^{2} * \mathrm{p} * v(\mathrm{~kJ} / \mathrm{kg})
$$

Where:-
(p) = pressure (bar)
$(v)=$ specific volume $\mathrm{m}^{3} / \mathrm{kg}$
Power: - is the rate of doing work, and is measured in $(\mathrm{J} / \mathrm{sec})$ or $(\mathrm{N} . \mathrm{m} / \mathrm{sec})=$ watt,
1metric (h.P) $=75 \mathrm{~kg}$
F.m $=75 * 9.81=735.75$ watt ≈ 740 watt
$1 \mathrm{~h} . \mathrm{P}=0.74 \mathrm{~kW}$.
1 British h. $\mathrm{P}=0.745 \mathrm{~kW}=745$ watt.
$1 \mathrm{Cal}=4.1868$ joule or $1 \mathrm{kCal}=4.1868 \mathrm{~kJ}$
Enthalpy (H):- is the sum of internal energy plus flow energy of a moving gas.

$$
\begin{aligned}
& \mathbf{H}=\mathbf{U}+\mathbf{p} \cdot \mathbf{V} \rightarrow \mathbf{k J} \\
& \mathbf{h}=\mathbf{u}+\mathbf{p . v} \rightarrow \mathbf{k J} / \mathbf{k g}
\end{aligned}
$$

As Uis property and p, V are properties of the gas therefore H is a property.
EX: - Express the following quantities in term of kJ and kCal .

> a- h.P. hour (h.P.h). b- kW .hour (kW .h).

Sol:-
a-
h. $\mathrm{p}=0.7457 \mathrm{~kW}=0.7457 \mathrm{~kJ} / \mathrm{sec}$
h.p.h $=0.7457 \mathrm{~kJ} / \mathrm{sec} * 3600 \mathrm{sec}=\underline{2685 \mathrm{~kJ}}$
$1 \mathrm{kCal}=4.1868 \mathrm{~kJ}$
$2685 / 4.186=\underline{640.2} \mathrm{kCal}$
b-
$\mathrm{kW} . \mathrm{h}=1 \mathrm{~kJ} / \mathrm{sec} * 3600 \mathrm{sec}=\underline{3600 \mathrm{~kJ}}$
$1 \mathrm{kCal}=4.1868 \mathrm{~kJ}$
$3600 / 4.186=\underline{859.845 \mathrm{kCal}}$
EX: - Nitrous Oxide of density $31.084 \mathrm{~kg} / \mathrm{m}^{3}$ is carried in a pipe line 60.96 m above sea level the gas is at temperature $148.9^{\circ} \mathrm{C}$. It flows along a pipe at the rate of $0.096 \mathrm{~m} / \mathrm{sec}$ and its specific at constant volume (Cv) is $0.161 \mathrm{kCal} / \mathrm{kg} . \mathrm{K}$, taking sea level as datum for heights
and $0^{\circ} \mathrm{C}$ as datum for energy involving temperature evaluate the potential energy, kinetic energy, internal energy and total energy of the gas.
Sol:-

$$
\begin{aligned}
& \rho=31.084 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{~h}(\mathrm{Z})=60.96 \mathrm{~m} \\
& \mathrm{~T}=148.9^{\circ} \mathrm{C} \\
& \begin{aligned}
\mathrm{C} & =0.096 \mathrm{~m} / \mathrm{sec}
\end{aligned} \\
& \begin{aligned}
& \mathrm{Cv}=0.161 \mathrm{kCal} / \mathrm{kg} \cdot \mathrm{~K} \\
& \mathrm{Cv}=0.161 * 4.186=0.673946 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \begin{aligned}
\mathrm{P} . \mathrm{E} & =\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{Z}(\mathrm{~J})
\end{aligned} \\
&=\mathrm{g} \cdot \mathrm{Z}(\mathrm{~J} / \mathrm{kg}) \\
&=9.81 * 60.96=598.0176 \mathrm{~kJ} / \mathrm{kg}
\end{aligned} \\
& \begin{aligned}
\mathrm{K} . \mathrm{E} & =1 / 2 \mathrm{~m} * \mathrm{C}^{2}(\mathrm{~J}) \\
& =1 / 2 \mathrm{C}^{2}(\mathrm{~J} / \mathrm{kg}) \\
& =1 / 2(0.096)^{2}=0.004608 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{U}=\mathrm{m} . \mathrm{Cv} . \mathrm{T}(\mathrm{~J})
$$

$$
\mathrm{u}=\mathrm{Cv} \cdot \mathrm{~T}(\mathrm{~J} / \mathrm{kg})
$$

$$
=0.673946 *(148.9+273)=284.337 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{T} . \mathrm{E}=\operatorname{Pot} . \mathrm{E}+\mathrm{K} . \mathrm{E}+\mathrm{u}$

$$
=598.0176+0.004608+284.337=882.3592 \mathrm{~kJ} / \mathrm{kg}
$$

Property: - It is an observable characteristic of a system or part of a system.
State: - It is the condition of the system or part of system, at any constant of time, described by its properties.

Property diagram: - It is a plane described by two coordinates representing two in depended properties; a point in the plane represents state families of curves of other properties such as T, W and H can be drawn on the diagram and curves of some families could not intersect.

Process: - It is locus of state represented on property diagram at which gas take to the same point from primary state or inlet state to the end of final state either through the process A (1) B or A (2) B.

Cycle: - It is sum of different processes such that the final process brings the substance to the original state.

Problems

1-1 A turbine is supplied with steam at a gauge pressure of 14bar. After expansion in the turbine the steam passes to a condenser which is maintained at a vacuum of 710 mm Hg by means of pumps. The barometric pressure 772 mm Hg . Express the inlet and exhaust steam (absolute) pressures $\mathrm{N} / \mathrm{m}^{2}$. Take the density of mercury as $13.6^{*} 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

1-2 A mercury manometer measuring the pressure in a steam plant condenser reads 63 cm vacuum. The barometer in the plant room reads 76 cm of mercury. What is the absolute pressure in the condenser in $\mathrm{N} / \mathrm{m}^{2}$?

Unit two
 The first law of thermodynamics

The first law of thermodynamics

The first law of thermodynamics means that Energy can neither be created nor dissipated it can be transferred from a type to another.

Energy supplied = energy rejected + stored energy

Application to close system process

For the process shown on the property diagram the system changes its state from (1) to (2) through the shown process while heat energy " Q_{12} " is supplied to it,

Work " W_{12} " done by the system \& increase or decrease the stored energy will appear as a change in pot. E, K.E, and U.
$\mathbf{Q}_{12}=\mathbf{W}_{12}+$ stored energy
$\mathbf{Q}_{12}=\mathbf{W}_{12}+\Delta$ Pot. $\mathbf{E}_{12}+\Delta \mathbf{K} . \mathbf{E}_{12}+\Delta \mathbf{U}_{12}$
$\mathbf{Q}_{12}=\mathbf{W}_{12}+\Delta \mathbf{E}_{12}$ (1) energy equation
Where:-
$\Delta \mathbf{E}_{12}=\Delta$ Pot. $\mathbf{E}_{12}+\Delta \mathbf{K} . \mathbf{E}_{12}+\Delta \mathbf{U}_{12}$

Usually in closed system processes the change in Pot.E and change in K.E is negligible. Thus the Equ. (1) Reduced to $\mathrm{Q}_{12}=\mathrm{W}_{12}+\Delta \mathrm{U}_{12}$

```
\mp@subsup{Q}{12}{}=\mp@subsup{\mathbf{W}}{\mathbf{12}}{+}+\Delta\mp@subsup{\mathbf{U}}{\mathbf{12}}{}\quad_\quad\mathrm{ for closed system process}
```


Cyclic process:-

In cyclic process the total change in stored energy should equal at sum of changes of stored energy during the different processes constituting the cycle as substance is returned back to the original state then there is no change in the stored energy and thus :-

$$
\phi \mathrm{d} \mathrm{Q}=\phi \mathrm{dw}
$$

The symbol \oint, which is called the cyclic integral

Working done at the moving boundary a closed system:-

For the shown system in diagram the cylinder is filled with a certain gas and fitted with a friction less piston against the certain resistance. The force necessary to move the piston is:-

$$
\mathbf{F}=\mathbf{P}^{*} \text { area of the piston }=\mathbf{P}^{*} \mathbf{A}
$$

Assume that the piston moves every small distance dx , such that the pressure between $\mathrm{V} \& \mathrm{~V}+$ dV will be assumed not to change.

The energy - work done to move the piston the infinitesimal distance should equal to:-
Work done $=F^{*} d x=p^{*} A^{*} d x$

$$
\mathbf{d w}=\mathbf{p}^{*} \mathbf{d V}
$$

The total work done developed by the gas on the piston a sit moves from (1) to (2),
$\int_{1}^{2} \mathrm{dw}=\int_{1 \mathrm{p} \cdot \mathrm{dV} \text {, there fore, }}^{2}$

w_{12} can be calculated by measuring the area under the process represented on the $\mathrm{p} . \mathrm{V}$ diagram.
EX: - The energy of system increases 120 kJ while 150 kJ work is transferred to surrounding. Is heat added or taken a way from the system.

Sol:-
$\Delta \mathrm{E}_{12}=+120 \mathrm{~kJ}$
$\mathrm{w}_{12}=+150 \mathrm{~kJ}$
$\mathrm{Q}_{12}=\mathrm{w}_{12}+\Delta \mathrm{E}_{12}$
$=150+120=270 \mathrm{~kJ}$ added

EX: - During an expansion process. The work done and the heat received by the system are respectively 20 kJ and 50000 J . Calculate the change of energy for the system.
Sol:-
$\mathrm{w}_{12}=+20 \mathrm{~kJ}$
$\mathrm{Q}_{12}=+50000 \mathrm{~J}=50 \mathrm{~kJ}$
$\mathrm{Q}_{12}=\mathrm{w}_{12}+\Delta \mathrm{E}_{12}$
$\Delta \mathrm{E}_{12}=\mathrm{Q}_{12}-\mathrm{w}_{12}=50-20=+30 \mathrm{~kJ}$
EX: - A closed system consists of a cylinder of water stirred by a paddle wheel. For the process the work was 34 kJ the initial internal energy was 120 kJ and the final internal energy after (1) hour of stirring was 144 kJ . Find the heat transferred in $\mathrm{kJ} / \mathrm{hour}$. Is the temperature of the system raising or falling.
Sol:-
$\mathrm{w}_{12}=-34 \mathrm{~kJ}$
$\mathrm{U}_{1}=120 \mathrm{~kJ}$
$\mathrm{U}_{2}=144 \mathrm{~kJ}$
$\Delta \mathrm{U}_{12}=144-120=24 \mathrm{~kJ}$
$\mathrm{Q}_{12}=\mathrm{w}_{12}+\Delta \mathrm{U}_{12}=-34+24=-10 \mathrm{~kJ} / \mathrm{h} \quad$ the temperature is rising

Problems

2-1 During the expansion of 1 kg of a fluid the internal energy changes from an initial value of $1162 \mathrm{~kJ} / \mathrm{kg}$ to a final value of $1025 \mathrm{~kJ} / \mathrm{kg}$ of shaft work are obtained, calculate the quantity and direction of exchange between the fluid and surroundings. Assume expansion is frictionless.
(52kJ out wards)
2-2 In a certain non - flow process with air as the working fluid, 1000 kJ is removed from the system and the internal energy decreases by 200 kJ . Is the process an expansion or compression? What work is performed?
(800 kJ compression work)

Unit three

Ideal gas

Ideal (perfect) gas

Ideal gas it is the gas which has the following properties:-
1- It follows the general gas equation.
2- Its specific heat at constant pressure and specific heat at constant volume are constant.

Ideal gas laws:-

1- Boyle's law: - The pressure of the gas is inversely proportional to the volume at constant temperature.

$$
\mathrm{p} \alpha \frac{1}{\mathrm{~V}} \text { at } \mathrm{T}=\text { constant }, \mathrm{p}=\frac{\mathrm{C}}{\mathrm{~V}} \text { or } \mathrm{pV}=\text { constant },
$$

$$
\mathbf{p}_{1} \mathbf{V}_{1}=\mathbf{p}_{2} \mathbf{V}_{2}-\mathbf{p} \cdot \mathbf{V}=\mathbf{C}
$$

$$
\mathrm{V}=\mathrm{m} \cdot \mathrm{v} \quad \text { or } \quad v=\frac{\mathrm{V}}{\mathrm{~m}}
$$

$\mathrm{p}_{1} . \mathrm{m} . \mathrm{v}_{1}=\mathrm{p}_{2} . \mathrm{m} . \mathrm{v}_{2}$
$\mathrm{p}_{1} \cdot v_{1}=\mathrm{p}_{2} \cdot v_{2}$

2- Charles law: - The volume of the gas is directly proportional to the temperature at constant pressure.
$\mathrm{V} \alpha \mathrm{T}$ at $\mathrm{p}=$ constant, therefore $\mathrm{V}=\mathrm{C} . \mathrm{T}$ or, $\mathrm{V} / \mathrm{T}=$ const.

———at $\mathrm{p}=\mathrm{constant}$

3- Gay - Lussac law: - The pressure of the gas is directly proportional to the temperature at constant volume.
$\mathrm{p} \alpha \mathrm{T}$ at $\mathrm{V}=$ constant, therefore $\mathrm{p}=\mathrm{C} . \mathrm{T}$ or,

$$
\text { at } \mathrm{V}=\text { constant }
$$

Equation of State of an Ideal Gas:-

A relationship between $\mathrm{p}, \mathrm{V} \& \mathrm{~T}$

Where (R) is the gas constant $\mathrm{kJ} / \mathrm{kg}$.K
$\mathrm{P} v=\mathrm{RT}$
$\mathbf{p V}=\mathbf{m R T}$ - Is called general of state of an ideal gas (general equation of gas).

Gay - Lussac law
Charles law

$\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{x}}$
$T_{x}=\frac{T_{1}}{p_{1}} * p_{2}$

$\frac{\mathbf{v}_{1}}{\mathbf{T}_{\mathrm{x}}}=\frac{\mathbf{v}_{2}}{\mathbf{T}_{2}}$
$\mathbf{T}_{\mathrm{x}}=\frac{\mathbf{T}_{2}}{\mathbf{v}_{2}} * \mathbf{v}_{1}$

$\frac{\mathrm{T}_{1}}{\mathrm{p}_{1}} * \mathrm{p}_{2}=\frac{\mathrm{T}_{2}}{v_{2}} * v_{1}$

$\frac{p_{1} v_{1}}{T_{1}}=\frac{p_{2} v_{2}}{T_{2}}=\frac{p v}{T}=R$
Where (R) is the gas constant $\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{P} v=\mathrm{RT}$
$\mathbf{p V}=\mathbf{m R T}$ - Is called general of state of an ideal gas (general equation of gas).

Gay - Lussac law

$$
\begin{aligned}
& \frac{p_{1}}{T_{1}}=\frac{\mathbf{p}_{x}}{T_{2}} \\
& \mathbf{p}_{\mathrm{x}}=\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}} * \mathbf{p}_{1}
\end{aligned}
$$

Boyle's law

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{x}} \mathbf{v}_{1}=\mathbf{p}_{2} \mathbf{v}_{2} \\
& \mathbf{p}_{\mathrm{x}}=\frac{\mathbf{p}_{2}}{\mathbf{v}_{1}} * \mathbf{v}_{2} \\
& \hline
\end{aligned}
$$

$$
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} * \mathrm{p}_{1}=\frac{\mathrm{p}_{2}}{\mathrm{v}_{1}} * v_{2}
$$

$$
\begin{array}{ll}
\mathrm{T}_{1} & v_{1}
\end{array}
$$

$\begin{array}{lll}\mathrm{T}_{1} & \mathrm{~T}_{2} & \mathrm{~T}\end{array}$
Where (R) is the gas constant $\mathrm{kJ} / \mathrm{kg}$.K
$\mathrm{P} v=\mathrm{RT}$
$\mathbf{p V}=\mathbf{m R} \mathbf{T}$ - Is called general of state of an ideal gas (general equation of gas).
EX: - An ideal gas occupies a volume of $0.105 \mathrm{~m}^{3}$ at temperature $20 \mathrm{C}^{0}$ and the pressure of $1.5 \mathrm{~kg} \mathrm{f} / \mathrm{cm}^{2}$ absolute. Find the final temperature if the gas compressed to pressure $7.5 \mathrm{~kg} \mathrm{f} /$ cm^{2} and occupies a volume of $0.04 \mathrm{~m}^{3}$ (note $1 \mathrm{~kg} \mathrm{f} / \mathrm{cm}^{2}=1 \mathrm{bar}$).

Sol:-

$$
\frac{\mathrm{p}_{1} \mathrm{v}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} v_{2}}{\mathrm{~T}_{2}}
$$

$\mathrm{T} 2=\frac{\mathrm{p}_{2} \mathrm{v}_{2}}{\mathrm{p}_{1} \mathrm{v}_{1}} * \mathrm{~T}_{1}$
$\mathrm{T}_{1}=20+273=293{ }^{\circ} \mathrm{K}$
$\mathrm{T} 2=\frac{7.5 * 0.04}{1.5 * 0.105} * 293=558^{\circ} \mathrm{K}$

Avogadro law: - All ideal gases have the same amount of molecular in equal volume at the same pressure and temperature.

Where:-
$\mathrm{M}=$ molecular weight.
$\mathrm{n}=$ is the number of moles.
$\mathrm{m}_{1}=\mathrm{M}_{1} . \mathrm{n} \longrightarrow$ gas A
$\mathrm{m}_{2}=\mathrm{M}_{2} . \mathrm{n} \longrightarrow$ gas B
$v_{1}=\frac{\mathrm{V}}{\mathrm{m}_{1}}=\frac{\mathrm{V}}{\mathrm{M}_{1} \cdot \mathrm{n}} \longrightarrow v_{1} \mathrm{M}_{1}=\frac{\mathrm{V}}{\mathrm{n}}$
$v_{2}=\frac{\mathrm{V}}{\mathrm{m}_{2}}=\frac{\mathrm{V}}{\mathrm{M}_{2} \cdot \mathrm{n}} \longrightarrow v_{2} \mathrm{M}_{2}=\frac{\mathrm{V}}{\mathrm{n}}$
Therefore,
$v_{1} \mathrm{M}_{1}=v_{2} \mathrm{M}_{2}=v_{3} \mathrm{M}_{3}=v \mathrm{M}$
At the standard condition (i.e $\mathrm{p}=\mathrm{p}_{\mathrm{o}}=1 \mathrm{bar}, \& \mathrm{~T}=\mathrm{T}_{\mathrm{o}}=273{ }^{\circ} \mathrm{K}$). The const. (M. v) is obtained for 1 kg . mol of any gas and found to be, $\mathrm{M} v_{0}=22.4 \mathrm{~m}^{3} / \mathrm{mol}$

1 kg mol of $\mathrm{O}_{2}=32 \mathrm{~kg}$

$$
\mathrm{N}_{2}=28 \mathrm{~kg}
$$

$$
\begin{aligned}
& \mathrm{H}_{2}=2 \mathrm{~kg} \\
& \mathrm{CO}=28 \mathrm{~kg} \\
& \mathrm{CO}_{2}=44 \mathrm{~kg} \\
& \mathrm{CH}_{4}=16 \mathrm{~kg}
\end{aligned}
$$

$\mathrm{p} . \mathrm{V}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}$
$10^{2} \mathrm{p} . \mathrm{V}=\mathrm{m}$. R.T, where $\mathrm{p}=$ bar

$$
10^{2} \mathrm{p} *-\mathrm{V}, \mathrm{R} . \mathrm{T}
$$

$$
10^{2} \mathrm{p} \cdot \mathrm{v}=\mathrm{R} . \mathrm{T}
$$

$$
10^{2} \mathrm{p}_{\mathrm{o}} \cdot v_{\mathrm{o}}=\mathrm{R}_{\mathrm{o}} \cdot \mathrm{~T}_{\mathrm{o}} \ldots . \text { At standard condition }
$$

$$
10^{2} * 1 * \frac{22.4}{\mathrm{M}}=\mathrm{R} * 273
$$

$$
\mathrm{M} . \mathrm{R}=\frac{10^{2} * 22.4}{273}=8.314 \mathrm{~kJ} / \mathrm{mol} . \mathrm{K}
$$

Therefore $\mathrm{MR}=\mathrm{G}=8.314 \mathrm{~kJ} / \mathrm{mol} .{ }^{\circ} \mathrm{K}$ which is called the universal gas constant and from which you find the specific gas constant. (R) For each gas as following.

For example:-

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{O} 2}=\frac{8.314}{32}=0.2598 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \mathrm{R}_{\mathrm{N} 2}=\frac{8.314}{28}=0.2969 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{CO} 2}=\frac{8.314}{44}=0.1889 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

Note:-
The general equation of gas $\left(10^{2} \mathrm{p} . V=m R T\right)$ where $p=b a r, V=m^{3}, m=k g, R=k J / k g . K$
EX: - A vessel of volume $0.2 \mathrm{~m}^{3}$ contains nitrogen at 1.013 bar and $15^{\circ} \mathrm{C}$ if 0.2 kg of nitrogen is now pumped in to vessel, calculate the new pressure when the vessel has returned to its initial temperature. The molecular weight of nitrogen is 28 , and it may be assumed to be a perfect gas.

Sol:-
Gas constant, $\mathrm{R}=\frac{8.314}{\mathrm{M}}=\frac{8.314}{28}=0.2969 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{m}_{1} \mathrm{R} \mathrm{T}_{1}$
$\mathrm{m}_{1}=\frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{R} \mathrm{T}_{1}}=\frac{10^{2} * 1.013 * 0.2}{0.2969 * 288}=0.237 \mathrm{~kg}$
$\left(\right.$ Where $\left.\mathrm{T}_{1}=15+273=288^{\circ} \mathrm{K}\right)$.
0.2 kg of nitrogen are added, hence $\mathrm{m}_{2}=0.2+0.237=0.437 \mathrm{~kg}$. then for the final condition,
$10^{2} \mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{m}_{2} \mathrm{R} \mathrm{T}_{2}$
But $\mathrm{V}_{2}=\mathrm{V}_{1}, \& \mathrm{~T}_{2}=\mathrm{T}_{1}$,
$\mathrm{p}_{2}=\frac{\mathrm{m}_{2} \mathrm{R} \mathrm{T}_{2}}{\mathrm{~V}_{2}}=\frac{0.437 * 0.2969 * 288}{10^{2} * 0.2}=1.87 \mathrm{bar}$

Specific heat: - "C"

Specific heat it is it is the amount of heat add to unit mass of substance $(1 \mathrm{~kg})$ to increase its temperature $1^{\circ} \mathrm{C}$ unit $\mathrm{kJ} / \mathrm{kg}$.K.
For solid and liquid, there is one value of "C".
But for gases, we have two value of "C" called Cp and Cv ,
Where:-
Cv is the specific heat at constant volume ($\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$).
Cp is the specific heat at constant pressure ($\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$).

Specific heat at constant volume "Cv":-

For a close system the energy equation is,
$\mathrm{Q}_{12}=\mathrm{W}_{12}+\Delta \mathrm{U}_{12}$
For constant volume $\mathrm{Cv}=$ constant
$\Delta \mathrm{V}=0, \mathrm{w}_{12}=0$ therefore,
$\mathrm{Q}_{12}=\Delta \mathrm{U}_{12}=\mathrm{mCv} \Delta \mathrm{T}$
Also,
$\mathrm{q}_{12}=\Delta \mathrm{u}_{12}=\operatorname{Cv} \Delta \mathrm{T}$

Specific heat at constant pressure "Cp"

$$
\begin{aligned}
\mathrm{q}_{12} & =\mathrm{w}_{12}+\Delta \mathrm{u}_{12} \\
& =\left(\mathrm{p}_{2} \cdot \mathrm{~V}_{2}-\mathrm{p}_{1} \cdot \mathrm{~V}_{1}\right)+\mathrm{u}_{2}-\mathrm{u}_{1} \\
& =\left(\mathrm{u}_{2}+\mathrm{p}_{2} \cdot \mathrm{~V}_{2}\right)-\left(\mathrm{u}_{1}+\mathrm{p}_{1} \cdot \mathrm{~V}_{1}\right) \\
\mathrm{q}_{12} & =\mathrm{h}_{2}-\mathrm{h}_{1}=\Delta \mathrm{h}=\mathrm{Cp} \Delta \mathrm{~T}
\end{aligned}
$$

$\mathbf{C p}=\frac{\Delta h}{\Delta T}$

The relation between Cp \& Cv:-

$\mathrm{H}=\mathrm{p} . \mathrm{V}+\mathrm{U}$
$\Delta \mathrm{H}=\Delta \mathrm{p} \cdot \mathrm{V}+\Delta \mathrm{U}$
For a perfect gas, from equation $\mathrm{pV}=\mathrm{mRT}$.Also for a perfect gas, from Joule's law, $\mathrm{U}=\mathrm{m}$ Cv T. Hence, substituting,

$$
(\mathrm{m} . \mathrm{Cp} . \Delta \mathrm{T}=\mathrm{m} . \mathrm{R} . \Delta \mathrm{T}+\mathrm{m} . \mathrm{Cv} . \Delta \mathrm{T}) \div \mathrm{mR} \Delta \mathrm{~T}
$$

$$
\mathbf{C p}=\mathbf{R}+\mathbf{C v} \quad \ldots . . \text { Therefore } \mathrm{Cp}>\mathrm{Cv}
$$

Ratio of specific heats

The ratio of the specific heat at constant pressure to the specific heat at constant volume is given the symbol γ (gamma) or gas index.

Relationships between $\mathrm{Cp}, \mathrm{Cv}, \mathrm{R}$ and γ can be derived from equation,
$\mathrm{Cp}=\mathrm{R}+\mathrm{Cv}$
$\mathrm{R}=\mathrm{Cp}-\mathrm{Cv}$
Dividing through by Cv
$\frac{C p}{C v}-1=\frac{R}{C v}$
Therefore using equation, $\gamma=\mathrm{Cp} / \mathrm{Cv}$, then,
$\gamma-1=\frac{\mathrm{R}}{\mathrm{Cv}}$
$\mathrm{Cv}=\frac{\mathrm{R}}{(\gamma-1)}$
$\left(\operatorname{Cv}=\frac{\mathrm{R}}{(\gamma-1)}\right) * \gamma$
$\operatorname{Cv} \gamma=\frac{\gamma \mathrm{R}}{(\gamma-1)}$
($\gamma-1$)
Also from equation, $\mathrm{Cp}=\gamma \mathrm{Cv}$, substituting in equation,
$\mathrm{Cp}=\frac{\gamma \mathrm{R}}{(\gamma-1)}$
EX: - A certain perfect has specific heats as follows, $\mathrm{Cp}=0.846 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{Cv}=0.657$
$\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$. Find the gas constant and the molecular weight of the gas
Sol:-

$$
\mathrm{Cp}-\mathrm{Cv}=\mathrm{R}
$$

$$
\begin{aligned}
\mathrm{R} & =\mathrm{Cp}-\mathrm{Cv} \\
& =0.846-0.657=0.189 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

$\mathrm{R}=8.314 / \mathrm{M}$
$\mathrm{M}=8.314 / 0.189$

$$
=44
$$

EX:- A perfect gas has a molecular weight of 26 and a value of $\gamma=1.26$. calculate Specific heat at constant pressure $\&$ the heat rejected per kg of gas, when the gas is contained in a riged vessel at 3 bar and $315^{\circ} \mathrm{C}$ and is then cooled until the pressure falls to 1.5 bar.

Sol:-
$\mathrm{R}=8.314 / \mathrm{M}=8.314 / 26=0.3198 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{Cv}=\frac{\mathrm{R}}{(\gamma-1)}=\frac{0.3198}{(1.26-1)}=1.229 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
$\mathrm{Cp} / \mathrm{Cv}=\gamma$
$\mathrm{Cp}=\gamma * \mathrm{Cv}=1.26 * 1.229=1.548 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
The volume remains constant for the mass of gas present, and hence the specific volume remains constant
$\mathrm{p}_{1} \mathrm{v}_{1}=\mathrm{R} \mathrm{T}_{1} \& \mathrm{p}_{2} \mathrm{v}_{2}=\mathrm{R} \mathrm{T}_{2}$
Therefore since $v_{1}=v_{2}$
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)$

$$
=588(1.5 / 3)=294 \mathrm{~K}
$$

Where $\mathrm{T}_{1}=315+273=588 \mathrm{~K}$
Heat rejected per kg of gas $=\operatorname{Cv}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
\begin{aligned}
& =1.229(588-294) \\
& =361 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Problems

3-1 The molecular weight of carbon dioxide, CO_{2}, is 44 . In an experiment the value γ for CO_{2} was found to be 1.3. Assuming that CO_{2} is a perfect gas, calculate the gas constant, R, and the specific heats at constant pressure and constant volume, Cp, Cv ($0.189 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; 0.63 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; 0.819 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$)
3-2 Oxygen, O_{2}, at 200 bar is to be stored in a steel vessel at $20^{\circ} \mathrm{C}$ the capacity of the vessel is $0.04 \mathrm{~m}^{3}$. Assuming that O_{2} is a perfect gas, calculate the mass of oxygen that can be stored in the vessel. The vessel is protected against excessive pressure by a fusible plug which will melt if the temperature rises too high. At what temperature must the plug melt to limit the pressure in the vessel to 240bar? The molecular weight of oxygen is 32

3-3 A quantity of a certain perfect gas is compressed from an initial state of $\mathbf{0 . 0 8 5} \mathbf{m}^{\mathbf{3}}, \mathbf{1}$ bar to a final state of $0.034 \mathrm{~m}^{\mathbf{3}}, \mathbf{3 . 9}$ bar. The specific heats at constant volume are $\mathbf{0 . 7 2 4}$ $\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$, and the specific heats at constant pressure are $1.02 \mathrm{~kJ} / \mathrm{kg}$.K. The observed temperature rise is 146 K . Calculate the gas constant, R, the mass of gas present, and the increase of internal energy of the gas.
($0.296 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; 0.11 \mathrm{~kg} ; 11.63 \mathrm{~kJ})$

Unit four

Particular closed system process

Particular closed system process

1- The isochoric process (constant volume process):- In a constant volume process the working substance is contained in a rigid vessel, hence the boundaries of the system are immovable and no work can be done on or by the system, other than paddle wheel work input. It will be assumed that constant volume implies zero work unless stated otherwise.

From the non- flow energy equation,

$$
\mathrm{Q}_{12}=\mathrm{U}_{12}+\mathrm{W}_{12}
$$

Since no work is done, we therefore have

$$
\mathrm{Q}_{12}=\mathrm{U}_{2}-\mathrm{U}_{1}
$$

$\mathrm{W}_{12}=0($ Area under curve p. v diagram $=0)$
$\mathrm{Q}_{12}=\mathrm{mCv}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$v_{1}=v_{2}$

2- Isobaric process (constant pressure process):- for a constant pressure process the boundary must move against an external resistance as heat is supplied ; for instance a fluid in a cylinder behind a piston can be made to undergo a constant pressure process. Since the piston is pushed through a certain distance by the force exerted by the fluid, then work is done by the fluid on its surroundings.
$\mathrm{W}=\int_{v_{1}}^{v_{2}} \mathrm{pd} v$
v_{1}

Therefore, since p is constant,

$$
\mathrm{w}=\mathrm{p}\left(v_{2}-v_{1}\right)
$$

From the non -flow energy equation,
$\mathrm{Q}_{12}=\mathrm{W}_{12}+\Delta \mathrm{U}_{12}$
$\mathrm{q}_{12}=\mathrm{w}_{12}+\Delta \mathrm{u}_{12}$

$$
\begin{aligned}
& =p\left(v_{2}-v_{1}\right)+u_{2}-u_{1} \\
& =\left(p v_{2}+u_{2}\right)-\left(p v_{1}+u_{1}\right)
\end{aligned}
$$

Enthalpy, $h=p v_{1}+u_{1}$, hence,
$\mathrm{q}_{12}=\mathrm{h}_{2}-\mathrm{h}_{1}$
or for mass, m , of a fluid,
$\mathrm{Q}_{12}=\mathrm{H}_{2}-\mathrm{H}_{1}$
$\mathrm{Q}_{12}=\mathrm{mCp}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\mathrm{q}_{12}=\mathrm{Cp}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
\frac{\mathrm{V}}{\mathrm{~T}}=\mathrm{C}=\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

3- The isothermal process (constant temperature process):- in an isothermal expansion heat must be added continuously in order to keep the temperature at the initial value. Similarly in an isothermal compression heat must be removed from the fluid continuously during the process.

$\mathrm{V}_{2}>\mathrm{V}_{1} \quad \& \quad \mathrm{p}_{1}>\mathrm{p}_{2}$
$\mathrm{T}_{2}=\mathrm{T}_{1}$
When the temperature is constant as an isothermal process then we have,
$\mathrm{pV}=\mathrm{mRT}=$ constant
Therefore for an isothermal process for a perfect gas,
$\mathrm{p} . \mathrm{V}=$ constant or $\mathrm{p} . v=$ constant

$$
\mathbf{p}_{1} \cdot \mathbf{V}_{1}=\mathbf{p}_{2} \cdot \mathbf{V}_{2} \mid---\mathrm{p} \cdot \mathrm{~V}=\mathrm{constant}
$$

$\mathrm{Q}_{12}=\mathrm{W}_{12}+\Delta \mathrm{U}_{12}$
$\Delta \mathrm{U}_{12}=\mathrm{mCv}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=0$
$\mathrm{Q}_{12}=\mathrm{W}_{12}$
$\mathrm{W}_{12}=\int_{1}^{2} \mathrm{pdV}$
In this case, $\mathrm{pV}=$ constant, or $\mathrm{p}=\mathrm{c} / \mathrm{V}=\mathrm{mRT} / \mathrm{V}$ (where $\mathrm{c}=$ constant).
$\mathrm{W}_{12}=\int_{\mathrm{V} 1}^{\mathrm{V} 2}(\mathrm{mRT} / \mathrm{V}) \mathrm{dV}$
$\mathrm{W}_{12}=\mathrm{mRT} T \int_{\mathrm{V} 1}^{\mathrm{V} 2}(\mathrm{dV} / \mathrm{V})$
$\mathrm{W}_{12}=\mathrm{mRT}\left(\ln \mathrm{V}_{2}-\ln \mathrm{V}_{1}\right)$

$$
=\mathrm{mR} \mathrm{~T} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right)=\mathrm{pV} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right)
$$

$\mathbf{W}_{12}=\mathbf{m} \mathbf{R} \mathbf{T} \ln \left(\mathbf{V}_{\mathbf{2}} / \mathbf{V}_{\mathbf{1}}\right)$

EX: - O_{2} gas at a pressure of 5 bar , volume is $(0.1) \mathrm{m}^{3}$ and temperature $\left(1227 \mathrm{C}^{\circ}\right)$ expand isothermally until its pressure is $\mathbf{1}$ bar it is then cooled isobarically to original volume. Calculate the change of internal energy, work done and heat transferred during each process.

Sol:-

$\mathrm{p}_{1}=5$ bar, $\mathrm{V}_{1}=0.1 \mathrm{~m}^{3}, \mathrm{~T}_{1}=1227+273=1500^{\circ} \mathrm{K}, \mathrm{p}_{2}=1 \mathrm{bar}$
$\mathrm{T}_{2}=\mathrm{T}_{1}=1500^{\circ} \mathrm{K}$ (isothermal process)
$\mathrm{p}_{3}=\mathrm{p}_{2}=1$ bar (isobaric process)
$V_{3}=V_{1}$ (cooled isobarically to original volume)
$\mathrm{V}_{2}=?, \mathrm{~T}_{3}=?, \mathrm{Q}_{12}=?, \mathrm{~W}_{12}=?, \Delta \mathrm{U}_{12}=?, \mathrm{Q}_{23}=?, \mathrm{~W}_{23}=?, \Delta \mathrm{U}_{23}=?$,
Process (1-2) isothermal process

$$
\begin{aligned}
& \mathrm{Q} 12=\mathrm{w}_{12}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{~T} \ln \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \\
& \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2} \\
& \mathrm{~V}_{2}=\frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{p}_{2}}=\frac{5 * 0.1}{1}=0.5 \mathrm{~m}^{3} \\
& \mathrm{R}=\frac{8.314}{\mathrm{MO}_{2}}=\frac{8.314}{32}=0.259 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

$10^{2} \cdot \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}$

$$
\mathrm{m}=\frac{10^{2} \cdot \mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}}=\frac{10^{2} * 5 * 0.1}{0.259 * 1500}
$$

$\mathrm{Q}_{12}=\mathrm{W}_{12}=0.128 * 0.128 * 1500 * \ln (0.5 / 0.1)$

$$
=800 \mathrm{~kJ}
$$

Process (2-3) isobaric process
$\Delta \mathrm{U}_{23}=\mathrm{m} \cdot \mathrm{Cv} \cdot\left(\mathrm{T}_{3}-\mathrm{T}_{1}\right)$
$\mathrm{Cp}=\mathrm{R}+\mathrm{Cv}$
$\mathrm{Cv}=\mathrm{Cp}-\mathrm{R}=1-0.259=0.741 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{V}_{2} \quad \mathrm{~V}_{3}$
$\overline{T_{2}}=\frac{-}{T_{3}}$
$\mathrm{T}_{3}=\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}} * \mathrm{~T}_{2}=\frac{0.1}{0.5} * 1500=300^{\circ} \mathrm{K}$
$\Delta \mathrm{U}_{23}=0.128 * 0.791(300-1500)$

$$
=-113.8 \mathrm{~kJ}
$$

$\mathrm{Q}_{23}=\Delta \mathrm{H}_{23}=\mathrm{m} . \mathrm{Cp}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$

$$
\begin{aligned}
& =0.128 * 1(300-1500) \\
& =-153.8 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{W}_{23} & =\mathrm{Q}_{23}-\Delta \mathrm{U}_{23} \\
& =-153.8-(-113.8)=-40 \mathrm{~kJ} \\
\text { Or } & \begin{aligned}
\mathrm{W}_{23} & =\mathrm{p}_{3} \mathrm{~V}_{3}-\mathrm{p}_{2} \mathrm{~V}_{2} \\
& =10^{2} * \mathrm{p}_{2}\left(\mathrm{~V}_{3}-\mathrm{V}_{2}\right) \\
& =10^{2} * 1(0.1-0.5) \\
& =-40 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Q}_{23} & =\mathrm{W}_{23}+\Delta \mathrm{U}_{23} \\
& =-40-113.8 \\
& =-153.8 \mathrm{~kJ}
\end{aligned}
$$

EX: - Air in a closed vessel of fixed volume $0.15 \mathrm{~m}^{\mathbf{3}}$, its pressure is 10 bar and at temperature $250^{\circ} \mathrm{C}$. If the vessel is cooled so that the pressure falls to 2.5 bar, determine the final temperature, and the heat transferred. Take ($\mathrm{Cv}=0.71 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{R}=0.286 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$).

Sol:-
Closed vessel $=$ constant volume
$\mathrm{V}_{1}=0.15 \mathrm{~m}^{3}=\mathrm{V}_{2}, \mathrm{p}_{1}=10 \mathrm{bar}, \mathrm{T}_{1}=250+273=523^{\circ} \mathrm{K}, \mathrm{p}_{2}=2.5 \mathrm{bar}, \mathrm{T}_{2}=$? , $\mathrm{Q}_{12}=$?

$\mathrm{p}_{2} \quad \mathrm{p}_{1}$
$-=-$
$\mathrm{T}_{2} \quad \mathrm{~T}_{1}$
$\mathrm{T}_{2}=\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} * \mathrm{~T}_{1}=\frac{2.5}{10} * 523=130.75^{\circ} \mathrm{K}=-142.25^{\circ} \mathrm{C}$
$\mathrm{Q}_{12}=\mathrm{mCv}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$10^{2} \cdot \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}$
$\mathrm{m}=\frac{10^{2} * 10 * 0.15}{0.286 * 523}=1.003 \mathrm{~kg}$
$\mathrm{Q}_{12}=1.003 * 0.717(130.75-523)=-282.08 \mathrm{~kJ}$
EX: - 2 kg of air initially at $150^{\circ} \mathrm{C}$ expand at constant pressure at 0.6 bar until the volume is doubled. Take $\mathbf{C p}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \gamma=1.4$, Find,
a- the final temperature
b- the work transferred
c- the heat transferred
Sol:-
$\mathrm{m}=2 \mathrm{~kg}$
$\mathrm{T}_{1}=150+273=423 \mathrm{~K}, \mathrm{p}=0.6 \mathrm{bar}, \mathrm{V}_{2}=2 \mathrm{~V}_{1}$

$\mathrm{V}_{2} \quad \mathrm{~V}_{1}$
$-=-$
$\mathrm{T}_{2} \quad \mathrm{~T}_{1}$
$\mathrm{T}_{2}=\frac{\mathrm{V}_{2} * \mathrm{~T} 1}{\mathrm{~V}_{1}}$
$\mathrm{T}_{2}=\frac{2 \mathrm{~V}_{1} * 423}{\mathrm{~V}_{1}}=846 \mathrm{~K}-273=573{ }^{\circ} \mathrm{C}$
$\mathrm{W}_{12}=10^{2} * \mathrm{p}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$\mathrm{Cp}=\frac{\gamma \mathrm{R}}{\gamma-1}$
$\mathrm{R}=\frac{\mathrm{Cp}(\gamma-1)}{\gamma}$
$\mathrm{R}=\frac{1.005(1.4-1)}{1.4}=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$10^{2} * \mathrm{p} * \mathrm{~V}_{1}=\mathrm{m} * \mathrm{R} * \mathrm{~T}_{1}$
$10^{2} * 0.6 * \mathrm{~V}_{1}=2 * 0.287 * 423$
$\mathrm{V}_{1}=4.0467 \mathrm{~m}^{3}, \mathrm{~V}_{2}=8.0934 \mathrm{~m}^{3}$
$W_{12}=10^{2} * 0.6(8.0934-4.0467)=+242.802 \mathrm{~kJ}$
$\mathrm{Q}_{12}=\mathrm{m} * \mathrm{Cp}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
=2^{*} 1.005 *(846-423)=+850.23 \mathrm{~kJ}
$$

EX: - Air initially at $127^{\circ} \mathrm{C}$ and 1bar is compressed isothermally to 8bar. Find for unit mass of air,
a- change of internal energy
b- heat transferred
c- work done
Sol: -
$\mathrm{T}_{1}=127+273=400^{\circ} \mathrm{C}, \mathrm{p}_{1}=1 \mathrm{bar}$, isothermally $\mathrm{T}=$ constant, $\mathrm{p}_{2}=8 \mathrm{bar}$
$\Delta \mathrm{u}_{12}=0$
$q_{12}=w_{12}=R . T \ln -\ldots \ldots .\left(v_{2} / v_{1}=p_{1} / p_{2}\right)$ $=\mathrm{R} . \mathrm{T} \ln \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}=0.287 * 400 * \ln \frac{1}{8}=-238.719 \mathrm{~kJ} / \mathrm{kg}$

4- The adiabatic process: - is one in which no heat is transferred to or from the fluid during the process.
$\mathrm{Q}_{12}=0 \quad \ldots \ldots$. (An adiabatic process)
$\mathrm{Q}_{12}=\Delta \mathrm{u}_{12}+\mathrm{w}_{12}$
$\mathrm{w}_{12}=-\Delta \mathrm{u}_{12}$

$\int_{1}^{2} \mathrm{p} \cdot \mathrm{dV}=-\mathrm{mCv}{ }_{1}^{2} \int \mathrm{dT}$
$\mathrm{p} . \mathrm{V}=\mathrm{m} . \mathrm{R} . \mathrm{T}$
$\mathrm{p}=\frac{\mathrm{m} . \mathrm{R} \cdot \mathrm{T}}{\mathrm{V}} \quad \& \mathrm{Cv}=\frac{\mathrm{R}}{\gamma-1}$
${ }_{1}^{2} \int \frac{\mathrm{~m} . \mathrm{R} . \mathrm{T}}{\mathrm{V}} \cdot \mathrm{dV}=-\mathrm{m} \frac{\mathrm{R}}{\gamma-1}{ }_{1}^{2} \int_{\mathrm{dT}}$
$-(\gamma-1) \int_{1}^{2} \frac{d V}{V}={ }_{1}^{2} \int \frac{d T}{T}$
$-(\gamma-1)\left[\ln \mathrm{V}_{2}-\ln \mathrm{V}_{1}\right]=\ln \mathrm{T}_{2}-\ln \mathrm{T}_{1}$
$-(\gamma-1) \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
$\ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{-(\gamma-1)}=\ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
$\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
$\mathbf{T}_{1} \cdot \mathbf{V}_{1}{ }^{\gamma-1}=\mathbf{T}_{\mathbf{2}} \cdot \mathbf{V}_{\mathbf{2}}{ }^{\gamma-1}=$ const.

$$
\begin{aligned}
& \frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \cdot \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
& \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \cdot \mathrm{~V}_{2}}{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}} \\
& \left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \\
& \left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=\frac{\mathrm{p}_{2} \cdot \mathrm{~V}_{2}}{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}} \\
& \mathrm{~V}_{1}^{\gamma-1} * \mathrm{~V}_{1} \\
& \mathrm{~V}_{2}^{\gamma-1} * \mathrm{~V}_{2} \quad \mathrm{p}_{1} \\
& \left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \\
& \mathbf{p}_{1} \cdot \mathbf{V}_{1}^{\gamma}=\mathbf{p}_{2} \cdot \mathbf{V}_{\mathbf{2}}{ }^{\gamma}=\mathbf{c o n s t} \text {. } \\
& \mathrm{p}_{1} . \mathrm{V}_{1} \quad \mathrm{p}_{2} . \mathrm{V}_{2} \\
& \mathrm{~T}_{1}=\frac{\mathrm{T}_{2}}{} \\
& \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{p}_{2} \cdot \mathrm{~T}_{1}}{\mathrm{p}_{1} \cdot \mathrm{~T}_{2}} \\
& \left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=\left(\frac{\mathrm{p}_{2} . \mathrm{T}_{1}}{\mathrm{p}_{1} . \mathrm{T}_{2}}\right)^{\gamma-1} \\
& \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{p}_{2} . \mathrm{T}_{1}}{\mathrm{p}_{1 .} \mathrm{T}_{2}}\right)^{\gamma-1}
\end{aligned}
$$

$\frac{\mathrm{T}_{2} \cdot \mathrm{~T}_{2}^{\gamma-1}}{\mathrm{~T}_{1} \cdot \mathrm{~T}_{1}{ }^{\gamma-1}}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\gamma-1}$
$\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\gamma-1}$
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma}}$

$\mathrm{p} . \mathrm{V}^{\gamma}=$ constant
T. $\mathrm{V}^{\gamma-1}=$ constant

T
$\overline{\mathrm{p}^{\gamma-1 / 1}}=$ constant
$W_{12}=-\Delta U_{12}$
$\mathrm{w}_{12}={ }_{1}^{2} \mathrm{f} . \mathrm{dV}$
$\mathrm{p} \cdot \mathrm{V}^{\gamma}=$ constant

$$
\begin{aligned}
& \mathrm{p}=\frac{\text { Const }}{\mathrm{V}^{\gamma}} \\
& \mathrm{w}_{12}={ }_{1}^{2} \int \frac{\text { const. }}{\mathrm{V}^{\gamma}} \cdot \mathrm{dV}
\end{aligned}
$$

$$
=\text { const. } . \int^{2} \mathrm{~V}^{-\gamma} . \mathrm{dV}
$$

$$
=\text { const. }\left(\frac{\mathrm{V}^{1-\gamma}}{1-\gamma}\right)_{1}^{2}
$$

$=\frac{\text { const. } \mathrm{V}_{2}{ }^{1-\gamma}-\text { const. } \mathrm{V}_{1}{ }^{1-\gamma}}{1-\gamma}$
$=\frac{\mathrm{p} \cdot \mathrm{V}_{2}{ }^{\gamma} \cdot \mathrm{V}_{2}{ }^{1-\gamma}-\mathrm{p} \cdot \mathrm{V}_{1}{ }^{\gamma} \mathrm{V}_{1}{ }^{1-\gamma}}{1-\gamma}$

$\mathrm{w}_{12}=\frac{\mathrm{p}_{2} \cdot \mathrm{~V}_{2}-\mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{1-\gamma}=\frac{\mathrm{m} \cdot . \mathrm{R} \cdot \mathrm{T}_{2}-\mathrm{m} \cdot . \mathrm{R} \cdot \mathrm{T}_{1}}{1-\gamma}=\frac{\mathrm{m} \cdot . \mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{1-\gamma}$

$$
\mathrm{w}_{12}=\frac{\mathrm{m} . . \mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\gamma-1}=\mathrm{mCv}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)=-\mathrm{mCv}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=-\Delta \mathrm{U}_{12}
$$

We can call this process isentropic process because $\mathrm{s}_{1}=\mathrm{s}_{2}$

5- The polytropic process: -

$$
\mathrm{p} \cdot \mathrm{~V}^{\mathrm{n}}=\mathrm{constant}
$$

The index n depends only on the heat and work quantities during the process. For example,
When $\mathrm{n}=0 \quad \mathrm{p} . \mathrm{V}^{0}=$ constant, i.e. $\mathrm{p}=\mathrm{constant}$
When $\mathrm{n}=\infty \quad \mathrm{p} \cdot \mathrm{V}^{\infty}=$ constant

$$
\text { or } \mathrm{p}^{1 / \infty} \cdot \mathrm{V}=\mathrm{constant} \text {, i.e. } \mathrm{V}=\mathrm{constant}
$$

When $\mathrm{n}=1 \quad \mathrm{p} . \mathrm{V}=$ constant, i.e. $\mathrm{T}=$ constant
When $\mathrm{n}=\gamma \quad \mathrm{p} . \mathrm{V}^{\gamma}=$ constant, i.e. reversible adiabatic

Generally $(1<\mathrm{n}<\gamma)$
As p. $\mathrm{V}^{\mathrm{n}}=$ constant
\therefore From general equation of gases

$$
T . V^{\mathrm{n}-1}=\text { constant } \quad \ldots . . \mathrm{a}
$$

For calculation of heat,

$$
\begin{aligned}
\mathrm{Q}_{12} & =\mathrm{w}_{12}+\Delta \mathrm{U}_{12} \\
& =\frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}-\mathrm{p}_{2} \cdot \mathrm{~V}_{2}}{\mathrm{n}-1}+\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =\frac{\left.\mathrm{mR(} \mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{n}-1}-\mathrm{m} \frac{\mathrm{R}}{\gamma-1}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)
\end{aligned}
$$

$$
=m R\left(T_{1}-T_{2}\right)\left(\frac{1}{n-1}-\frac{1}{\gamma-1}\right)
$$

$$
=m R\left(T_{1}-T_{2}\right)\left(\frac{(\gamma-1)-(n-1)}{(n-1)(\gamma-1)}\right)
$$

$$
=m R\left(T_{1}-T_{2}\right)\left(\frac{(\gamma-n)}{(n-1)(\gamma-1)}\right)
$$

$$
\mathrm{Q}_{12}=\frac{\mathrm{mR}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{n}-1}-\frac{\gamma-\mathrm{n}}{\gamma-1}
$$

$$
\mathrm{Q}_{12}=\mathrm{w}_{12}-\frac{\gamma-\mathrm{n}}{\gamma-1}
$$

$\mathrm{n}=$ is called the index of expansion

State 1 to state A is constant pressure heating,
State 1 to state B is isothermal expansion,
State 1 to state C is polytropic expansion,
State 1 to state D is reversible adiabatic expansion,
State 1 to state E is constant Volume cooling,
EX: - 2 kg of gas, occupying $0.7 \mathrm{~m}^{\mathbf{3}}$, had an original temperature of $\mathbf{1 5}^{\circ} \mathrm{C}$. It was then heated at constant volume until its temperature became $135^{\circ} \mathrm{C}$. How much heat transferred to the gas? \& what was its final pressure? [Take $C v=0.75 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{R}=0.29 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$].
Sol:-
$\mathrm{m}=2 \mathrm{~kg}, \mathrm{~V}_{1}=0.7 \mathrm{~m}^{3}, \mathrm{~T}_{1}=15+273=288^{\circ} \mathrm{K}, \mathrm{T}_{2}=135+273=408^{\circ} \mathrm{K}$,
$\mathrm{Q}_{12}=$? , $\mathrm{p}_{2}=$?,

$$
\begin{aligned}
\mathrm{Q}_{12} & =\mathrm{m} . \mathrm{Cv}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =2 * 0.75(408-288) \\
& =172.8 \mathrm{~kJ}
\end{aligned}
$$

$\mathrm{p}_{1} / \mathrm{T}_{1}=\mathrm{p}_{2} / \mathrm{T}_{2}$
$10^{2} \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}$
$\mathrm{p}_{1}=\frac{\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}}{10^{2} \mathrm{~V}_{1}}=\frac{2 * 0.29 * 288}{10^{2} * 0.7}=2.38 \mathrm{bar}$
$\mathrm{p}_{2}=\left(\mathrm{p}_{1} / \mathrm{T}_{1}\right) * \mathrm{~T}_{2}=(2.38 / 288) * 408=3.38 \mathrm{bar}$
EX: - A gas whose pressure, volume and temperature are $\mathbf{2 7 5 k N} / \mathbf{m}^{2}, 0.09 \mathbf{m}^{\mathbf{3}}$ and $185^{\circ} \mathrm{C}$, respectively, has its state changed at constant pressure until its becomes $15^{\circ} \mathrm{C}$. How much heat is transferred and how much work is done during the process? [Take $\mathrm{R}=0.29 \mathrm{~kJ} / \mathrm{kg}$.K, Cp $=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}]$.

Sol:-
$\mathrm{p}_{1}=275 \mathrm{kN} / \mathrm{m}^{2}=2.75 \mathrm{bar}=\mathrm{p}_{2}$ at constant pressure, $\mathrm{V}_{1}=0.09 \mathrm{~m}^{3}$,
$\mathrm{T}_{1}=185+273=458^{\circ} \mathrm{K}$,
$\mathrm{Q}_{12}=\Delta \mathrm{H}_{12}$
$=\mathrm{m} \cdot \mathrm{Cp} \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$10^{2} \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}$
$\mathrm{m}=\frac{10^{2} \mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{R} \cdot \mathrm{T}_{1}}=\frac{10^{2 *} 2.75^{*} 0.09}{0.29 * 458}=0.186 \mathrm{~kg}$
$\mathrm{Q}_{12}=\mathrm{m} . \mathrm{Cp} .\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=0.186 * 1.005(288-458)=-31.7781 \mathrm{~kJ}$
$\mathrm{W}_{12}=10^{2} \cdot \mathrm{p}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$
$\mathrm{V}_{2} / \mathrm{T}_{2}=\mathrm{V}_{1} / \mathrm{T}_{1}$
$\begin{aligned} \mathrm{V}_{2} & =\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)^{*} \mathrm{~V}_{1} \\ & =(288 / 458) * 0.09=0.0565 \mathrm{~m}^{3}\end{aligned}$
$\mathrm{W}_{12}=10^{2} \cdot \mathrm{p}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$
$=10^{2} * 2.75(0.0565-0.09)=-9.2125 \mathrm{~kJ}$

Or

$$
\begin{aligned}
& \Delta \mathrm{U}_{12}=\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& \mathrm{R}=\mathrm{Cp}-\mathrm{Cv} \\
& \mathrm{Cv}=\mathrm{Cp}-\mathrm{R}=1.005-0.29=0.715 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \Delta \mathrm{U}_{12}=0.186 * 0.715(288-458)=-22.6083 \mathrm{~kJ} \\
& \mathrm{w}_{12}=\mathrm{Q}_{12}-\Delta \mathrm{U}_{12} \\
& \quad=-31.7781-(-22.6083)=-9.1698 \mathrm{~kJ}
\end{aligned}
$$

EX: - A quantity of gas occupies a volume of $0.3 \mathrm{~m}^{3}$ at a pressure of $100 \mathrm{kN} / \mathrm{m}^{2}$ and a temperature of $20^{\circ} \mathrm{C}$. The gas is compressed isothermally to a pressure of $500 \mathrm{kN} / \mathrm{m}^{2}$ and then expanded adiabatically to its initial volume. Determine, a) the heat received or rejected during compression, b) the change of internal energy during the expansion. [Take $\mathrm{R}=0.29 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}]$.

Sol:-
$\mathrm{V}_{1}=0.3 \mathrm{~m}^{3}, \mathrm{p}_{1}=100 \mathrm{kN} / \mathrm{m}^{2}=1 \mathrm{bar}, \mathrm{T}_{1}=20+273=293 \mathrm{~K}, \mathrm{p}_{2}=500 \mathrm{kN} / \mathrm{m}^{2}$

Process (1-2) isothermal compression
$\mathrm{Q}_{12}=\mathrm{mR} \mathrm{T} \mathrm{T}_{1} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right)$
$\mathrm{m}=\frac{10^{2} \mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{R} \cdot \mathrm{T}_{1}}=\frac{10^{2 *} 1 * 0.3}{0.29 * 293}=0.35 \mathrm{~kg}$

$$
\mathrm{p}_{1 .} \mathrm{V}_{1}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2}
$$

$$
\mathrm{V}_{2}=\frac{\mathrm{p}_{1} . \mathrm{V}_{1}}{\mathrm{p}_{2}}=\frac{1^{*} 0.3}{5}=0.06 \mathrm{~m}^{3}
$$

$$
\mathrm{Q}_{12}=0.35 * 0.29 * 293 \ln (0.06 / 0.3)
$$

$$
=-47.86 \mathrm{~kJ}
$$

Process (2-3) adiabatic expansion

$$
\begin{aligned}
& \mathrm{w}_{23}=\frac{10^{2}\left(\mathrm{p}_{3} . \mathrm{V}_{3}-\mathrm{p}_{2} . \mathrm{V}_{2}\right)}{1-\gamma} \\
& \gamma=\mathrm{Cp} / \mathrm{Cv} \\
& \mathrm{Cv}=\mathrm{Cp}-\mathrm{R}=1.005-0.29=0.715 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \gamma=1.005 / 0.715=1.4 \\
& \mathrm{p}_{3}=\frac{\mathrm{p}_{2} \cdot \mathrm{~V}_{2}^{\gamma}}{\mathrm{V}_{3}^{\gamma}}=\frac{5 *(0.06)^{1.4}}{(0.3)^{1.4}}=0.52 \mathrm{bar} \\
& \mathrm{w}_{12}=\frac{\left(5 * 0.06^{-}-0.52 * 0.3\right) * 10^{2}}{1-1.4}=0.36^{*} 10^{2} \mathrm{~kJ}
\end{aligned}
$$

$$
\Delta \mathrm{U}_{12}=-\mathrm{w}_{12}=-0.36^{*} 10^{2} \mathrm{~kJ}
$$

EX: - A gas expands adiabatically from a pressure and volume of 7 bars $\& 0.015 \mathbf{m}^{\mathbf{3}}$, respectively, to a pressure of 1.4 bar. Determine the final volume and the work done by the gas. What is the change of internal energy in this case?
[Take $\mathrm{Cp}=1.046 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{Cv}=0.752 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}]$.
Sol:-

$$
\mathrm{p}_{1} \cdot \mathrm{~V}_{1}^{\gamma}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2}^{\gamma}
$$

$$
\mathrm{V}_{2}{ }^{\gamma}=\frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}^{\gamma}}{\mathrm{p}_{2}}
$$

$$
\gamma=\mathrm{Cp} / \mathrm{Cv}=1.046 / 0.752=1.39
$$

$$
\frac{7^{*}(0.015)^{1.39}}{1.4}=0.014579
$$

$$
\mathrm{V}_{2}{ }^{1.39}=0.014579
$$

$$
\mathrm{V}_{2}=0.014579^{1 / 1.39}=0.0477 \mathrm{~m}^{3}
$$

$$
\mathrm{w}_{12}=\frac{\left(\mathrm{p}_{1} \cdot \mathrm{~V}_{1}-\mathrm{p}_{2} \cdot \mathrm{~V}_{2}\right) * 10^{2}}{\gamma-1}
$$

$$
\mathrm{w}_{12}=\frac{(7 * 0.015-1.4 * 0.0477) * 10^{2}}{1.39-1}=9.555 \mathrm{~kJ}
$$

$$
\mathrm{w}_{12}=-\Delta \mathrm{U}_{12}=-9.555 \mathrm{~kJ}
$$

EX: - 0.25 kg of air at a pressure of 1.4 bar occupies $0.15 \mathrm{~m}^{3}$ and from this condition it is compressed to 14 bar according to the law $p \cdot V^{1.25}=C$. Determine,
a- the change of internal energy ,
b- the work done,
c- The heat transferred, [Take $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{Cv}=0.718 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}]$.
Sol:-
$\mathrm{m}=0.25 \mathrm{~kg}, \mathrm{p}_{1}=1.4 \mathrm{bar}, \mathrm{V}_{1}=0.15 \mathrm{~m}^{3}$
$\mathrm{p}_{1}=7 \mathrm{bar}, \mathrm{V}_{1}=0.015 \mathrm{~m}^{3}, \mathrm{~s}=\mathrm{C}, \mathrm{p}_{2}=1.4 \mathrm{bar}$

$$
\begin{aligned}
& \Delta \mathrm{U}_{12}=\mathrm{m} . \mathrm{Cv}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& 10^{2} \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{~T}_{1} \\
& \mathrm{R}=\mathrm{Cp}-\mathrm{Cv} \\
& =1.005-0.718=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \mathrm{~T}_{1}=\frac{10^{2} \mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{~m} \cdot \mathrm{R}}=\frac{10^{2 *} 1.4 * 0.15}{0.25 * 0.287}=292.68 \mathrm{~K} \\
& \frac{\mathrm{~T}_{1}}{\mathrm{p}_{1} \mathrm{n}^{\mathrm{n}-1 / \mathrm{n}}}=\frac{\mathrm{T}_{2}}{\mathrm{p}_{2}^{\mathrm{n}-1 / \mathrm{n}}} \\
& \frac{292.68}{1.4^{(1.25-1) / 1.25}}=\frac{\mathrm{T}_{2}}{14^{(1.25-1) / 1.25}} \\
& \mathrm{~T}_{2}=463.867 \mathrm{~K}
\end{aligned}
$$

$$
\Delta \mathrm{U}_{12}=0.25 * 0.718(463.867-292.68)=30.73 \mathrm{~kJ}
$$

$$
\mathrm{w}_{12}=\frac{\left(\mathrm{p}_{1} \cdot \mathrm{~V}_{1}-\mathrm{p}_{2} \cdot \mathrm{~V}_{2}\right) * 10^{2}}{\mathrm{n}-1}
$$

$$
\mathrm{w}_{12}=\frac{\mathrm{m} . \mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{n}-1}=\frac{0.25^{*} 0.287(292.68-463.867)}{1.25-1}=-49.13 \mathrm{~kJ}
$$

$$
\mathrm{Q}_{12}=\mathrm{w}_{12}+\Delta \mathrm{U}_{12}
$$

$$
=-49.13+30.73=-18.4 \mathrm{~kJ}
$$

EX: - If 1 kg of gas expands adiabatically, its temperature falls from $240{ }^{\circ} \mathrm{Cto116}{ }^{\circ} \mathrm{C}$, while the volume is doubled. The gas does 19.5 kJ of work in this process. Find the values of the specific heats Cv, Cp and the molecular weight of the gas.

Sol:-
$\mathrm{m}=1 \mathrm{~kg}, \mathrm{~T}_{1}=240+273=513 \mathrm{~K}, \mathrm{~T}_{2}=116+273=389 \mathrm{~K}, \mathrm{w}_{12}=+91.5 \mathrm{~kJ}$

$\mathrm{Q}_{12}=0$
$\mathrm{w}_{12}=-\mathrm{m} \cdot \operatorname{Cv}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$10^{2} \cdot \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} . \mathrm{R} \cdot \mathrm{T}_{1}$
$\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{\gamma-1}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \quad$ the volume is doubled when it expand
$(2)^{\gamma-1}=513 / 389$
$(\gamma-1) \ln 2=\ln (513 / 389)$
$\gamma=1.399$
$\mathrm{w}_{12}=-\mathrm{m} \cdot(\mathrm{R} / \gamma-1)\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\mathrm{R}=\frac{\mathrm{w}_{12} *(\gamma-1)}{\mathrm{m}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}=\frac{91.5 *(1.399-1)}{1^{*}(513-389)}=0.294 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
$\mathrm{Cv}=\mathrm{R} /(\gamma-1)$
$=0.294 /(1.399-1)$
$=0.738 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{Cp}=\mathrm{R}+\mathrm{Cv}$
$=0.294+0.738=1.032 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{M}=8.314 / \mathrm{R}=8.314 / 0.294=28.27 \mathrm{~kg} / \mathrm{mol}$.

EX: - 0.675 kg of gas at 14 bar $\& 280^{\circ} \mathrm{C}$ is expanded to four times the original volume according to the law $p \cdot V^{1.3}=C$. Determine
a- the original and final volume of the gas,
b- the final pressure
c- The final temperature [Take $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$].
Sol:-
$\mathrm{m}=0.675 \mathrm{~kg}, \mathrm{p}_{1}=14 \mathrm{bar}, \mathrm{T}_{1}=280+273=553{ }^{\circ} \mathrm{K}, \mathrm{n}=1.3, \mathrm{~V}_{2}=4 \mathrm{~V}_{1}$

$10^{2} \cdot \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} . \mathrm{R} \cdot \mathrm{T}_{1}$
$\mathrm{V}_{1}=\frac{\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}}{10^{2} \mathrm{p}_{1}}=\frac{0.675 * 0.287 * 553}{10^{2} * 14}=0.0765 \mathrm{~m}^{3}$ the original volume
$\mathrm{V}_{2}=4 \mathrm{~V}_{1}=4^{*} 0.0765=0.306 \mathrm{~m}^{3}$ the final volume
$\mathrm{p}_{1} . \mathrm{V}_{1}{ }^{\mathrm{n}}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2}{ }^{\mathrm{n}}$
$\mathrm{p}_{2}=\left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)^{\mathrm{n}} \mathrm{p}_{1}=\left(\mathrm{V}_{1} / 4 \mathrm{~V}_{1}\right)^{1.3} * 14=2.309 \mathrm{bar}=0.2309 \mathrm{MN} / \mathrm{m}^{3}$ the final pressure
$\mathrm{T}_{1} \cdot \mathrm{~V}_{1}{ }^{\mathrm{n}-1}=\mathrm{T}_{2} \cdot \mathrm{~V}_{2}{ }^{\mathrm{n}-1}$
$\mathrm{T}_{2}=\left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)^{\mathrm{n}-1} * \mathrm{~T}_{1}=\left(\mathrm{V}_{1} / 4 \mathrm{~V}_{1}\right)^{1.3-1} * 553=364.84{ }^{\circ} \mathrm{K}=91.84{ }^{\circ} \mathrm{C}$ final temperature
EX: - A gas expand according to the law $p \cdot V^{1.3}=C$ from a pressure of 10 bar $\&$ a volume $0.003 \mathrm{~m}^{3}$ to a pressure 1 bar. How much heat was transferred?
[Take $\gamma=1.4, \mathrm{Cv}=0.718 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$]
Sol:-
$\mathrm{p}_{1}=10 \mathrm{bar}, \mathrm{V}_{1}=0.003 \mathrm{~m}^{3}, \mathrm{p}_{2}=1 \mathrm{bar}$

EX: - A gas at a pressure of 14 bar and a temperature of $360{ }^{\circ} \mathrm{C}$ is expanded adiabatically to a pressure of 1 bar the gas is then heated at constant volume until it again attains $360^{\circ} \mathrm{C}$ when its pressure is found to be 2.2 bar and finally it is compressed isothermally until the original pressure of $\mathbf{1 4}$ bar is attained. Find for until mass.
a- the value of the adiabatic index γ,
b- The change in internal energy during each process. [Take $\mathbf{C p}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$]
Sol:-

$\mathrm{p}_{1}=14$ bar, $\mathrm{T}_{1}=360+273=633^{\circ} \mathrm{K}, \mathrm{p}_{2}=1$ bar, $\mathrm{p}_{3}=2.2$ bar, $\mathrm{m}=1 \mathrm{~kg}$
$\mathrm{V}_{3}=\mathrm{V}_{2}$ heated at constant volume
$\mathrm{T}_{4}=\mathrm{T}_{3}=633^{\circ} \mathrm{K}$ isothermal compression
$\mathrm{p}_{4}=\mathrm{p}_{1}=14$ bar compressed to original pressure
$\mathrm{p}_{2} / \mathrm{T}_{2}=\mathrm{p}_{3} / \mathrm{T}_{3}$
$\mathrm{T}_{2}=\left(\mathrm{p}_{2} / \mathrm{p}_{3}\right) * \mathrm{~T}_{3}=(1 / 2.2) * 633=287.73{ }^{\circ} \mathrm{K}$
$\frac{\mathrm{T}_{1}}{\mathrm{p}_{1}{ }^{\gamma-1 / \gamma}}=\frac{\mathrm{T}_{2}}{\mathrm{p}_{2}{ }^{\gamma-1 / \gamma}}$
$\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\gamma-1 / \gamma}=\mathrm{T}_{2} / \mathrm{T}_{1}$
$\gamma-1$
$-\ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)=\ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$
γ
$\gamma-1$
$-\ln (1 / 14)=\ln (287.73 / 633)$
γ
$\gamma-1$
$-(-2.64)=-0.788$
γ
$[1-(1 / \gamma)](-2.64)=-0.788$
$[1-(1 / \gamma)]=0.2986$
$0.7013=(1 / \gamma)$
$\gamma=1.425$

$$
\Delta \mathrm{U}_{12}=\mathrm{m} . \mathrm{Cv}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

$$
\begin{aligned}
\Delta \mathrm{U}_{12} & =\mathrm{m} .(\mathrm{Cp} / \gamma)\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \\
& =1 *(1.005 / 1.425)(287.73-633) \\
& =-243.36 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
\Delta \mathrm{U}_{23} & =\mathrm{m} .(\mathrm{Cp} / \gamma)\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right) \\
& =1 *(1.005 / 1.425)(633-287.73) \\
& =243.36 \mathrm{~kJ}
\end{aligned}
$$

$\Delta \mathrm{U}_{34}=0$
EX: - A certain gas has a density of $1.875 \mathrm{~kg} / \mathrm{m}^{3}$ at 1 bar and $15{ }^{\circ} \mathrm{C}$. Calculate the characteristic gas constant. When 0.9 kg of this gas is heated from $15{ }^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$ at constant pressure, the heat required is 175 kJ . Calculate the specific heat capacity of the gas at constant pressure and the specific heat at constant volume. Calculate also, the change of internal energy and the external work done during the heating.

Sol:-
$\rho_{1}=1.875 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{p}_{1}=1 \mathrm{bar}, \mathrm{T}_{1}=15+273=288^{\circ} \mathrm{K}, \mathrm{m}=0.9 \mathrm{~kg}, \mathrm{~T}_{2}=250+273=523^{\circ} \mathrm{K}$ $\mathrm{p}_{1}=\mathrm{p}_{2}=1$ bar at constant pressure, $\mathrm{Q}_{12}=175 \mathrm{~kJ}$

$\mathrm{Q}_{12}=\Delta \mathrm{H}_{12}$

$$
=\mathrm{m} \cdot \mathrm{Cp}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

$175=0.9 * \mathrm{Cp} *(523-288)$
$\mathrm{Cp}=0.827 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\rho_{1}=\mathrm{m} / \mathrm{V}_{1}$

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{m} / \rho_{1}=0.9 / 1.875=0.48 \mathrm{~m}^{3} \\
& 10^{2} \cdot \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{~T}_{1} \\
& \mathrm{R}=\frac{10^{2} \cdot \mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{~m} \cdot \mathrm{~T}_{1}}=\frac{10^{2} * 1 * 0.48}{0.9 * 288}=0.185 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \begin{aligned}
& \mathrm{Cv}=\mathrm{Cp}-\mathrm{R} \\
&=0.827-0.185=0.642 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \begin{aligned}
\Delta \mathrm{U}_{12} & =\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =0.9 * 0.642 *(523-288) \\
\quad & =135.78 \mathrm{~kJ} \\
\mathrm{w}_{12}= & \mathrm{Q}_{12}-\Delta \mathrm{U}_{12} \\
& =175-135.78=39.22 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

EX: - A gas whose original pressure and temperature were $300 \mathrm{kN} / \mathrm{m}^{2}$ and $25{ }^{\circ} \mathrm{C}$. Respectively, is compressed according to the law $p . V^{1.4}=C$ until its temperature becomes $180^{\circ} \mathrm{C}$. Determine the new pressure of the gas.

Sol:-
$\mathrm{p}_{1}=300 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{~T}_{1}=25+273=298{ }^{\circ} \mathrm{K}, \mathrm{p} \cdot \mathrm{V}^{1.4}=\mathrm{C}, \mathrm{T}_{2}=180+273=453{ }^{\circ} \mathrm{K}$

$\frac{\mathrm{T}_{2}}{\mathrm{p}_{2}{ }^{\gamma-1 / \gamma}}=\frac{\mathrm{T}_{1}}{\mathrm{p}_{1}{ }^{\gamma-1 / \gamma}}$
$\frac{\mathrm{T}_{2}{ }^{\gamma / \gamma-1}}{\mathrm{p}_{2}}=\frac{\mathrm{T}_{1}{ }^{\gamma / \gamma-1}}{\mathrm{p}_{1}}$
$\frac{(453)^{1.4 / 1.4-1}}{\mathrm{p}_{2}}=\frac{(298)^{1.4 / 1.4-1}}{300^{*} 10^{-2}}$
$\mathrm{p}_{2}=12.99 \mathrm{bar}$
EX: - A certain mass of air initially at a pressure of 4.8 bar is expanded adiabatically to a pressure of 0.94 bar. It is then heated at constant volume until it attains its initial temperature, when the pressure is found to be 1.50 bar. State the type of compression necessary to bring the air back to its original pressure and volume. Using the information calculate the value of γ. If the initial temperature of the air is $190{ }^{\circ} \mathrm{C}$, determine the work done per kg of air during the adiabatic expansion [take $\mathrm{R}=0.29 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$].

Sol:-
$\mathrm{p}_{1}=4.8 \mathrm{bar}, \mathrm{T}_{1}=190+273=463^{\circ} \mathrm{K}$,
$\mathrm{s}=\mathrm{C}$ adiabatic exp. \quad exp. $\mathrm{p}_{2}=0.94$ bar,
$\mathrm{V}=\mathrm{C}$ heated at constant volume to initial temp. $\mathrm{T}_{3}=\mathrm{T}_{1}=463^{\circ} \mathrm{K}, \mathrm{p}_{3}=1.5$ bar
$\mathrm{p}_{4}=\mathrm{p}_{1}=4.8$ bar $\mathrm{V}_{4}=\mathrm{V}_{1}$ (air back to its original pressure and volume).

The process (3-4) is isothermal
$\frac{\mathrm{T}_{1}}{\mathrm{p}_{1}{ }^{(\gamma-1) / \gamma}}=\frac{\mathrm{T}_{2}}{\mathrm{p}_{2}{ }^{(\gamma-1) / \gamma}}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{p}_{1}{ }^{(\gamma-1) / \gamma}}{\mathrm{p}_{2}{ }^{(\gamma-1) / \gamma}}$
$\frac{p_{2}}{T_{2}}=\frac{p_{3}}{T_{3}}$
$\frac{0.94}{\mathrm{~T}_{2}}=\frac{1.5}{463}, \quad \mathrm{~T}_{2}=290^{\circ} \mathrm{K}$
$\ln \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{(\gamma-1) / \gamma}$
$\operatorname{Ln} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=[(\gamma-1) / \gamma] \ln \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$
$\operatorname{Ln} \frac{463}{290}=[(\gamma-1) / \gamma] \ln \frac{4.8}{0.94}$
$\gamma=1.402$
$\mathrm{w}_{12}=\frac{10^{2}\left(\mathrm{p}_{1} \mathrm{~V}_{1}-\mathrm{p}_{2} \mathrm{~V}_{2}\right)}{\gamma-1}=\operatorname{Cv}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$
$\mathrm{Cv}=\frac{\mathrm{R}}{\gamma-1}=\frac{0.29}{1.4-1}=0.725 \mathrm{~kJ} / / \mathrm{kg} \cdot \mathrm{K}$
$\mathrm{w}_{12}=0.725(463-290)=125.425 \mathrm{~kJ} / \mathrm{kg}$
EX: - 1 kg of air at 1 bar and $27^{\circ} \mathrm{C}$ is compressed to 6 bar adiabatically. Find the final temperature and work done. If the air is then cooled at constant pressure to original temperature of $27^{\circ} \mathrm{C}$, what amount of heat is rejected and, what further work of compression is done? The final state could have been reached by a reversible isothermal compression, instead of by the two other processes. What would be the work done and heat transferred in this case? [Take $\mathbf{C p}=1005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{Cv}=0.717 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$]

Sol:-
$\mathrm{m}=1 \mathrm{~kg}, \mathrm{p}_{1}=1 \mathrm{bar}, \mathrm{T}_{1}=27+273=300^{\circ} \mathrm{K}, \mathrm{p}_{2}=6 \mathrm{bar}, \mathrm{T}_{2}=?, \mathrm{~T}_{3}=\mathrm{T}_{1}=300^{\circ} \mathrm{K}, \mathrm{p}_{3}=\mathrm{p}_{2}, \mathrm{Q}_{23}=$?, $\mathrm{w}_{12}=$?

Process (1-2) adiabatic compression
Process (2-3) cooled at constant pressure
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{(\gamma-1) / \gamma}$
$\gamma=\mathrm{Cp} / \mathrm{Cv}=1.005 / 0.717=1.4$
$\frac{300}{\mathrm{~T}_{2}}=\left(\frac{1}{6}\right)^{(1.4-1) / 1.4}$
$\mathrm{T}_{2}=500.55^{\circ} \mathrm{K}=227.55^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{w}_{12} & =\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \\
& =1 * 0.717(300-500.55)=-143.79 \mathrm{~kJ}
\end{aligned}
$$

$$
\mathrm{Q}_{23}=\mathrm{m} \cdot \mathrm{Cp}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)
$$

$$
=1^{*} 1.005(300-500.55)=-201.55 \mathrm{~kJ}
$$

- Instead of by the two processes the final state could have been reached by reversible isothermal compression process
$\mathrm{Q}_{12}=\mathrm{w}_{12}=\mathrm{m} . \mathrm{R} . \mathrm{T} \ln -\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} \quad \ldots \ldots\left(\mathrm{~V}_{2} / \mathrm{V}_{1}=\mathrm{p}_{1} / \mathrm{p}_{2}\right)$
$\mathrm{R}=\mathrm{Cp}-\mathrm{Cv}=1.005-0.717=0.288 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

$$
=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{~T}_{1} \ln \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}=1 * 0.288 * 300 * \ln \frac{1}{6}=-154.8 \mathrm{~kJ}
$$

EX: - Air occupying $0.014 \mathrm{~m}^{3}$ at 1.01 bar and $15^{\circ} \mathrm{C}$ is compressed adiabatically to a volume of $0.0028 \mathrm{~m}^{3}$. Heat is then supplied at constant volume until the pressure becomes $\mathbf{1 8 . 5}$ bar. Adiabatic expansion returns the air to the initial pressure of 1.01 bar, and then it is cooled at constant pressure until it attains the original volume of $\mathbf{0 . 0 1 4} \mathrm{m}^{\mathbf{3}}$. Calculate for each process, the heat transferred, the work done and change in internal energy. [Take $\gamma=1.4$, R = $0.29 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$]
Sol:-

$\mathrm{V}_{1}=0.014 \mathrm{~m}^{3}, \mathrm{p}_{1}=1.01$ bar, $\mathrm{T}_{1}=15+273=288^{\circ} \mathrm{C}, \mathrm{V}_{2}=0.0028 \mathrm{~m}^{3}, \mathrm{p}_{3}=18.5$
$\mathrm{V}_{3}=\mathrm{V}_{2}=0.0028 \mathrm{~m}^{3}, \mathrm{p}_{4}=\mathrm{p}_{1}=1.01 \mathrm{bar}=\mathrm{p}_{5}, \mathrm{~V}_{5}=\mathrm{V}_{1}$
Process (1-2) adiabatic compression
Process (2-3) heat at constant volume
Process (3-4) adiabatic expansion
Process $(4-1,5)$ cooled at constant pressure
$\mathrm{Q}_{12}=0$
$\mathrm{w}_{12}=-\Delta \mathrm{U}_{12}$

$$
=-\mathrm{mCv}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

$10^{2} \mathrm{p}_{1} . \mathrm{V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}$
$\mathrm{m}=\frac{10^{2} \mathrm{p}_{1 .} \mathrm{V}_{1}}{\mathrm{R} . \mathrm{T}_{1}}=\frac{10^{2 *} 1.01 * 0.014}{0.29 * 288}=0.0169 \mathrm{~kg}$
$\mathrm{Cv}=\mathrm{R} /(\gamma-1)=0.29 /(1.4-1)=0.725 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{T}_{1} . \mathrm{V}_{1}{ }^{\gamma-1}=\mathrm{T}_{2} . \mathrm{V}_{2}{ }^{\gamma-1}$
$288 * 0.014^{1.4-1}=\mathrm{T}_{2} * 0.0028^{1.4-1}$
$\mathrm{T}_{2}=548.25^{\mathrm{o}} \mathrm{K}$
$\mathrm{w}_{12}=-\mathrm{mCv}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
=-0.0169 * 0.725 *(548.25-288)=-3.1887 \mathrm{~kJ}
$$

$\Delta \mathrm{U}_{12}=-\mathrm{W}_{12}=3.1887$
$\mathrm{Q}_{23}=\Delta \mathrm{U}_{23}=\mathrm{mCv}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$
$\mathrm{p}_{2} / \mathrm{T}_{2}=\mathrm{p}_{3} / \mathrm{T}_{3}$
$\mathrm{p}_{1} \cdot \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2}{ }^{\gamma}$
$\mathrm{p}_{2}=\frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}^{\gamma}}{\mathrm{V}_{2}^{\gamma}}=\frac{1.01 *(0.014)^{1.4}}{(0.0028)^{1.4}}=9.613 \mathrm{bar}$
$9.613 / 548.25=18.5 / T_{3}$
$\mathrm{T}_{3}=1124.38^{\circ} \mathrm{K}$

$$
\begin{aligned}
& \mathrm{Q}_{23}=0.0169 * 0.725(1124.38-548.25)=7.059 \mathrm{~kJ}=\Delta \mathrm{U}_{23} \\
& \mathrm{Q}_{34}=0 \\
& W_{34}=-\Delta U_{34} \\
& =-\mathrm{mCv}\left(\mathrm{~T}_{4}-\mathrm{T}_{3}\right) \\
& \mathrm{T}_{3} . \mathrm{V}_{3}{ }^{\gamma-1}=\mathrm{T}_{4} . \mathrm{V}_{4}{ }^{\gamma-1} \\
& \mathrm{p}_{3} \cdot \mathrm{~V}_{3}{ }^{\gamma}=\mathrm{p}_{4} \cdot \mathrm{~V}_{4}{ }^{\gamma} \\
& 18.5 *(0.0028)^{1.4}=1.01 * \mathrm{~V}_{4}{ }^{\gamma} \\
& \mathrm{V}_{4}=0.0223 \mathrm{~m}^{3} \\
& 1124.38 *(0.0028)^{1.4-1}=\mathrm{T}_{4} *(0.0223)^{1.4-1} \\
& \mathrm{~T}_{4}=490^{\circ} \mathrm{K} \\
& W_{34}=-0.0169 * 0.725(490-1124.38)=7.773 \mathrm{~kJ} \\
& \mathrm{~W}_{34}=-\Delta \mathrm{U}_{34}=-7.773 \mathrm{~kJ} \\
& \mathrm{Q}_{41}=\Delta \mathrm{H}_{41} \\
& =\mathrm{m} \cdot \mathrm{Cp}\left(\mathrm{~T} 1-\mathrm{T}_{4}\right) \\
& \mathrm{Cp}=\frac{\gamma \mathrm{R}}{\gamma-1}=\frac{1.4 * 0.29}{1.4-1}=1.015 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} \\
& \mathrm{Q}_{41}=0.0169 * 1.015(288-490)=-3.342 \mathrm{~kJ} \\
& \Delta \mathrm{U}_{41}=\mathrm{mCv}\left(\mathrm{~T}_{1}-\mathrm{T}_{4}\right) \\
& =0.0169 * 0.725(288-490)=-2.475 \mathrm{~kJ} \\
& \mathrm{w}_{41}=\mathrm{Q}_{41}-\Delta \mathrm{U}_{41} \\
& =-3.342-(-2.475)=-0.867 \mathrm{~kJ}
\end{aligned}
$$

EX: - 1 kg of air is initially at 0.9 bar and $40^{\circ} \mathrm{C}$ is compressed adiabatically till the volume is reduced to one - sixteenth of its initial value. Heat is then added at constant pressure till the temperature is $1400^{\circ} \mathrm{C}$. The air is then expanded adiabatically until the initial volume is reached and finally it is cooled at constant volume until the original state of 0.9 bar and $40^{\circ} \mathrm{C}$ is Attained. Calculate the work done, internal energy and heat transferred for each process. [Take $\gamma=1.4$,

$$
\mathrm{Cp}=1.004 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}]
$$

Sol:-

$$
\mathrm{m}=1 \mathrm{~kg}, \mathrm{p}_{1}=0.9 \mathrm{bar}, \mathrm{~T}_{1}=40+273=313^{\circ} \mathrm{K}, \mathrm{~V}_{2}=\mathrm{V}_{1} / 16, \mathrm{~T}_{3}=1400+273=1673{ }^{\circ} \mathrm{K}
$$

(1-2) Process adiabatic compression, $\mathrm{s}=\mathrm{C}$
$(2-3)$ Process isobaric heat add at constant pressure process, $\mathrm{p}_{2}=\mathrm{p}_{3}$
(3-4) Process adiabatic expansion, $\mathrm{s}=\mathrm{C}$
(4-1) Process isochoric cooling at constant volume process $\mathrm{V}_{4}=\mathrm{V}_{1}$
$\mathrm{V}_{5}=\mathrm{V}_{1}$ cooled at constant volume to the original state
$\mathrm{p}_{5}=\mathrm{p}_{1}$ cooled at constant volume to the original state
$\mathrm{w}_{12}=\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)=-\Delta \mathrm{U}_{12}$
$\gamma=\mathrm{Cp} / \mathrm{Cv}$
$\mathrm{Cv}=\mathrm{Cp} / \gamma=1.004 / 1.4=0.717 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
$\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{1} / 16}\right)^{1.4-1}=\frac{\mathrm{T}_{2}}{313}$
$\mathrm{T}_{2}=948.84^{\mathrm{o}} \mathrm{K}$
$w_{12}=1 * 0.717(313-948.84)=-455.896 \mathrm{~kJ}$

$$
\Delta \mathrm{U}_{12}=455.896 \mathrm{~kJ}
$$

$$
\begin{aligned}
\mathrm{Q}_{12} & =0 \\
\mathrm{Q}_{23} & =\mathrm{m} . \mathrm{Cp}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \\
& =1 * 1.004(1673-948.84)=727.1 \mathrm{~kJ} \\
\Delta \mathrm{U}_{23} & =\mathrm{m} . \mathrm{Cv}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \\
& =1 * 0.717(1673-948.84)=519.222 \mathrm{~kJ}
\end{aligned}
$$

$$
\mathrm{w}_{23}=\mathrm{Q}_{23}-\Delta \mathrm{U}_{23}
$$

$$
=727.1-519.222=207.88 \mathrm{~kJ}
$$

$$
\mathrm{w}_{34}=\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)
$$

$$
10^{2} \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}
$$

$$
\mathrm{R}=\mathrm{Cp}-\mathrm{Cv}=1.004-0.717=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

$$
10^{2} * 0.9 * \mathrm{~V}_{1}=1 * 0.287 * 313
$$

$$
\mathrm{V}_{1}=0.998 \mathrm{~m}^{3}
$$

$$
\mathrm{V}_{2}=\mathrm{V}_{1} / 16=0.998 / 16=0.0624 \mathrm{~m}^{3}
$$

$$
\mathrm{V}_{2} / \mathrm{T}_{2}=\mathrm{V}_{3} / \mathrm{T}_{3}
$$

$$
0.0624 / 948.84=\mathrm{V}_{3} / 1673, \mathrm{~V}_{3}=0.11 \mathrm{~m}^{3}
$$

$$
\left(\frac{\mathrm{V}_{4}}{\mathrm{~V}_{3}}\right)^{\gamma-1}=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4}}
$$

$$
\left(\frac{0.998}{0.11}\right)^{1.4-1}=\frac{1673}{T_{4}}
$$

$$
\mathrm{T}_{4}=692.47^{\circ} \mathrm{K}
$$

$$
w_{34}=1 * 0.717 *(1673-692.47)=703.04 \mathrm{~kJ}
$$

$$
\Delta \mathrm{U}_{34}=-703.04 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

$$
\mathrm{Q}_{41}=\Delta \mathrm{U}_{41}=\mathrm{m} . \mathrm{Cv}\left(\mathrm{~T}_{1}-\mathrm{T}_{4}\right)=1 * 0.717 *(313-692.47)=-272.08 \mathrm{~kJ}
$$

$$
\mathrm{w}_{41}=0
$$

EX: - One kilogram of a gas is at 1.1 bar and $15^{\circ} \mathrm{C}$. It is compressed until its volume is $0.1 \mathrm{~m}^{3}$. Calculate the final pressure and temperature if the compression is aisothermal, b-adiabatic. Calculate also the work done, change in internal energy and heat transferred in each case. [Take $\mathbf{C p}=0.92 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{Cv}=0.66 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$] .

Sol:-
$\mathrm{m}=1 \mathrm{~kg}, \mathrm{Cp}=0.92 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{p}_{1}=1.1 \mathrm{bar}, \mathrm{Cv}=0.66 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{T}_{1}=15+273=288{ }^{\circ} \mathrm{K}$,
$\mathrm{V}_{2}=0.1 \mathrm{~m}^{3}$,
$\mathrm{p}_{2}=$?, $\mathrm{T}_{2}=?, \mathrm{w}_{12}=?, \Delta \mathrm{U}_{12}=?, \mathrm{Q}_{12}=$?

a-
$10^{2} \mathrm{p}_{1} . \mathrm{V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}$
$\mathrm{R}=\mathrm{Cp}-\mathrm{Cv}=0.92-0.66=0.26 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{V}_{1}=\frac{\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}}{10^{2} \mathrm{p}_{1}}=\frac{1 * 0.26 * 288}{10^{2} * 1.1}=0.68 \mathrm{~m}^{3}$
$\mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2}$
$\mathrm{p}_{2}=\frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{1.1 * 0.68}{0.1}=7.488 \mathrm{bar}=0.7488 \mathrm{MN} / \mathrm{m}^{2}$
$10^{2} \mathrm{p}_{2} . \mathrm{V}_{2}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{2}$
$\mathrm{T}_{2}=\frac{10^{2} \mathrm{p}_{2} . \mathrm{V}_{2}}{\mathrm{~m} \cdot \mathrm{R}}=\frac{10^{2} * 7.488^{*} 0.1}{1 * 0.26}=288^{\circ} \mathrm{K}=15^{\circ} \mathrm{C}$
Or $\mathrm{T}_{1}=\mathrm{T}_{2}$ isothermal compression process is at constant temperature.

$$
\begin{aligned}
\mathrm{Q}_{12}=\mathrm{w}_{12} & =\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{~T} \ln \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \\
& =1 * 0.26 * 288 \ln (0.1 / 0.68)=-143.54 \mathrm{~kJ}
\end{aligned}
$$

$\Delta \mathrm{U}_{12}=0$
b-
$10^{2} \mathrm{p}_{1} . \mathrm{V}_{1}=\mathrm{m} . \mathrm{R} . \mathrm{T}_{1}$
$\mathrm{R}=\mathrm{Cp}-\mathrm{Cv}=0.92-0.66=0.26 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{V}_{1}=\frac{\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}}{10^{2} \mathrm{p}_{1}}=\frac{1 * 0.26 * 288}{10^{2} * 1.1}=0.68 \mathrm{~m}^{3}$
$\gamma=\mathrm{Cp} / \mathrm{Cv}=0.92 / 0.66=1.393$
$\mathrm{p}_{1} \cdot \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2}{ }^{\gamma}$
$\mathrm{p}_{2}=\binom{\mathrm{V}_{1}}{\mathrm{~V}_{2}}^{\gamma} * \mathrm{p}_{1}=\binom{0.68}{0.1}^{1.393} * 1.1=15.89 \mathrm{bar}=1.589 \mathrm{MN} / \mathrm{m}^{2}$
$\mathrm{T}_{2}=\frac{10^{2} \mathrm{p}_{2} . \mathrm{V}_{2}}{\mathrm{~m} \cdot \mathrm{R}}=\frac{10^{2 *} 15.89 * 0.1}{1 * 0.26}=611.1^{\circ} \mathrm{K}=338.1^{\circ} \mathrm{C}$
$\mathrm{w}_{12}=\mathrm{m} \cdot \operatorname{Cv}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)=-\Delta \mathrm{U}_{12}$
$\mathrm{w}_{12}=1 * 0.66(288-611.1)=-213.25 \mathrm{~kJ}$
$\Delta \mathrm{U}_{12}=213.25 \mathrm{~kJ}$

$\mathrm{Q}_{12}=0$

Problems
$4-10.1 \mathrm{~m}^{3}$ of gas is compressed from a pressure of $120 \mathrm{kN} / \mathrm{m}^{2}$ and temperature $25^{\circ} \mathrm{C}$ to a pressure of $\mathbf{1 2}$ bar according to the law $p . V^{1.2}=$ constant. Calculate;
1- The work done on the gas
2- The change in internal energy
3- The quantity heat transferred, Assume, $\mathrm{Cv}=0.72 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{R}=0.285 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
(-28.2kJ, 14.2kJ, -14kJ)
4-2 1 kg of air enclosed in a rigid container is initially at 4.8 bar and $150^{\circ} \mathrm{C}$. The container is heated until the temperature is $200^{\circ} \mathrm{C}$. Calculate the pressure of the air finally and the heat supplied during the process
($5.37 \mathrm{bar} ; 35.9 \mathrm{~kJ} / \mathrm{kg}$)
4-3 Oxygen (molecular weight 32) expands reversibly in a cylinder behind a piston at a constant pressure of $3 \mathbf{b a r}$. The volume initially is $0.01 \mathrm{~m}^{3}$; the initial temperature is $17^{\circ} \mathrm{C}$. Calculate the work done by the oxygen and the heat flow to or from the cylinder walls during the expansion. Assume oxygen to be a perfect gas and take $\mathbf{C p}=$ $0.917 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
(6kJ; 21.16kJ)
$4-40.05 \mathrm{~m}^{3}$ of a perfect gas at 6.3 bar undergoes a reversible isothermal process to a pressure of 1.05 bar. Calculate the heat flow to or from the gas
(56.4kJ)
$4-51 \mathrm{~kg}$ of air is compressed isothermally \& reversibly from 1 bar and $30^{\circ} \mathrm{C}$ to 5 bar. Calculate the work done on the air and the heat flow to or from the air.

$$
(140 \mathrm{~kJ} / \mathrm{kg} ;-140 \mathrm{~kJ} / \mathrm{kg})
$$

$4-61 \mathrm{~kg}$ of air at $1 \mathrm{bar}, 15^{\circ} \mathrm{C}$ is compressed reversibly and adiabatically to a pressure of 4 bar. Calculate the final temperature and the work done on the air. $\left(155^{\circ} \mathrm{C} ; 100.5 \mathrm{~kJ} / \mathrm{kg}\right)$
4-7 Nitrogen (molecular weight 28) expands reversibly in perfectly thermally insulated cylinder from $3.5 \mathrm{bar}, 200^{\circ} \mathrm{C}$ to a volume of $0.09 \mathrm{~m}^{3}$. If the initial volume occupied was $0.03 \mathrm{~m}^{\mathbf{3}}$, calculate the work done during the expansion. Assume nitrogen to be perfect gas and take $\mathrm{Cv}=0.741 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
(9.31 kJ)
$4-81 \mathrm{~kg}$ of air at $1.02 \mathrm{bar}, 20^{\circ} \mathrm{C}$ is compressed reversibly according to a law $\mathrm{p} \cdot \mathrm{V}^{1.3}=$ const., to a pressure of 5.5bar. Calculate the work done on the air and the heat flow to or from the cylinder walls during the compression.
($133.5 \mathrm{~kJ} / \mathrm{kg}$; $-33.38 \mathrm{~kJ} / \mathrm{kg}$)
4-9 Oxygen (molecular weight 32) is compressed reversibly and polytropically in a cylinder from 1.05 bar, $15^{\circ} \mathrm{C}$ to 4.2 bar in such a way that one- third of the work input is rejected as heat to the cylinder walls . calculate the final temperature of the oxygen. Assume oxygen to be aperfect gas and take $\mathrm{Cv}=0.649 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$4-100.05 \mathrm{~kg}$ of carbon dioxide (molecular weight 44), occupying a volume of $0.03 \mathrm{~m}^{\mathbf{3}}$ at 1.025 bar , is compressed reversibly until the pressure is 6.15 bar . calculate the final temperature the work done on the CO_{2} and the heat flow to or from the cylinder walls, 1- when the process is according to the law p. $\boldsymbol{v}^{1.4}=$ constant ,
2- when the process is isothermal ,
assume carbon dioxide to be a perfect gas, and take $\gamma=1.3$
$\left(270^{\circ} \mathrm{C} ; 5.138 \mathrm{~kJ} / \mathrm{kg} ; 1.713 \mathrm{~kJ} ; 52.6^{\circ} \mathrm{C} ; 5.51 \mathrm{~kJ} / \mathrm{kg} ;-5.51 \mathrm{~kJ}\right)$

Unit five

Application to open flow system

Application to open flow system

The open flow system is that one which has mass and energy crossing its boundary. As shown in fig.

$$
\mathbf{Q}_{12}-\mathbf{w}_{12}=\Delta \mathbf{E}_{12}+\left[\Delta \mathbf{E}_{\text {out flow }}-\Delta \mathbf{E}_{\text {in flow }}\right]
$$

Where:-
$\Delta \mathrm{E}_{12}=$ change of stored energy.
$\Delta \mathrm{E}_{12}=\left[\mathrm{m}_{2}\left(\mathrm{u}_{2}+\mathrm{K} . \mathrm{E}_{2}+\operatorname{pot} . \mathrm{E}_{2}\right)\right]-\left[\mathrm{m}_{1}\left(\mathrm{u}_{1}+\mathrm{K} . \mathrm{E}_{1}+\operatorname{pot} . \mathrm{E}_{1}\right)\right]$
$\Delta \mathrm{E}_{\text {out flow: }}-\mathrm{m}_{\text {out }}\left(\mathrm{h}_{\text {out }}+\mathrm{K}^{\mathrm{E}} \mathrm{E}_{\text {out }}+\operatorname{pot}_{\text {out }}\right)$
$\Delta \mathrm{E}_{\text {in flow }}-\mathrm{m}_{\text {in }}\left(\mathrm{h}_{\text {in }}+\mathrm{K}_{\mathrm{E}} \mathrm{E}_{\text {in }}+\right.$ potin $\left._{\text {in }}\right)$
$\mathbf{Q}_{12}-\mathbf{w}_{12}=\left[\mathrm{m}_{2}\left(\mathrm{u}_{2}+\mathrm{K} . \mathrm{E}_{2}+\operatorname{pot} . \mathrm{E}_{2}\right)\right]-\left[\mathrm{m}_{1}\left(\mathrm{u}_{1}+\mathrm{K} . \mathrm{E}_{1}+\operatorname{pot} . \mathrm{E}_{1}\right)\right]+\left[\mathrm{m}_{\text {out }}\left(\mathrm{h}_{\text {out }}+\mathrm{K} . \mathrm{E}_{\text {out }}+\right.\right.$
pot $\left.{ }_{\text {out }}\right)-\mathrm{m}_{\text {in }}\left(\mathrm{h}_{\mathrm{in}}+\right.$ K.E $_{\text {in }}+$ pot $\left._{\text {in }}\right)$]this is called u.S.F.E.E[un steady flow energy equation]
In case where $\mathrm{m}_{\mathrm{in}}=\mathrm{m}_{\text {out }}$ there will be no change in the system mass.
$\therefore \mathrm{m}_{1}=\mathrm{m}_{2}$ and also $\Delta \mathrm{E}_{12}=0$ the equation be written in the form,
$\mathbf{Q}_{12}-\mathbf{w}_{12}=\left[m_{\text {out }}\left(h_{\text {out }}+K . E_{\text {out }}+\operatorname{pot}_{\text {out }}\right)-m_{\text {in }}\left(h_{\text {in }}+K . E_{\text {in }}+\operatorname{pot}_{\text {in }}\right)\right]$
But $m_{\text {out }}=m_{i n}=m$ \& put instead of out \&in $(2,1)$ we can write the equation,
$\mathrm{Q}_{12}-\mathrm{W}_{12}=\mathrm{m}\left[\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)+1 / 2\left(\mathrm{C}_{2}^{2}-\mathrm{C}_{1}^{2}\right)+\mathrm{g}\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)\right]$

$$
\left.\mathbf{Q}_{12}-\mathbf{w}_{12}=\Delta \mathbf{H}_{12}+\Delta K \cdot \mathbf{E}_{12}+\Delta \text { pot. } \mathbf{E}_{12}\right]
$$

... S.F.E.E this is called steady flow energy equation

Application of open flow for S.F.E.E

1- The boiler steam

$\mathrm{Q}_{12}-\Delta /_{12}^{0}=\left[\Delta \mathrm{H}_{12}+\Delta \not \boldsymbol{K}^{0} \cdot \mathrm{E}_{12}+\Delta \mathrm{p} \not \mathrm{t} . \mathrm{E}_{12}\right]$
Work $=0, K . E=0$, pot. $\mathrm{E}=0$,

$$
\mathbf{Q}_{12}=\Delta \mathbf{H}_{12}
$$

2- The compressor:-

$\mathrm{Q}_{12}-\mathrm{w}_{12}=\left[\Delta \mathrm{H}_{12}+\Delta \not \boldsymbol{\wedge}^{0} \cdot \mathrm{E}_{12}+\Delta \mathrm{p} \not \mathrm{t} . \mathrm{E}_{12}\right]$
$\mathrm{K} . \mathrm{E}=0$, pot $. \mathrm{E}=0$,

$$
\mathbf{Q}_{12}-\mathbf{w}_{12}=\Delta \mathbf{H}_{12}
$$

3- The turbine

$\mathrm{K} . \mathrm{E}=0$, pot. $\mathrm{E}=0, \mathrm{Q}_{12}=0$

$$
\mathbf{w}_{12}=\mathbf{H}_{1}-\mathbf{H}_{2}
$$

4- The throttle valve

$\chi_{12}^{0}-y_{12}^{0}=\left[\Delta \mathrm{H}_{12}+\Delta\right.$ Y/ $\mathrm{E}_{12}^{0}+\Delta$ pot $\left.\mathrm{E}_{12}^{0}\right]$
$\mathrm{K} . \mathrm{E}=0$, pot. $\mathrm{E}=0, \mathrm{Q}_{12}=0, \mathrm{w}_{12}=0$

$$
\mathbf{H}_{1}=\mathbf{H}_{2}
$$

5- The nozzle

$\mathrm{Q} / 2-\mathrm{w} \boldsymbol{p}_{2}^{0}=\left[\Delta \mathrm{H}_{12}+\Delta \mathrm{K} \cdot \mathrm{E}_{12}+\Delta \mathrm{p} \mathrm{P}^{0} \cdot \mathrm{E}_{12}\right]$
pot. $\mathrm{E}=0, \mathrm{Q}_{12}=0, \mathrm{w}_{12}=0$
$\Delta \mathrm{H}_{12}+\Delta \mathrm{K} \cdot \mathrm{E}_{12}=0$
$m\left[\left(h_{2}-h_{1}\right)+1 / 2\left(C_{2}^{2}-C_{1}^{2}\right)\right]=0$

$1 / 2\left(\mathrm{C}_{2}^{2}-\mathrm{C}_{1}^{2}\right)=\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)$
$\mathrm{C}_{2}{ }^{2}=2\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)+\mathrm{C}_{1}{ }^{2}$
$\mathrm{C}_{2}=\sqrt{2\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)+\mathrm{C}_{1}{ }^{2}}$

$$
C_{2}=\sqrt{2\left(h_{1}-h_{2}\right)}
$$

\ldots. In case C_{1} is very small

6- Condenser

pot. $\mathrm{E}=0, \Delta \mathrm{~K} \cdot \mathrm{E}_{12}=0, \mathrm{w}_{12}=0$

$$
\mathbf{Q}_{12}=\Delta \mathbf{H}_{12}
$$

Liquid m, H_{2}

Gas, steam m, H_{1}

7- Evaporator

EX: - Fluid flow in a pipe the pressure decrease due to closed valve from 10 bar to $\mathbf{1}$ bar if the specific volume of fluid increase from $0.3 \mathrm{~m}^{3} / \mathrm{kg}$ to $1.8 \mathrm{~m}^{3} / \mathrm{kg}$ find the change in internal during the throttle process.

Sol:-
$\mathrm{p}_{1}=10 \mathrm{bar}, \mathrm{p}_{2}=1$ bar, $v_{1}=0.3 \mathrm{~m}^{3} / \mathrm{kg}, v_{2}=1.8 \mathrm{~m}^{3} / \mathrm{kg}, \Delta \mathrm{U}_{12}=$?
The process is throttle therefore,
$\mathrm{H}_{2}=\mathrm{H}_{1}$
$\mathrm{mh}_{2}=\mathrm{mh}_{1}$
$\mathrm{u}_{2}+\mathrm{p}_{2} \mathrm{v}_{2}=\mathrm{u}_{1}+\mathrm{p}_{1} \mathrm{v}_{1}$
$\mathrm{u}_{2}-\mathrm{u}_{1}=\mathrm{p}_{1} \mathrm{v}_{1}-\mathrm{p}_{2} \mathrm{v}_{2}$

$$
\begin{aligned}
\Delta \mathrm{U}_{12} & =10^{2}\left(\mathrm{p}_{1} v_{1}-\mathrm{p}_{2} v_{2}\right) \\
& =10^{2}\left(10^{*} 0.3-1 * 1.8\right)=120 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

EX: - Fluid with $2800 \mathrm{~kJ} / \mathrm{kg}$ specific enthalpy enter a nozzle with small value of velocity, the rate of flow is $14 \mathrm{~kg} / \mathrm{sec}$ the specific enthalpy and volume at exit equal $2250 \mathrm{~kJ} / \mathrm{kg}$ $\& 1.25 \mathrm{~m}^{3} / \mathrm{kg}$ respectively find exit velocity $\&$ exit area.

Sol:-
$\mathrm{h}_{1}=2800 \mathrm{~kJ} / \mathrm{kg}$, nozzle, $\mathrm{C}_{1}=0, \mathrm{~m}=14 \mathrm{~kg} / \mathrm{sec}, \mathrm{h}_{2}=2250 \mathrm{~kJ} / \mathrm{kg}$,
$v_{2}=1.25 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{C}_{2}=$? , $\mathrm{A}_{2}=$?
$\mathrm{C}_{2}=\sqrt{2\left(\mathrm{~h} 1-\mathrm{h}_{2}\right)}$
$\mathrm{C}_{2}=\sqrt{2(2800-2250)}=33.166 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
\mathrm{A}_{2} & =\frac{\mathrm{V}_{2}\left(\mathrm{~m}^{3} / \mathrm{sec}\right)}{\mathrm{C}_{2}(\mathrm{~m} / \mathrm{sec})} \\
\mathrm{V}_{2} & =v\left(\mathrm{~m}^{3} / \mathrm{kg}\right) * \mathrm{~m} \cdot(\mathrm{~kg} / \mathrm{sec}) \\
& =1.25 * 14=17.5 \mathrm{~m}^{3} / \mathrm{sec} \\
\mathrm{~A}_{2} & =17.5 / 33.166=0.528 \mathrm{~m}^{2}
\end{aligned}
$$

EX: - Vapor enter condenser with rate $35 \mathrm{~kg} / \mathrm{sec}$ and specific enthalpy $2200 \mathrm{~kJ} / \mathrm{kg}$. The liquid leaves the condenser with $255 \mathrm{~kJ} / \mathrm{kg}$ specific enthalpy .find the heat loss from the condenser.

Sol:-

$$
\mathrm{m} \cdot=35 \mathrm{~kg} / \mathrm{sec}, \mathrm{~h}_{1}=2200 \mathrm{~kJ} / \mathrm{kg}, \mathrm{~h}_{2}=255 \mathrm{~kJ} / \mathrm{kg}, \mathrm{Q}_{12}=?
$$

$\mathrm{Q}_{12}=\Delta \mathrm{H}_{12}=\mathrm{m} \cdot\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)$
$=35 \mathrm{~kg} / \mathrm{sec}(255-2200) \mathrm{kJ} / \mathrm{kg}$
$=-68075 \mathrm{~kJ} / \mathrm{sec}=-68075 \mathrm{~kW}$
EX: - A fluid flow in turbine with rate $45 \mathrm{~kg} / \mathrm{min}$ the specific enthalpy decrease about $580 \mathrm{~kJ} / \mathrm{kg}$. After leaving the turbine and the heat lost to surrounding with rate $2100 \mathrm{~kJ} / \mathrm{min}$ find the power reduced by the turbine?

Sol:-
$\mathrm{m} \cdot=45 / 60=0.75 \mathrm{~kg} / \mathrm{sec}, \Delta \mathrm{h}_{12}=-580 \mathrm{~kJ} / \mathrm{kg}, \mathrm{Q}_{12}=-2100 \mathrm{~kJ} / \mathrm{min}=2100 / 60=-35 \mathrm{~kJ} / \mathrm{sec}, \mathrm{w}=?$
$\mathrm{Q}_{12}-\mathrm{w}_{12}=\Delta \mathrm{H}_{12}$
$\Delta \mathrm{H}_{12}=\mathrm{m} \cdot * \Delta \mathrm{~h}_{12}$
$=0.75 *-580=-435 \mathrm{~kW}$
$-35-\mathrm{w}_{12}=-435$
$\mathrm{w}_{12}=400 \mathrm{~kW}$
EX: - Ferion gas enter the compressor at 0.4 bar and $0.1 \mathrm{~m}^{\mathbf{3}} / \mathrm{kg}$ specific volume, the gas compressed to 2 bar and $0.01 \mathrm{~m}^{3} / \mathrm{kg}$ specific volume, the increase in internal energy is $116 \mathrm{~kJ} / \mathrm{kg}$. Calculate the heat quantity if the work done is $180 \mathrm{~kJ} / \mathrm{kg}$.

Sol:-
Compressor, $\mathrm{p}_{1}=0.4 \mathrm{bar}, \mathrm{v}_{1}=0.1 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{p}_{2}=2 \mathrm{bar}, \mathrm{v}_{2}=0.01 \mathrm{~m}^{3} / \mathrm{kg}, \Delta \mathrm{u}_{12}=+116 \mathrm{~kJ} / \mathrm{kg}$,

$$
\mathrm{w}_{12}=-180 \mathrm{~kJ} / \mathrm{kg}, \mathrm{Q}_{12}=?
$$

$\mathrm{q}_{12}-\mathrm{w}_{12}=\Delta \mathrm{h}_{12}$

$$
\begin{aligned}
\Delta \mathrm{h}_{12} & =\mathrm{h}_{2}-\mathrm{h}_{1} \\
& =\left(\mathrm{u}_{2}+\mathrm{p}_{2} \cdot \mathrm{v}_{2}\right)-\left(\mathrm{u}_{1}+\mathrm{p}_{1} \cdot \mathrm{v}_{1}\right) \\
& =\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)+10^{2}\left(\mathrm{p}_{2} \cdot \mathrm{v}_{2}-\mathrm{p}_{1} \cdot \mathrm{v}_{1}\right) \\
& =116+10^{2}(2 * 0.01-0.4 * 0.1) \\
& =114 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\mathrm{q}_{12}-180=114
$$

$$
\mathrm{q}_{12}=-66 \mathrm{~kJ} / \mathrm{kg}
$$

Problems
5-1 Stead flow of steam enters a condenser with an enthalpy of $2400 \mathrm{~kJ} / \mathrm{kg}$ and a velocity of $366 \mathrm{~m} / \mathrm{sec}$. the condensate leaves the condenser with an enthalpy of $162 \mathrm{~kJ} / \mathrm{sec}$ and a velocity of $6 \mathrm{~m} / \mathrm{sec}$ what is the heat transferred to the cooling water per kg steam condensed.

5-2 An air compressor delivers 4.5 kg of air per minute at a pressure of 7 bar and a specific volume of $0.17 \mathrm{~m}^{3} / \mathrm{kg}$. Ambient conditions are pressure 1bar and specific volume $0.86 \mathrm{~m}^{3} / \mathrm{kg}$. The initial and final internal energy values for the air are $28 \mathrm{~kJ} / \mathrm{kg}$ and $110 \mathrm{~kJ} / \mathrm{kg}$ respectively. Heat rejected to the cooling jacket is $76 \mathrm{~kJ} / \mathrm{kg}$ of air pumped. Neglecting changes in kinetic and potential energies, what is the shaft power required driving the compressor?
(14.3kW)

Unit six

Steam

Steam

Steam formation: - it is water vapor formed through water heating by the addition of the following heats:-

1-Sensible heat: - It is quantity of heat added to the water to raise its temperature from the room temperature to boiling temperature.

$$
\mathbf{Q}_{\text {sen }}=\mathbf{m} \mathbf{C p} . \Delta \mathbf{T} \mid \ldots \text { Where } \mathrm{Cp}=4.186 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

2- Latent heat: - It is heat added to the water at boiling temperature (constant temperature) to transfer it from liquid phase to gases phase.

Steam formed after latent heat addition is called dry and saturated steam and temperature of which is constant and equal to saturated or boiling temperature
Steam formed between boiling point (1) \& saturated point (2) is called wet steam \& its temperature equal to saturation temperature or (boiling temperature) as shown in fig above.

3- Super heat: - It is quantity of heat added to the dry and saturated steam to raise its temperature above saturated temperature, in this case the steam regarded as gas.

The pressure - volume (p.V) phase diagram for steam.

- Critical point, $\mathrm{p}_{\mathrm{c}}=212 \mathrm{bar}, \mathrm{T}_{\mathrm{c}}=374^{\circ} \mathrm{C}$

Above p_{c} no latent heat is added as shown in fig and the water transfer suddenly to steam.
Steam tables: - it is given values of steam properties $[p, v, T, h, u$, and s] where:-
$\mathrm{p}=$ pressure (bar)
$\mathrm{T}=$ temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathbf{u}=$ specific internal energy $(\mathrm{kJ} . \mathrm{kg})$
$v=$ specific volume $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$
$\mathbf{h}=$ specific enthalpy $(\mathrm{kJ} / \mathrm{kg})$
$\mathrm{s}=$ specific entropy $(\mathrm{kJ} / \mathrm{kg})$
$\mathbf{t}_{\mathrm{s}}=$ saturation temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathbf{f}=$ fluid [liquid phase]
$\mathrm{g}=$ gas [vapor phase]
$\mathbf{f}_{\mathrm{g}}=$ between fluid and gas phase [wet steam], $\mathrm{QL}=\Delta \mathrm{h}_{\mathrm{fg}}$
Wet steam: - There are no values of wet steam properties in the steam table.

Dryness fraction(x): - It is quantity depends of how far it's from point (1)
It is ratio between saturated steams in the mixture of the net steam to the total mass of the mixture (water + steam)
$x=\frac{\text { Quantity of saturated steam }}{\text { Total mass of mixture }}$

Fig (1)
$\mathrm{x}=0$ at point (1) boiling point
$\mathrm{x}=1.0$ at point (2) saturated point

Relation of wet steam

For a wet steam the total volume of the mixture is given by the volume of the liquid present plus the volume of dry steam present, therefore the specific volume is given by,

$$
v=\frac{\text { Volume of liquid }+ \text { volume of dry steam }}{\text { Total mass of wet steam }}
$$

Now for 1 kg of wet steam there are x kg of dry steam and (1-x) kg of liquid, where x is the dryness fraction
$v=v_{f}(1-x)+v_{g} x$
The volume of the liquid is usually negligibly small compared to the volume of dry saturated steam,

$$
\mathbf{v}=\mathbf{x} \cdot \mathbf{v}_{\mathbf{g}}
$$

The enthalpy of wet steam is given by the sum of the enthalpy of the liquid plus the enthalpy of the dry steam,
$h=(1-x) h_{f}+x h_{g}$
$\mathrm{h}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}\left(\mathrm{h}_{\mathrm{g}}-\mathrm{h}_{\mathrm{f}}\right)$

$$
h=h_{f}+\mathbf{x}\left(\mathbf{h}_{f g}\right)
$$

similary, the interanal energy of a wet steam is given by the internal energy of the liquid plus the internal energy of the dry steam,

$$
\mathrm{u}=(1-\mathrm{x}) \mathrm{u}_{\mathrm{f}}+\mathrm{x} \mathrm{u}_{\mathrm{g}}
$$

$$
u=u_{f}+x\left(u_{g}-u_{f}\right)
$$

$$
\mathbf{u}_{\mathbf{x}}=\mathbf{u}_{\mathrm{f}}+\mathbf{x}\left(\mathbf{u}_{\mathrm{g}}-\mathbf{u}_{\mathrm{f}}\right)
$$

Entropy of the dry steam in the mixture. For wet steam with dryness fraction, x, we have

$$
\begin{aligned}
& s=(1-x) s_{f}+x s_{g} \\
& s=s_{f}+x\left(s_{g}-s_{f}\right)
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{x}}=\mathbf{S f}_{\mathrm{f}}+\mathbf{x}\left(\mathbf{S f g}_{\mathrm{f}}\right)
$$

Steam defines as follow:-
1- Wet steam: - is define by its pressure \& dryness x for example ,steam at 9 bar \& 0.85 dryness
2- Dry and saturated steam :- pressure only \&dry and saturated for example dry and saturated steam at 5 bar or steam at 5 bar dry and saturated [point 2] as shown in fig (1)
3- Super heated steam :- define by pressure and temperature for example steam at 30 bar and $350^{\circ} \mathrm{C}$ EX:-

Find steam properties of the following condition,
1- steam at 30 bar, dry \& saturated
2- steam at 30 bar , 0.85 dryness
3- steam at 30 bar, $350^{\circ} \mathrm{C}$

Sol:-
1- from table at 30 bar
$\mathrm{t}_{\mathrm{s}}=233.8^{\circ} \mathrm{C}, v_{\mathrm{g}}=0.06665 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{u}_{\mathrm{g}}=2603 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{g}}=2803 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{\mathrm{g}}=6.186 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

2- Steam at 30 bar, 0.85 dryness
Wet steam,

$$
\begin{aligned}
v_{\mathrm{x}} & =\mathrm{x} v_{\mathrm{g}} \\
& =0.85 * 0.06665 \\
& =0.0566525 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

$$
u_{x}=u_{f}+x\left(u_{g}-u_{f}\right)
$$

$$
=1004+0.85(2603-1004)
$$

$$
=2363.15 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{h}_{\mathrm{x}}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}\left(\mathrm{~h}_{\mathrm{fg}}\right)
$$

$$
=1008+0.85 * 1795
$$

$$
=2533.75 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{s}_{\mathrm{x}}=\mathrm{s}_{\mathrm{f}}+\mathrm{x}\left(\mathrm{sfg}_{\mathrm{f}}\right)
$$

$$
=2.645+0.85 * 3.541
$$

$$
=5.655 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

3-steam at $30 \mathrm{bar}, 350{ }^{\circ} \mathrm{C}$
Steam is superheated,
$v_{\mathrm{g}}=0.0905 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{u}_{\mathrm{g}}=2845 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{g}}=3117 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{\mathrm{g}}=6.744 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
EX: - Determine the state of steam at 10 bar, if the heat added to transfer the water from $0^{\circ} \mathrm{C}$ is $2500 \mathrm{~kJ} / \mathrm{kg}$.

Sol:-
$\mathrm{q}_{\mathrm{x}}=\mathrm{h}_{\mathrm{x}}=2500 \mathrm{~kJ} / \mathrm{kg}$
From table at $10 \mathrm{bar}, \mathrm{h}_{\mathrm{g}}=2778 \mathrm{~kJ} / \mathrm{kg}>2500$ steam is wet
$\mathrm{h}_{\mathrm{x}}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}\left(\mathrm{h}_{\mathrm{fg}}\right)$
From table at 10 bar $\mathrm{h}_{\mathrm{f}}=763 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{fg}}=2015 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{x}=\frac{\mathrm{h}_{\mathrm{x}}-\mathrm{h}_{\mathrm{f}}}{\mathrm{h}_{\mathrm{fg}}}=\frac{2500-763}{2015}=0.86$

EX: - vessel its volume is 85 liter contain 0.1 kg of water and 0.7 kg of dry steam in equilibrium state find the pressure inside the vessel.

Sol:-
$\mathrm{V}=85$ liter $=85 / 1000=0.085 \mathrm{~m}^{3}$,

$$
\begin{aligned}
\mathrm{m}_{\mathrm{t}} & =\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{s}} \\
& =0.1+0.7 \\
& =0.8 \mathrm{~kg}
\end{aligned}
$$

$$
v_{\mathrm{x}}=\mathrm{V} / \mathrm{m}_{\mathrm{t}}=0.085 / 0.8=0.106 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
v_{\mathrm{x}}=\mathrm{x} . \mathrm{v}_{\mathrm{g}}
$$

$\mathrm{x}=\mathrm{m}_{\mathrm{s}} / \mathrm{m}_{\mathrm{t}}=0.7 / 0.8=0.875$
$v_{g}=v_{x} / x=0.106 / 0.875=0.121 \mathrm{~m}^{3} / \mathrm{kg}$
From table at $\mathrm{p}=16$ bar, $\mathrm{v}_{\mathrm{g}}=0.1237 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\begin{aligned}
& \text { at } \mathrm{p}=17 \text { bar, } \mathrm{v}_{\mathrm{g}}=0.1167 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{p}_{\mathrm{x}}=\mathrm{p}_{16}+\frac{v_{\mathrm{x}}-v_{\mathrm{g} \text { at } 16 \text { bar }}}{v_{\mathrm{g} \text { at } 17 \text { bar }}-v_{\mathrm{g} \text { at 16bar }}}\left(\mathrm{p}_{17}-\mathrm{p}_{16}\right)
\end{aligned}
$$

$$
p_{x}=16+\frac{0.121-0.1237}{0.1167-0.1237}(17-16)
$$

$$
=16.386 \text { bar }
$$

Degree of superheated $(\Delta \mathbf{t})$ sh: - it is the difference between the temperature of superheated steam and saturated steam at same pressure.

$$
(\Delta \mathbf{t})_{\mathbf{S H}}=\mathbf{t}-\mathbf{t}_{\mathbf{s}} \longrightarrow \text { at } \mathrm{p}=\text { constant }
$$

EX: - what is the degree of superheated at pressure $20 \mathrm{bar} \& \mathbf{3 0 0}^{\circ} \mathrm{C}$.
Sol:-

From table, ts $=212.4^{\circ} \mathrm{C}$,
$(\Delta t)_{S H}=t-t_{s}$
$=300-212.4$
$=87.6^{\circ} \mathrm{C}$

EX: - super heated steam at 15 bar and degree of superheated $151.7^{\circ} \mathrm{C}$ find its properties.
Sol:-
From table at 15 bar, $\mathrm{t}_{\mathrm{s}}=198.3^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{t} & =(\Delta \mathrm{t})_{\mathrm{SH}}+\mathrm{t}_{\mathrm{s}} \\
& =151.7+198.3 \\
& =350^{\circ} \mathrm{C} \\
v_{\mathrm{g}} & =0.1865 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{u}_{\mathrm{g}}=2868 \mathrm{~kJ} / \mathrm{kg}, \mathrm{~h}_{\mathrm{g}}=3148 \mathrm{~kJ} / \mathrm{kg}, \mathrm{sg}_{\mathrm{g}}=7.182 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
\end{aligned}
$$

Steam process:-

1- Isobaric process:-

$$
\mathbf{q}_{12}=\Delta \mathbf{h}_{12}
$$

```
q(12- wi2 = \Deltau
```

$w_{12}=10^{2} p\left(v_{2}-v_{1}\right)$

EX: - Steam is heated isobarically from 5 bar, $\mathbf{0 . 6}$ dry until its temperature is $300{ }^{\circ} \mathrm{C}$ find the quantity of heat add and change in internal energy. Sol:-

Steam is heated therefore, $v_{2}>v_{1}$
$\mathrm{p}_{1}=\mathrm{p}_{2}=5$ bar, $\mathrm{x}=0.6, \mathrm{~T}_{2}=300+273=573^{\circ} \mathrm{K}, \mathrm{q}_{12}=?, \Delta \mathrm{u}_{12}=?$
$\mathrm{q}_{12}=\mathrm{h}_{2}-\mathrm{h}_{1}$
$\Delta \mathrm{u}_{12}=\mathrm{u}_{2}-\mathrm{u}_{1}$
Point (1) wet steam from steam table at 5 bar, $\mathrm{h}_{\mathrm{fl}}=640 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{fg} 1}=2109 \mathrm{~kJ} / \mathrm{kg}$,
$\mathrm{u}_{\mathrm{f} 1}=639 \mathrm{~kJ} / \mathrm{kg}, \mathrm{u}_{\mathrm{g} 1}=2562 \mathrm{~kJ} / \mathrm{kg}$,
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{fl}}+\mathrm{x} \cdot \mathrm{h}_{\mathrm{fg} 1}$
$=640+0.6 * 2109=1905.4 \mathrm{~kJ} / \mathrm{kg}$
$u_{1}=u_{f 1}+x .\left(u_{\mathrm{g} 1}-u_{\mathrm{f} 1}\right)$
$=639+0.6 *(2562-639)=1792.8 \mathrm{~kJ} / \mathrm{kg}$
point (2) steam is superheated from table at $\mathrm{p}=5 \operatorname{bar} \& \mathrm{~T}=300^{\circ} \mathrm{C}, \mathrm{u}_{2}=2804 \mathrm{~kJ} / \mathrm{kg}$,
$\mathrm{h}_{2}=3065 \mathrm{~kJ} / \mathrm{kg}$,
$\mathrm{q}_{12}=3065-1905.4=1159.6 \mathrm{~kJ} / \mathrm{kg}$ (the quantity of heat added)
$\Delta \mathrm{u}_{12}=2804-1792.8=1010.8 \mathrm{~kJ} / \mathrm{kg}$ (change in internal energy)
EX: - Steam at 10bar, $0.95 d r y$ is heated electrically at constant pressure process. If the rate of consume power is 1 kW and the rate of steam is $0.3 \mathrm{~kg} / \mathrm{min}$, determine the final state of steam?

Sol:-

$\mathrm{x}=0.95, \mathrm{p}_{1}=\mathrm{p}_{2}=10 \mathrm{bar}, \mathrm{Q}_{12}=1 \mathrm{~kW}, \mathrm{~m}_{\mathrm{s}}=0.3 \mathrm{~kg} / \mathrm{min}$
$\mathrm{q}_{12}=\mathrm{Q}_{12} / \mathrm{m} \cdot \mathrm{s}=1 \mathrm{~kJ} / \mathrm{kg} /(0.3 \mathrm{~kg} / 60 \mathrm{sec})=200 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{q}_{12}=\mathrm{h}_{2}-\mathrm{h}_{1}$
$\mathrm{h}_{2}=\mathrm{q}_{12}+\mathrm{h}_{1}$
Point (1) wet steam from steam table at 10 bar, $\mathrm{h}_{\mathrm{fl}}=763 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{fg} 1}=2015 \mathrm{~kJ} / \mathrm{kg}$,

$$
\begin{aligned}
\mathrm{h}_{1} & =\mathrm{h}_{\mathrm{f} 1}+\mathrm{x} \cdot \mathrm{~h}_{\mathrm{fg} 1} \\
& =763+0.95 * 2015 \\
& =2677.25 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$\mathrm{h}_{2}=200+2677.25=2877.25 \mathrm{~kJ} / \mathrm{kg}$
From table at $\mathrm{p}=10 \mathrm{bar}, \mathrm{h}_{\mathrm{g}}<\mathrm{h}_{2}$ therefore the final state is superheat
From superheated table at $\mathrm{p}=10$ bar,
$\mathrm{h}=2829$ at $\mathrm{t}=200^{\circ} \mathrm{C}$
$\mathrm{h}=2944$ at $\mathrm{t}=250^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{t}_{2} & =200+\frac{2877-2829}{2944-2829}(250-200) \\
& =220.87^{\circ} \mathrm{C}
\end{aligned}
$$

$$
v_{\mathrm{g} 2}=0.2061+\frac{2877-2829}{2944-2829}(0.2328-0.2061)
$$

$$
=0.21724 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\mathrm{u}_{\mathrm{g} 2}=2623+\frac{2877-2829}{2944-2829}(2711-2623)
$$

$$
=2659.73 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{s}_{\mathrm{g} 2}=6.695+\frac{2877-2829}{2944-2829}(6.926-6.695)
$$

$$
=6.7914 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

2- Isochoric process:-

$\mathbf{w}_{12}=0, v_{1}=v_{2}=$ constant

```
q}\mp@subsup{\textrm{q}}{12}{}=\Delta\mp@subsup{\textrm{u}}{12}{
```


EX: - steam at 40 bar and $400^{\circ} \mathrm{C}$ expand isochorically until its pressure is $\mathbf{1 0}$ bar, find the quantity of heat add or rejected during this process.

Sol:-
$\mathrm{q}_{12}=\mathrm{u}_{2}-\mathrm{u}_{1}$
From superheated table at $\mathrm{p}=40$ bar\& $400^{\circ} \mathrm{C}, \mathrm{u}_{1}=2921 \mathrm{~kJ} / \mathrm{kg}, v_{1}=0.0733 \mathrm{~m}^{3} / \mathrm{kg}=v_{2}$,
From table at $\mathrm{p}=10$ bar , $v_{\mathrm{g} 2}=0.1944>v_{2}$ therefore steam is wet

$v_{2}=x . v_{\mathrm{g} 2}$
$\mathrm{x}=v_{2} / v_{\mathrm{g} 2}=0.0733 / 0.1944=0.377$
$\mathrm{u}_{2}=\mathrm{u}_{\mathrm{f} 2}+\mathrm{x} .\left(\mathrm{u}_{\mathrm{g} 2}-\mathrm{u}_{\mathrm{f} 2}\right)$
$=762+0.377(2584-762)$
$=1449 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{q}_{12}=1449-2921$
$=-1472 \mathrm{~kJ} / \mathrm{kg}$ rejected
EX: - Radiator is using as heating system its volume is $0.054 \mathrm{~m}^{3}$ and the steam at 1.4 bar dry \& saturated when the valve of Radiator is closed the heat transfer to room \& pressure reduced to 1.2 bar. Calculate the mass of steam and the amount of heat transfer to the room.

Sol:-
$\mathrm{V}=0.054 \mathrm{~m}^{3}, \mathrm{p}_{1}=1.4$ bar $\&$ dry sat. , $v_{1}=v_{2}$ closed, $\mathrm{p}_{2}=1.2$ bar, $\mathrm{m}_{\mathrm{s}}=?, \mathrm{Q}_{12}=$?
$\mathrm{m}_{\mathrm{s}}=\frac{\mathrm{V}\left(\mathrm{m}^{3}\right)}{v_{1}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)}$

From table at $\mathrm{p}=1.4 \mathrm{bar}, v_{\mathrm{g} 1}=v_{1}=1.236 \mathrm{~m}^{3} / \mathrm{kg}=v_{2}, \mathrm{u}_{1}=\mathrm{u}_{\mathrm{g} 1}=2517 \mathrm{~kJ} / \mathrm{kg}$

$$
\mathrm{m}_{\mathrm{s}}=\frac{0.054}{1.236}=0.044 \mathrm{~kg}
$$

From table at $p=1.2$ bar, $v_{g}=1.428>v_{2}=1.236 \mathrm{~m}^{3} / \mathrm{kg}$ therefore steam is wet
$v_{2}=x \cdot v_{g}$
$\mathrm{x}=v_{2} / v_{\mathrm{g} 2}=1.236 / 1.428=0.866$
$\mathrm{u}_{2}=\mathrm{u}_{\mathrm{f} 2}+\mathrm{x} \cdot\left(\mathrm{u}_{\mathrm{g} 2}-\mathrm{u}_{\mathrm{f} 2}\right)$
$=439+0.866(2512-439)$

$$
=2234.218 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{q}_{12}=\mathrm{u}_{2}-\mathrm{u}_{1}
$$

$$
=2234.218-2517
$$

$$
=-282.782 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{Q}_{12}=\mathrm{m}_{\mathrm{s}}{ }^{*} \mathrm{q}_{12}$

$$
=0.044 *-282.782
$$

$$
=-12.442408 \mathrm{~kJ}
$$

3- Isothermal process:-

$\mathrm{T}_{1}=\mathrm{T}_{2}=$ constant

$$
q_{12}=T .\left(s_{2}-s_{1}\right)
$$

EX:- 1 kg of steam expand isothermally from 40 bar dry \& saturated to 5 bar find the final steam condition and the heat transfer \& heat pump work during this process .

Sol:-
$\mathrm{m}=1 \mathrm{~kg}, \mathrm{~T}=$ const., $\mathrm{p}_{1}=40$ bar \& dry sat., $\mathrm{p}_{2}=5$ bar, $\mathrm{Q}_{12}, \mathrm{w}_{12}$,
$\mathrm{q}_{12}=\mathrm{T} .\left(\mathrm{s}_{2}-\mathrm{s}_{1}\right)$
From table at 40 bar\&dry sat., $\mathrm{T}_{1}=\mathrm{T}_{\mathrm{s} 1}=250.3^{\circ} \mathrm{C}=\mathrm{T}_{2}, \mathrm{~s}_{1}=\mathrm{s}_{\mathrm{g}}=6.070 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$,
From table at $\mathrm{p}=5$ bar, $\mathrm{T}_{\mathrm{s} 2}=151.8^{\circ} \mathrm{C}<\mathrm{T}_{2}$ therefore steam is superheated,
From superheated table at $\mathrm{p}=5 \operatorname{bar} \& 250^{\circ} \mathrm{C}, \mathrm{s}_{2}=7.271 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$,

$$
\begin{aligned}
\mathrm{Q}_{12} & =\mathrm{m} * \mathrm{~T}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right) \\
& =1 *(250.3+273)(7.271-6.07) \\
& =300.6 \mathrm{~kJ}
\end{aligned}
$$

$$
\Delta \mathrm{U}_{12}=\mathrm{m} *\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)
$$

From table at 40 bar, $\mathrm{u}_{1}=2602 \mathrm{~kJ} / \mathrm{kg}$,
From superheated table at $\mathrm{p}=5 \operatorname{bar} \& 250^{\circ} \mathrm{C}, \mathrm{u}_{2}=2725 \mathrm{~kJ} / \mathrm{kg}$,
$\Delta \mathrm{U}_{12}=1 *(2725-2602)$

$$
=123 \mathrm{~kJ}
$$

$\mathrm{w}_{12}=\mathrm{Q}_{12}-\Delta \mathrm{U}_{12}$
$=300.6-123$
$=177.6 \mathrm{~kJ}$

EX: - 3 kg of steam expand isothermally from 30 bar and 0.9 dry to 2 bar . Find the work done.
Sol:-
$\mathrm{m}=3 \mathrm{~kg}, \mathrm{p}_{1}=30 \mathrm{bar}, \mathrm{x}_{1}=0.9, \mathrm{p}_{2}=2 \mathrm{bar}$
From table at 30 bar, $\mathrm{t}_{\mathrm{s}}=233.8^{\circ} \mathrm{C}=\mathrm{T}_{1}=\mathrm{T}_{2}=$ const.

$$
\begin{aligned}
\mathrm{s}_{1} & =\mathrm{sff}_{\mathrm{f} 1}+\mathrm{x}_{1} * \mathrm{Sfg}_{\mathrm{fg} 1} \\
& =2.645+0.9 * 3.543=5.8314 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
\mathrm{u}_{1} & =\mathrm{u}_{\mathrm{fl}}+\mathrm{x}_{1} *\left(\mathrm{u}_{\mathrm{g} 1}-\mathrm{u}_{\mathrm{f} 1}\right) \\
& =1004+0.9(2603-1004) \\
& =2443.1 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

From table at $2 \mathrm{bar}, \mathrm{t}_{\mathrm{s} 2}=120.2^{\circ} \mathrm{C}<\mathrm{T}_{2}$ therefore final state is superheated

From superheated table at $\mathrm{p}=2$ bar $\& \mathrm{~T}=233.8^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& s_{2}=7.507+\frac{233.8-200}{250-200}(7.708-7.507)=7.642876 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} \\
& u_{2}=2655+\frac{233.8-200}{250-200}(2731-2655) \\
& =2706.366 \mathrm{~kJ} / \mathrm{kg} \\
& \Delta \mathbf{u}_{12}=\mathbf{u}_{2}-\mathbf{u}_{1} \\
& =2706.366-2443.1=263.276 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{q}_{12}=\mathrm{T}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right) \\
& =(233.8+273)(7.642876-2443.1)=918.056 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{w}_{12}=\mathrm{m} *\left(\mathrm{q}_{12}-\Delta \mathrm{u}_{12}\right) \\
& =3 *(918.056-263.276)=1964.28 \mathrm{~kJ}
\end{aligned}
$$

4- Isentropic process:-

$\mathrm{s}_{1}=\mathrm{s}_{2}, \mathrm{q}_{12}=\mathrm{w}_{12}+\Delta \mathrm{u}_{12}, \& \mathrm{q}_{12}=0$ therefore $\mathrm{w}_{12}=-\Delta \mathrm{u}_{12}$

```
W
```

$\mathbf{W}_{\mathbf{1 2}}=\mathbf{h}_{\mathbf{1}}-\mathbf{h}_{\mathbf{2}} \quad \ldots$ For steam turbine [s.F.E.E]

All expand (+w), all compressed (- w)

EX: - Steam at 40 bar $\& 375^{\circ} \mathrm{C}$ expand isentropically in a turbine to 2 bar find the final steam condition and work done what would the final pressure such that the steam was dry \& saturated.

Sol:-
$\mathrm{p}_{1}=40 \mathrm{bar}, \mathrm{T}_{1}=375^{\circ} \mathrm{C}, \mathrm{p}_{2}=2 \mathrm{bar}$,
From table at $\mathrm{p}_{1}=40$ bar\& $\mathrm{T}_{1}=375^{\circ} \mathrm{C}$ where $375^{\circ} \mathrm{C}$ is between $350^{\circ} \mathrm{C} \& 400^{\circ} \mathrm{C}$
$s_{1}=\frac{6.584+6.764}{2}$
$=6.675 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}=\mathrm{s}_{2}$ (isentropic process)

$$
\begin{aligned}
\mathrm{h}_{1} & =\frac{3094+3214}{2} \\
& =3154 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

From table at $\mathrm{p}_{1}=2 \mathrm{bar}, \mathrm{s}_{\mathrm{g} 2}=7.127 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}>\mathrm{s}_{2}$ therefore steam is wet

$$
\begin{aligned}
\mathrm{s}_{2} & =\mathrm{s} f 2+\mathrm{x} * *_{\mathrm{fg} 2} \\
\mathrm{x} & =\frac{\mathrm{s} 2-\mathrm{s}_{\mathrm{f} 2}}{\mathrm{sfg} 2} \\
\mathrm{x} & =\frac{6.675-1.53}{5.597} \\
& =0.919
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{h}_{2} & =\mathrm{h}_{\mathrm{f} 2}+\mathrm{x} * \mathrm{~h}_{\mathrm{fg} 2} \\
& =505+0.919 * 2202=2528.6 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{w}_{12} & =\mathrm{h}_{1}-\mathrm{h}_{2} \\
& =3154-2528.6 \\
& =652.4 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

When the final state is dry \& saturated
$\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{\mathrm{g} 2}=6.675 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
From table $s_{g}=6.709$ at $p=7$ bar

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{g}}=6.663 \text { at } \mathrm{p}=8 \mathrm{bar} \\
& \mathrm{p}_{\text {final }}=7+\frac{6.675-6.709}{6.613-6.709} *(8-7) \\
& =7.717 \mathrm{bar}
\end{aligned}
$$

EX: - Steam at 15 bar $\& 330^{\circ} \mathrm{C}$ expand isentropically in a turbine to 0.12 bar if the flow rate of steam is $300 \mathrm{~kg} / \mathrm{min}$ determine the power produced in turbine.

Sol:
$\mathrm{p}_{1}=15 \mathrm{bar}, \mathrm{t}_{1}=330^{\circ} \mathrm{C}, \mathrm{p}_{2}=0.12 \mathrm{bar}, \mathrm{m}_{\mathrm{s}}=300 \mathrm{~kg} / \mathrm{min}$
Power $=\mathrm{W}=\mathrm{m}_{\mathrm{s}}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)$
From superheated table at $\mathrm{p}=15$ bar $\& \mathrm{t}=330^{\circ} \mathrm{C}$, where $330^{\circ} \mathrm{C}$ is between $300^{\circ} \mathrm{C} \& 350^{\circ} \mathrm{C}$ in superheated table

$$
\begin{aligned}
\mathrm{s}_{1} & =6.768+\frac{330-300}{350-300}(6.957-6.768) \\
& =6.8814 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}=\mathrm{s}_{2}(\text { isentropic process }) \\
\mathrm{h}_{1} & =3025+\frac{330-300}{350-300}(3138-3025)
\end{aligned}
$$

$$
=3092.8 \mathrm{~kJ} / \mathrm{kg}
$$

From table at $\mathrm{p}=0.12 \mathrm{bar}, \mathrm{sg}_{2}=8.085>\mathrm{s}_{2}$ therefore steam is wet
$\mathrm{S}_{2}=\mathrm{Sf} 2+\mathrm{x}{ }^{*} \mathrm{Sfg}^{2}$
$\mathrm{x}=\frac{\mathrm{S}_{2}-\mathrm{Sf}_{\mathrm{f} 2}}{\mathrm{~S}_{\mathrm{fg} 2}}$

$$
\begin{aligned}
x & =\frac{6.8814-0.696}{7.389} \\
& =0.837
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{h}_{2} & =\mathrm{h}_{\mathrm{f} 2}+\mathrm{x} * \mathrm{~h}_{\mathrm{fg} 2} \\
& =207+0.837 * 2383 \\
& =2201.831 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Power $=(300 / 60)(3092-2201)$

$$
=4454.845 \mathrm{~kW}
$$

5- Adiabatic process:-

It is isentropic process with friction
$\eta_{\mathrm{i}}=$ isentropic efficiency or internal efficiency

$$
\eta_{\mathrm{i}}=\frac{\text { Adiabatic actual work }}{\text { Isentropic work }}
$$

$$
\eta_{i}=\frac{h_{1}-h_{2}}{h_{1}-h_{2}}=\frac{w_{12}}{w_{12}}
$$

EX: - Steam turbine at 10 bar and $350^{\circ} \mathrm{C}$ is expanded adiabatically with an internal efficiency of 85% to 0.08 bar. If the flow rate of steam is $250 \mathrm{~kg} / \mathrm{min}$, determine the work produced in turbine?

Sol:-
$\mathrm{T}_{1}=350^{\circ} \mathrm{C}, \mathrm{p}_{1}=10 \mathrm{bar}, \eta_{\mathrm{i}}=85 \%, \mathrm{p}_{2}=0.08 \mathrm{bar}, \mathrm{m}_{\mathrm{s}}=250 \mathrm{~kg} / \mathrm{min}=250 / 60=4.16 \mathrm{~kg} / \mathrm{sec}$,
From superheated table at 10 bar \& $350^{\circ} \mathrm{C}, \mathrm{h}_{1}=3158 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{1}=7.301 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}=\mathrm{s}_{2}$
From table at 0.08 bar, $\mathrm{sg}_{2}=8.227 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}>\mathrm{s}_{2}$ therefore steam is wet,
$\mathrm{S}_{2}=\mathrm{sf} 2+\mathrm{x} *$ Sfg 2
$X=\frac{\mathrm{S}_{2}-\mathrm{S}_{\mathrm{f} 2}}{\mathrm{~S}_{\mathrm{fg} 2}}$

$$
\begin{aligned}
\mathrm{x} & =\frac{7.301-0.593}{7.634} \\
& =0.87 \\
\mathrm{~h}_{2} & =\mathrm{h}_{\mathrm{f} 2}+\mathrm{x} * \mathrm{~h}_{\mathrm{fg} 2} \\
& =179+0.87 * 2402 \\
& =2263.7 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{w}_{12} & =\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right) \\
& =(3158-2263.7)=894.3 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Adiabatic actual work $=\eta_{i}$ * Isentropic work

$$
\begin{aligned}
\mathrm{w}_{12} & =\eta_{\mathrm{i}} * \mathrm{w}_{12} \\
& =0.85 * 894.3 \\
& =760.155 \mathrm{~kJ} / \mathrm{kg} * 4.16 \mathrm{~kg} / \mathrm{sec}=3162.2 \mathrm{~kJ} / \mathrm{sec}=3162.2 \mathrm{~kW}
\end{aligned}
$$

Throttling process:-

The aim of this process is to reduce the steam pressure without any losses.

$$
h_{1}=h_{2}
$$

This concludes that the quantity of steam after throttling is better than before throttling.
EX: - Dry and saturated steam at 50 bar is throttling to 1bar find the final condition of steam.
Sol:-

From steam table at 50 bar dry \& sat. $\mathrm{h}_{1}=2794 \mathrm{~kJ} / \mathrm{kg}=\mathrm{h}_{2}$,
From steam table at $\mathrm{p}_{2}=1 \mathrm{bar}, \mathrm{h}_{\mathrm{g} 2}=2675 \mathrm{~kJ} / \mathrm{kg}<\mathrm{h}_{2}$ therefore steam is superheated
From superheated table at 1 bar $\& \mathrm{~h}_{2}=2794 \mathrm{~kJ} / \mathrm{kg}$ where 2794 is between 2777 at $\mathrm{T}=150^{\circ} \mathrm{C}$ \& 2876 at $\mathrm{T}=200^{\circ} \mathrm{C}$

$$
\mathrm{T}_{2}=150+\frac{2794-2777}{2876-2777}(200-150)=159^{\circ} \mathrm{C}
$$

EX: - Steam at 7 bar \& relative humidity 0.08 throttle to 0.05 bar, determine the steam condition after throttle.

Sol:-

$$
\begin{aligned}
\mathrm{p}_{2} & =7 \text { bar, R.H }=0.08, \mathrm{p}_{2}=0.05 \\
\mathrm{x} & =\frac{\mathrm{m}_{\mathrm{s}}}{\mathrm{~m}_{\mathrm{T}}}=\frac{(1-0.08)}{(1-0.08)+0.08}=0.92 \\
\mathrm{~h}_{1} & =\mathrm{h}_{\mathrm{f} 1}+\mathrm{x} * \mathrm{~h}_{\mathrm{fg} 1} \\
& =697+0.92 * 2067 \\
& =2598.64 \mathrm{~kJ} / \mathrm{kg}=\mathrm{h}_{2}
\end{aligned}
$$

From table at $\mathrm{p}=0.05$ bar, $\mathrm{h}_{\mathrm{g} 2}=2423<\mathrm{h}_{2}$ the condition after throttling is superheated,

$$
\mathrm{T}_{2}=50+\frac{2598.64-2594}{2688-2594}(100-50)=52.468^{\circ} \mathrm{C}
$$

Problems:-
6-1 A rigid vessel of volume $1 \mathrm{~m}^{3}$ contains steam at 20 bar and $400^{\circ} \mathrm{C}$. The vessel is cooled until the steam is just dry \& saturated. Calculate the mass of the steam in the vessel, the final pressure of the steam, and the heat removed during the process.
(6.62 kg ; $13.01 \mathrm{bar} ; 2355 \mathrm{~kJ}$)
6-2 Steam at 7 bar, dryness fraction 0.9, expands reversibly at constant pressure until the temperature is $200^{\circ} \mathrm{C}$. Calculate the work done and heat supplied per kg of steam during the process.
($38.2 \mathrm{~kJ} / \mathrm{kg} ; 288.7 \mathrm{~kJ} / \mathrm{kg}$)
6-3 Dry saturated steam at 7 bar expands reversibly in a cylinder behind a piston until the pressure is 0.1 bar. If heat supplied continuously during the process in order to keep the temperature constant, calculate the change of internal energy per kg of steam.
($37.2 \mathrm{~kJ} / \mathrm{kg}$)
6-4 1 kg of steam in a cylinder expands reversibly behind a piston according to a law $\mathrm{pv}=$ constant, from 7 bar to 0.75 bar if the steam is initially dry saturated, find the temperature finally, the work done by the steam, and the heat flow to or from the cylinder walls
($144^{\circ} \mathrm{C} ; 427 \mathrm{~kJ} / \mathrm{kg} ; 430 \mathrm{~kJ} / \mathrm{kg}$)
6-5 In a steam jacket cylinder, steam expands from 5 bar to 1.2 bar according to a law $p \boldsymbol{v}^{1.05}=$ constant. Assuming that the initial dryness fraction is 0.9 , calculate the work done and the heat supplied per kg of steam during the expansion.
$(221.8 \mathrm{~kJ} / \mathrm{kg} ; 197.5 \mathrm{~kJ} / \mathrm{kg})$
6-6 Steam at 17 bar, dryness fraction 0.95 , expands slowly in a cylinder behind a piston until the pressure is 4 bar. Calculate the final specific volume and the final temperature of the steam when the expansion follows the law $p v=$ constant.
$\left(0.471 \mathrm{~m}^{3} / \mathrm{kg} ; 150^{\circ} \mathrm{C}\right)$
6-7 the pressure in a steam main is 12 bar. A sample of steam is drawn off and passed through a throttling calorimeter, the pressure and temperature at exit from the calorimeter being 1 bar \& $140^{\circ} \mathrm{C}$ respectively. Calculate the dryness fraction of the steam in the main, stating any assumption made in the throttling process. (0.986)

Unit seven

The second law of thermodynamics

The second law of thermodynamics

The first law of thermodynamic deals with process either reversible or irreversible and also either closed or open flow system.

The $2^{\text {nd }}$ law of thermodynamic deals with cyclic processes, these cyclic have only heat and work transfer its boundary no mass transfer
In figure shown the cycle of $2^{\text {nd }}$ law for steam power plant (heat engine).

The element of steam power cycle is :-
1- boiler -open flow system - heat transfer (Qadd)
2- turbine - open flow system - energy transferd (+ve w.D)
3- condensor - open flow system - heat transferd (Qrej)
4- pump - open flow system - energy transferd (-vew.D)

In general the cycle can be classified to two main kind :-
1- Heat Engine [H.E]:-Its main object to take heat from high temperature source, transfered some of it to work and rejected the rest .
A diagrammatic representation of a heat engine is shown in fig below

Net work done $=\mathrm{Q}_{\text {add }}-\mathrm{Q}_{\text {rej }}$

2- Heat pump [H.P]:- It is reverse of heat engine it transfer heat from low temperature source to high temperature sink and consume work external.

A diagrammatic representation of a heat pump is shown in fig below

The cofficient of performance [C.O.P]of H.P:- it is ratio between heat rejected or heat added devided by work done.
(C.O.P $)_{\text {H.P }}=\frac{Q_{\text {rej }}}{\text { w.D }}=\frac{Q_{\text {rej }}}{Q_{\text {rej }}-Q_{\text {add }}}$
(C.O.P $)_{\text {ref. }}=\frac{Q_{\text {add }}}{\text { w.D }}=\frac{Q_{\text {add }}}{Q_{\text {rej }}-Q_{\text {add }}}$
(C.O.P $)_{\text {н.P }}-(\text { C. O .P })_{\text {ref. }}=1$
where(С. O. P $)_{\text {н.P }}>(\text { C. O. P })_{\text {ref. }}$

The diffrence between heat engine \& heat pump :-

Heat engine	Heat pump
+ w	- w
High temperature source	Low temperature source
Low temperature sink	High temperature sink
$Q_{\text {add }}>\mathrm{Q}_{\mathrm{rej}}$	Q $_{\text {rej }}>\mathrm{Q}_{\text {add }}$

Statement of $2^{\text {nd }}$ law of thermodynmic :-
1- Kelvin - planck statement [used for heat engine] :- It is impossible to construct aheat engine which operate in a cycle and receives a given of heat from high temperature body and does an amount of works, as some of that heat must be rejected to a low temperature sink.

2- Clausius - statement [used for heat pump\& ref.] :- heat can not passes by it self from a lower temperature body to higher temperature body without any equipment.

The Carnot cycle :-

Process (1-2) is isothermal expansion, $\mathrm{T}=$ const. $=\mathrm{T}_{\max }=\mathrm{T}_{2}=\mathrm{T}_{1} \& \mathrm{p} . \mathrm{V}=$ const.,
$\mathrm{Q}_{\mathrm{add}}=\mathrm{w}_{12}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{\max } \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)=\mathrm{w}_{1}$

$$
\mathrm{p}_{2} \cdot \mathrm{~V}_{2}-\mathrm{p}_{3} \cdot \mathrm{~V}_{3}
$$

Process(2-3) is isentropic expansion, $\mathrm{Q}_{23}=0 \& \mathrm{p} . \mathrm{V}^{\gamma}=$ const., $\mathrm{w}_{23}=\square=\mathrm{w}_{2}$

$$
\gamma-1
$$

process $(4-3)$ is isothermal compresion, $T=$ const. $=T_{\min }=T_{3}=T_{4} \& p . V=$ const.
$\mathrm{Q}_{\mathrm{rej}}=\mathrm{w}_{34}=-\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{\text {min }} \ln \mathrm{V}_{3} / \mathrm{V}_{4}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{\text {min }} \ln \mathrm{V}_{4} / \mathrm{V}_{3}=\mathrm{w}_{3}$

$$
\mathrm{p}_{4} . \mathrm{V}_{4}-\mathrm{p}_{1} . \mathrm{V}_{1}
$$

Process(4- 1)is isentropic compresion, $\mathrm{Q}_{41}=0 \& \mathrm{p} . \mathrm{V}^{\gamma}=$ const., $\mathrm{w}_{41}=\square=\mathrm{w}_{4}$
$\gamma-1$
$\mathrm{Q}_{\text {add }}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{\max } \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$
$\mathrm{Q}_{\mathrm{rej}}=-\mathrm{m} . \mathrm{R} \cdot \mathrm{T}_{\text {min }} \ln \left(\mathrm{V}_{3} / \mathrm{V}_{4}\right)$
For process $(2-3)$ isentropic exp.
$\mathrm{T}_{2} \cdot \mathrm{~V}_{2}{ }^{\gamma-1}=\mathrm{T}_{3} \cdot \mathrm{~V}_{3}{ }^{\gamma-1}$

$$
\begin{equation*}
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{3}}=\left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=\frac{\mathrm{T}_{\max }}{\mathrm{T}_{\mathrm{min}}} \tag{1}
\end{equation*}
$$

For process $(4-1)$ isentropic comp.
$\mathrm{T}_{1} \cdot \mathrm{~V}_{1}{ }^{\gamma-1}=\mathrm{T}_{4} \cdot \mathrm{~V}_{4}{ }^{\gamma-1}$
$\frac{T_{1}}{T_{4}}=\left(\frac{\mathrm{V}_{4}}{\mathrm{~V}_{1}}\right)^{\gamma^{-1}}=\frac{\mathrm{T}_{\text {max }}}{\mathrm{T}_{\text {min }}}$
$\left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=\left(\frac{\mathrm{V}_{4}}{\mathrm{~V}_{1}}\right)^{\gamma-1}$

The efficiency of Carnot cycle is
$\eta_{\mathrm{car}}=1-\frac{\mathrm{Q}_{\mathrm{rej}}}{\mathrm{Q}_{\mathrm{add}}}=1-\frac{\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{\min } \ln \left(\mathrm{V}_{3} / \mathrm{V}_{4}\right)}{\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{\max } \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)}$

$\mathrm{w}_{1}=\operatorname{area}(12 \mathrm{c}$ a 1$)+\mathrm{ve}$
$\mathrm{w}_{2}=\operatorname{area}(23 \mathrm{dc} 2)+\mathrm{ve}$
$\mathrm{w}_{3}=\operatorname{area}(43 \mathrm{db} 4)-\mathrm{ve}$
$\mathrm{w}_{4}=\operatorname{area}(14 \mathrm{~b}$ a 1$)-\mathrm{ve}$
Net woork done $=\mathrm{w}_{1}+\mathrm{w}_{2}-\mathrm{w}_{3}-\mathrm{w}_{4}$

$$
=\operatorname{area}\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)+\mathrm{ve}
$$

For Heat Pump working on Carnot principle we reversed carnot cycle:-

$(\text { C . O . P })_{H . P}=\frac{Q_{\mathrm{rej}}}{\mathrm{Q}_{\mathrm{rej}}-\mathrm{Q}_{\mathrm{add}}}$

$$
(\mathbf{C} . \text { O.P })_{\mathrm{H} . \mathrm{P}}=\frac{\mathbf{T}_{\max }}{\mathbf{T}_{\max }-\mathbf{T}_{\min }}
$$

$(\text { C. O.P })_{\text {Ref. }}=\frac{Q_{\text {add }}}{Q_{\text {rej }}-Q_{\text {add }}}$
$(\mathbf{C} . O . P)_{\text {Ref }}=\frac{T_{\min }}{T_{\max }-T_{\min }}$
(С. O.P $)_{\text {H.P }}-(\text { C. O. P })_{\text {Ref. }}=1$
(С. О . P $)_{\text {H.P }}>(\text { С. О. P })_{\text {Ref. }}$
EX:- The heat rejected from steam power plant is $1600 \mathrm{~kJ} / \mathrm{kg}$. while the work done by the machine is $800 \mathrm{~kJ} / \mathrm{kg}$.and work wanted to operate water pump is $20 \mathrm{~kJ} / \mathrm{kg}$. Calculate the efficiency of power plant?

Sol:-
$\mathrm{q}_{\mathrm{rej}}=1600 \mathrm{~kJ} / \mathrm{kg}, \mathrm{w}_{\text {out }}=800 \mathrm{~kJ} / \mathrm{kg}, \mathrm{w}_{\text {in }}=-20 \mathrm{~kJ} / \mathrm{kg}$,
$\eta_{\text {power plant }}=1-\frac{\mathrm{Q}_{\mathrm{rej}}}{\mathrm{Q}_{\text {add }}}=\frac{\mathrm{N} . \mathrm{W} . \mathrm{D}}{\mathrm{Q}_{\text {add }}}$
N.W .D = Qadd $-\mathrm{Q}_{\mathrm{rej}}$
N.W .D $=\mathrm{w}_{\text {out }}-\mathrm{w}_{\text {in }}=800-20=780 \mathrm{~kJ} / \mathrm{kg}$
$780=Q_{\text {add }}-1600$
$\mathrm{Q}_{\mathrm{add}}=2380 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
\eta_{\text {power plant }} & =\frac{\mathrm{N} \cdot \mathrm{~W} \cdot \mathrm{D}}{\mathrm{Q}_{\text {add }}} \\
& =\frac{780}{2380}=0.328=32.8 \%
\end{aligned}
$$

EX:- The maximum temperature of Carnot cycle forH.E is $1000^{\circ} \mathrm{C} \&$ the minimum temperature is $200^{\circ} \mathrm{C}$ The heat produced Max. temperature is $6000 \mathrm{~kJ} / \mathrm{min}$. Find the power of the engine?

Sol:-
$\mathrm{T}_{\text {max }}=1000^{\circ} \mathrm{C}, \mathrm{Q}_{\text {add }}=6000 / 60=100 \mathrm{~kJ} / \mathrm{sec}=100 \mathrm{~kW}$
Power $=$ w.D $=\mathrm{Q}_{\mathrm{add}}-\mathrm{Q}_{\mathrm{rej}}$
$\frac{T_{\text {min }}}{T_{\text {max }}}=\frac{\mathrm{Q}_{\text {rej }}}{\mathrm{Q}_{\text {add }}}$
$\mathrm{Q}_{\mathrm{rej}}=\frac{\mathrm{T}_{\text {min }}}{\mathrm{T}_{\mathrm{max}}} * \mathrm{Q}_{\text {add }}$

$$
=\frac{200+273}{1000+273} * 100=37.15 \mathrm{~kW}
$$

Power $=\mathrm{w} . \mathrm{D}=100-37.15=62.81 \mathrm{~kW}$

EX:- Through the revese Carnot cycle, the work wanted to system is $400 \mathrm{~kJ} / \mathrm{min}$ and work produced by the system is $200 \mathrm{~kJ} / \mathrm{min}$.If the haet rejected from the system is $600 \mathrm{~kJ} / \mathrm{min}$ how much heat is added and what power wanted to work this system also calculate C.O.P for the state a- used as ref.b- used as H.P.

Sol:-
$(\mathrm{w} . \mathrm{D})_{\text {in }}=400 \mathrm{~kJ} / \mathrm{kg},(\mathrm{w} . \mathrm{D})_{\text {out }}=200 \mathrm{~kJ} / \mathrm{min}, \mathrm{Q}_{\mathrm{rej}}=600 \mathrm{~kJ} / \mathrm{min}, \mathrm{Q}_{\mathrm{add}}=?$, N.W.D $=$?
$(\text { C.O.P })_{\text {Ref }}=$?,$(\text { C.O.P })_{\text {H.P }}=$?
N.W.D $=(w . D)_{\text {in }}-(w . D)_{\text {out }}$

$$
=400-200=200 \mathrm{~kJ} / \mathrm{min}
$$

N.W.D $=\mathrm{Q}_{\text {rej }}-\mathrm{Q}_{\text {add }}$
$200=600-$ Qadd
$\mathrm{Q}_{\text {add }}=400 \mathrm{~kJ} / \mathrm{min}$
$(\text { C.O.P })_{\text {Ref }}=\frac{Q_{\text {add }}}{\text { N.W.D }}=\frac{400}{200}=2$
$(\text { C.O.P })_{\text {H.P }}=\frac{\mathrm{Q}_{\mathrm{rej}}}{\text { N.W.D }}=\frac{600}{200}=3$
$(\text { C.O.P })_{\text {Ref }}-(\text { C.O.P })_{H . P}=1$

$$
3-2=1
$$

EX:- A ref. operates on reversed Carnot cycle the higher temperature is $40^{\circ} \mathrm{C}$ \& lower temperature is $\mathbf{- 2 0}{ }^{\circ} \mathrm{C}$ the capacity of ref.is 10 ton Determine a- C.O.P b- power required $\mathrm{c}-\mathrm{Q}_{\mathrm{rej}}$ [Take 1 ton $=3.5 \mathrm{~kW}$].

Sol:-
$\mathrm{T}_{\max }=40+273=313^{\circ} \mathrm{K}, \mathrm{T}_{\text {min }}=-20+273=253^{\circ} \mathrm{K}, \mathrm{Q}_{\text {add }}=10$ ton $* 3.5=35 \mathrm{~kW}$
$(\text { C.O.P })_{\text {Ref }}=\frac{T_{\text {min }}}{T_{\max }-T_{\min }}=\frac{253}{313-253}=4.217$
N.W.D $=\frac{Q_{\text {add }}}{(\text { C.O.P })}=\frac{35}{4.217}=8.31 \mathrm{~kW}$
N.W.D $=\mathrm{Q}_{\mathrm{rej}}-\mathrm{Q}_{\mathrm{add}}$

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{rej}} & =\mathrm{N} \cdot \mathrm{~W} \cdot \mathrm{D}+\mathrm{Q}_{\mathrm{add}} \\
& =8.31+35=43.3 \mathrm{~kW}
\end{aligned}
$$

EX:- What is more effective for increase eff. of engine working with Carnot cycle between $1100^{\circ} \mathrm{K} \& 500^{\circ} \mathrm{K}$.
a- Increase temp. of hot vessel about $100^{\circ} \mathrm{C} \&$ remain the temp. of cold vessel const.
b- Decrease the temp. of cold vessel about $100^{\circ} \mathrm{C} \&$ remain the temp.of hot vessel const.
Sol:-
a-
$\mathrm{T}_{\text {max }}=1100^{\circ} \mathrm{K}, \mathrm{T}_{\text {min }}=500^{\circ} \mathrm{K}$
$\eta_{\text {car }}=1-\frac{\mathrm{T}_{\text {min }}}{\mathrm{T}_{\text {max }}}$
500
$\eta_{\text {car }}=1-\overline{1100}$

$$
=0.545=54.5 \%
$$

$$
\mathrm{T}_{\max }=1100+(100+273)
$$

$$
=1473^{\circ} \mathrm{K}
$$

$$
\eta_{\text {car }}=1-\frac{\mathrm{T}_{\min }}{\mathrm{T}_{\max }}
$$

$$
500
$$

$$
\eta_{\mathrm{car}}=1-
$$

$$
1473
$$

$$
=0.6=66 \%
$$

b-
$\mathrm{T}_{\text {max }}=1100^{\circ} \mathrm{K}$
$\mathrm{T}_{\text {max }}=500-(100+273)$

$$
=127^{\circ} \mathrm{K}
$$

$$
\eta_{\mathrm{car}}=1-\frac{\mathrm{T}_{\mathrm{min}}}{}
$$

$\mathrm{T}_{\text {max }}$
127
$\eta_{\text {car }}=1-$
1100
$=0.88=88 \%$ the case b it give more effective

EX:- Carnot engine is 25% we reversed the motor to working with cooling load of $800 \mathrm{~kJ} / \mathrm{min}$ at $5^{\circ} \mathrm{C}$,Determine :-
a- net work done wanted to operate in cooling machine
b- C.O.P
Sol:
$\eta_{\text {car }}=25 \% \mathrm{Q}_{\mathrm{add}}=800 \mathrm{~kJ} / \mathrm{min}, \mathrm{T}_{\text {min }}=5+273=278^{\circ} \mathrm{K}$,
N.W.D $=\mathrm{Q}_{\mathrm{rej}}-\mathrm{Q}_{\mathrm{add}}$
$\eta_{\text {car }}=1-\frac{T_{\text {min }}}{T_{\text {max }}}$
$0.25=1-\frac{278}{\mathrm{~T}_{\max }}$
$\mathrm{T}_{\text {max }}=370.66^{\circ} \mathrm{K}$
$(\text { C.O.P })_{R e f}=\frac{T_{\min }}{T_{\max }-T_{\min }}=\frac{278}{370.66-278}=3$
$(\text { C.O.P })_{\text {Ref. }}=\frac{Q_{\text {add }}}{\text { N.W.D }}$ 800
$3=$
N.W.D
N.W.D $=266.66 \mathrm{~kJ} / \mathrm{min}$

EX:- In an isolated house a heat engine (H.E) working between $727^{\circ} \mathrm{C} \& 17^{\circ} \mathrm{C}$ is installed to give power to house utilities which are composed of :-
1 - cooking \& lighting appliances that needs $6000 \mathrm{~kJ} / \mathrm{hr}$.
2- Ref. which work between $-23^{\circ} \mathrm{C} \& 17^{\circ} \mathrm{C} \&$ consume $2000 \mathrm{~kJ} / \mathrm{hr}$ work.
3- A H.P which work between $17^{\circ} \mathrm{C} \& 37^{\circ} \mathrm{C} \&$ consume $4000 \mathrm{~kJ} / \mathrm{hr}$ work .
-The H.E working on thermal eff. of 35.2% of the max.possible eff.

- the ref.\& H.P C.O.P are 50% of the max possible C.O.P for each machine .

Calculate :-
a- the net power of H.E (kW)
b- the heat added to H.E per hr
c- the heat absorbed by ref
d- the heat given by H.P
e - the heat added or rejected from $17^{\circ} \mathrm{C}$ datom.

Sol:-

Net power $=w_{1}+w_{2}+w_{3}=6000+2000+4000$

$$
=12000 \mathrm{~kJ} / \mathrm{hr}=12000 / 3600=3.34 \mathrm{~kW}
$$

$\mathrm{Q}_{\text {add }} 1=$?
$\eta_{\text {H.E }}=\frac{\mathrm{N} . \mathrm{W} . \mathrm{D}}{\mathrm{Q}_{\mathrm{add}} 1}$
0.71
$\eta_{\text {H.E T }}=1-\frac{T_{\text {min }}}{T_{\text {max }}}$

$$
=1-\frac{17+273}{727+273}
$$

$$
=0.71=71 \%
$$

$$
\eta_{\text {H.E }}=0.352 * 0.71
$$

$$
=0.25=25 \%
$$

$0.25=\frac{12000}{Q_{\text {add }} 1}$

$$
\mathrm{Q}_{\text {add }} 1=48000 \mathrm{~kJ} / \mathrm{hr}
$$

$\mathrm{Q}_{\mathrm{add}} 2=$?
$(\text { C.O.P })_{\text {Ref }}=\frac{\mathrm{Q}_{\mathrm{add}} 2}{\mathrm{w}_{2}}$

$$
\begin{aligned}
& (\text { C.O.P })_{\text {Ref. }} T=\frac{T_{\min }}{T_{\max }-T_{\min }} \\
& =\frac{-23+273}{} \\
& (17+273)-(-23+273) \\
& =6.25 \\
& (\text { C.O.P })_{\text {Ref }}=6.25 * 0.5=3.125 \\
& 3.125=\frac{\mathrm{Q}_{\text {add }} 2}{2000} \\
& \mathrm{Q}_{\text {add }} 2=6250 \mathrm{~kJ} / \mathrm{hr} \\
& \mathrm{Q}_{\mathrm{rej}} 3=\text { ? } \\
& (\text { C.O.P })_{H . P}=\frac{\mathrm{Q}_{\mathrm{rej}} 3}{\mathrm{w}_{3}} \\
& \mathrm{Q}_{\mathrm{rej}} 3=\mathrm{w}_{3} *(\text { C.O.P })_{\mathrm{H} . \mathrm{P}} \\
& (\text { C.O.P })_{\text {H.P.T }}=\frac{\mathrm{T}_{\max }}{\mathrm{T}_{\max }-\mathrm{T}_{\min }} \\
& =\frac{37+273}{(37+273)-(17-273)} \\
& =15.5 \\
& (\text { C.O.P })_{\text {H.P }}=15.5 * 0.5 \\
& =7.75 \\
& \mathrm{Q}_{\mathrm{rej}} 3=4000 * 7.75 \\
& =31000 \mathrm{~kJ} / \mathrm{hr} \\
& \mathrm{Q}_{\mathrm{rej}} 2=\mathrm{w}_{2}+\mathrm{Q}_{\text {add }} 2 \\
& =2000+6250 \\
& =8250 \mathrm{~kJ} / \mathrm{hr} \\
& \mathrm{Q}_{\mathrm{rej}} 1=\mathrm{Q}_{\text {add }} 1-\text { N.W.D }
\end{aligned}
$$

$$
=48000-12000
$$

$$
=36000 \mathrm{~kJ} / \mathrm{hr}
$$

$$
\begin{aligned}
\mathrm{Q}_{\text {add }} 3 & =\mathrm{Q}_{\mathrm{rej}} 3-\mathrm{w}_{3} \\
& =31000-4000 \\
& =27000 \mathrm{~kJ} / \mathrm{hr}
\end{aligned}
$$

Reversible\& irreversible processes :-

Reversible process :-the process in which the working substance and all elements of its surrounding after complete the process it return back to initial condition without any external effect.

There are two source of irreversible process :-a- External source of irreversible :- Mechanical friction

$\mathrm{W}_{\mathrm{S} 12}=\mathrm{W}_{12}+\mathrm{W}_{\mathrm{f} 12}$
$\mathrm{Q}_{12}=\mathrm{w}_{\mathrm{f} 12}$
$\mathrm{w}_{\mathrm{s} 12}=\mathrm{w}_{12}+\mathrm{Q}_{12} \quad \ldots \ldots \ldots \ldots$. In case of expansion

- Compression process:-

Compression
$\mathrm{W}_{\mathrm{s} 21}=\mathrm{W}_{21}-\mathrm{W}_{\mathrm{f} 21}$
$\mathrm{W}_{21}=\mathrm{WS}_{21}+\mathrm{W}_{\mathrm{f} 21}$
$\mathrm{Q}_{21}=\mathrm{W}_{\mathrm{f} 21}$
$\mathrm{w}_{\mathrm{s} 21}=\mathrm{w}_{21}-\mathrm{Q}_{21}$
$\mathrm{w}_{\mathrm{s} 21}=\mathrm{W}_{\mathrm{s} 21}$
$W_{21}-Q_{21}=W_{12}+Q_{12}$
$\mathrm{W}_{21}-\mathrm{W}_{12}=\mathrm{Q}_{12}+\mathrm{Q}_{21}$
$\mathrm{Q}_{12}+\mathrm{Q}_{21}>0$
b- Internal sources: -
-It is the friction between molecular of the system it self.
-If the piston moves slowly the gas fills the cylinder.
-If the piston moves rapidly the gas fills the cylinder.
-The pressure in bulb will be higher than that in cylinder.

- The net results are less work done and the gas finally will be better state.

The meaning of(p-V) diagram for irreversible process :-

Area under curve 1-2 for p.V diagram is represent work done reversible.
But Area under curve 1-2` for p .V diagram is not represent work done irreversible.

$$
(\mathrm{w} . \mathrm{D})_{\mathrm{irrev}}<(\mathrm{w} . \mathrm{D})_{\mathrm{rev}}
$$

$(\mathrm{w} . \mathrm{D})_{\text {irrev }}=(\mathrm{w} . \mathrm{D})_{\mathrm{rev}}-$ friction loss

$$
=\int_{1}^{2} \mathrm{p} . \mathrm{dV}-\text { friction loss }
$$

Friction loss :- is a friction (percentage) of (w.D) $)_{\text {rev }}$

Problems :-

7-1 Explain why it is impossible for any engine cycle to have athermal efficiency of 100%.
$7-2$ The overall volume expansion ratio of a Carnot cycle is 15 . The temperature limits of the cycle are $260^{\circ} \mathrm{C}$ and $21^{\circ} \mathrm{C}$. Determine :
1- the volume ratios of the isothermal and adiabatic process
2 - the thermal efficiecy of the cycle Take $\boldsymbol{\gamma}=1.4$ (4.42, 3.39, 44.8\%)
$7-3$ Two reversible heat engines A and B are arraged in series, A rejecting heat directly to B. Engine A recieves 200 kJ at atemperature of $421^{\circ} \mathrm{C}$ from hot source, while engine B is in communication with the cold sink at a temperature of $4.4^{\circ} \mathrm{C}$. If the work output of A is twice that of B find :
1- the intermediat temperature between $A \& B$
2- the efficiency of each engine
3- the heat rejected to the cold $\operatorname{sink}\left(143^{\circ} \mathrm{C}, 40 \%, 33.5 \%, 80 \mathrm{~kJ}\right)$
$7-4$ A heat engine operates between max. \& min temperature of $871^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. With an efficiency of 50% of the Carnot efficiency. It drives a heat pump whicj uses river water at $4.4^{\circ} \mathrm{C}$ to heat block of flats in which the temperature is to be mentained at $21.1^{\circ} \mathrm{C}$. assuming that atemperature diffrence of 11.1 exists between the working fluid and the river water, on the one hand, and required room temperature on the other, and assuming a heat pump to operate on the reversed Carnot cycle, but with a coefficient of performance of 50% of the ideal value for the same temperature limits of the working fluid, find the heat input to the engine per unit heat output from the heat pump. ($0.82 \mathrm{~kJ} / \mathrm{kJheat}$ input)

Unit eight

 Entropy (s)
Entropy (s)

$\frac{\mathrm{T}_{\text {min }}}{\mathrm{T}_{\text {max }}}=\frac{\mathrm{Q}_{\mathrm{rej}}}{\mathrm{Q}_{\mathrm{add}}}$
$\frac{\mathrm{Q}_{\text {add }}}{\mathrm{T}_{\max }}=\frac{\mathrm{Q}_{\mathrm{rej}}}{\mathrm{T}_{\min }}$

Thus integrating around the cycle and putting + ve for $Q_{\text {add }}$ and -ve for $\mathrm{Q}_{\mathrm{rej}}$
$\frac{Q_{\text {add }}}{T_{\max }}+\frac{\mathrm{Q}_{\text {rej }}}{\mathrm{T}_{\text {min }}}=0$
$\operatorname{Or} \phi(\mathrm{dQ} / \mathrm{T})=0$
The same result can be obtained to any reversible
Cycle process and the isothermal cancel each other and no heat is added or rejected in the adiagrame
$\Phi(\mathrm{dQ} / \mathrm{T})_{\mathrm{rev}}=0$
Thus the dQ/T behavies like any properties ($\mathrm{p}, \mathrm{v}, \mathrm{u}, \mathrm{h}, \mathrm{T}$)
Where :-
$\oint \mathrm{dp}=0, \mathrm{O} d \mathrm{dT}=0, \mathrm{Odu}=0$
It exists a property of the system
$\mathrm{dQ} / \mathrm{T}=\mathrm{ds}$
such that
$\mathrm{S}_{2}-\mathrm{s}_{1}=\int_{1}^{2} \mathrm{ds}=\int_{1}^{2} \mathrm{dQ} / \mathrm{T}$
this property is called entropy

Temperature - entropy diagram (\mathbf{T} - s) diagram :-

$\mathrm{s}_{2}-\mathrm{s}_{1}=\int_{1}^{2} \mathrm{ds}=\int_{1}^{2} \mathrm{dQ} / \mathrm{T}$
$\mathrm{ds}=\mathrm{dQ} / \mathrm{T}$
$\mathrm{dQ}=\mathrm{T} . \mathrm{ds}$
$\int_{1}^{2} \mathrm{dQ}=\int_{1}^{2} \mathrm{~T} . \mathrm{ds}$

- plotting a property diagram between T\&s it can be a range if
$\mathrm{s}_{2}-\mathrm{s}_{1}=\int_{1}^{2} \mathrm{ds}=\int_{1}^{2} \mathrm{dQ} / \mathrm{T}$
which is analoges to $\mathrm{w}_{12} \int \mathrm{p} . \mathrm{dV}$
\int_{1}^{2} T.ds is the area under the process represented on T.s diagram
T\&s are two independed property
-This area calculated the reversible exchanged heat Q_{12} through this process
$\mathrm{Q}_{\text {isothermal }}=\mathrm{T}\left(\mathrm{s}_{2}-\mathrm{s}_{1}\right)$

- For reversible adiabatic process is represented on $\mathrm{T}-\mathrm{s}$ diagrame by a vertical line
$\mathrm{Q}_{12}=0$
$\mathrm{s}_{1}=\mathrm{s}_{3}$
is called isentropic process($\mathrm{s}=$ const.)

- For irreversible adiabatic process $\mathrm{Q}=\varnothing$ represented by curve $1-4$ which is not isentropic

Entropy :- It is a property which is directly connected to the exchange heat\& the change in entropy is :-
$\mathrm{S}_{2}-\mathrm{S}_{1}=\int_{1}^{2} \mathrm{dQ} / \mathrm{T}$

Entropy Equation for an ideal gas :-

First low for closed system,
$\mathrm{Q}_{12}=\mathrm{w}_{12}+\Delta \mathrm{U}_{12}(\mathrm{~kJ})$
$\mathrm{q}_{12}=\mathrm{w}_{12}+\Delta \mathrm{u}_{12}(\mathrm{~kJ} / \mathrm{kg})$
differentiate
$d q=d w+d u$
$\mathrm{dq}=\mathrm{p} \cdot \mathrm{d} v+\mathrm{du} \longrightarrow \mathrm{ds}=\mathrm{dq} / \mathrm{T}$
T.ds $=\mathbf{p} . d v+d u$
$\mathrm{h}=\mathrm{u}+\mathrm{p} . v$
$\mathrm{dh}=\mathrm{du}+\mathrm{p} . \mathrm{d} v+v . \mathrm{dp}$
$\mathrm{dh}=\mathrm{T} . \mathrm{ds}+\mathrm{v} . \mathrm{dp}$

$$
\text { T.ds }=\mathrm{dh}-\mathrm{v} . \mathrm{dp}
$$

For ideal gas

$\mathrm{p} . v=\mathrm{R} . \mathrm{T}, \mathrm{p} / \mathrm{T}=\mathrm{R} / v$
$\mathrm{du}=\mathrm{Cv} . \mathrm{dT}, \mathrm{dh}=\mathrm{Cp} . \mathrm{dT}$
from equation a

$$
(\mathrm{T} \cdot \mathrm{ds}=\mathrm{p} \cdot \mathrm{~d} v+\mathrm{du}] / \mathrm{T}
$$

$$
\mathrm{ds}=(\mathrm{p} / \mathrm{T}) \cdot \mathrm{d} v+\mathrm{du} / \mathrm{T}
$$

$$
\mathrm{ds}=(\mathrm{R} / v) \cdot \mathrm{d} v+(\mathrm{Cv} / \mathrm{T}) \cdot \mathrm{dT}
$$

$$
\mathrm{ds}=\mathrm{R}(\mathrm{~d} v / v)+\mathrm{Cv}(\mathrm{dT} / \mathrm{T})
$$

$$
\int_{1}^{2} \mathrm{ds}=\mathrm{R} \int_{1}^{2}(\mathrm{~d} v / v)+\mathrm{Cv} \int_{1}^{2}(\mathrm{dT} / \mathrm{T})
$$

$$
s_{2}-s_{1}=R \ln \left(v_{2} / v_{1}\right)+C v \ln \left(T_{2} / T_{1}\right)
$$

from equation b

$$
\begin{aligned}
& (\mathrm{T} . \mathrm{ds}=\mathrm{dh}-\mathrm{v} \cdot \mathrm{dp}) / \mathrm{T} \\
& \mathrm{ds}=(\mathrm{dh} / \mathrm{T})-(\mathrm{v} / \mathrm{T}) \mathrm{dp} \\
& \mathrm{ds}=\mathrm{Cp}(\mathrm{dT} / \mathrm{T})-\mathrm{R}(\mathrm{dp} / \mathrm{p}) \\
& \int_{1}^{2} \mathrm{ds}=\mathrm{Cp}_{1}^{2}(\mathrm{dT} / \mathrm{T})-\mathrm{R} \int_{1}^{2}(\mathrm{dp} / \mathrm{p}) \\
& \mathbf{S}_{\mathbf{2}}-\mathbf{S}_{1}=\mathbf{C p} \ln \left(\mathrm{T}_{2} / \mathbf{T}_{\mathbf{1}}\right)-\mathbf{R} \ln \left(\mathbf{p}_{2} / \mathbf{p}_{\mathbf{1}}\right) \\
& \hline
\end{aligned}
$$

$$
\text { put } \mathrm{R}=\mathrm{Cp}-\mathrm{Cv}
$$

$$
\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{Cp} \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right)-(\mathrm{Cp}-\mathrm{Cv}) \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)
$$

$$
\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{Cp} \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right)-\mathrm{Cp} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)+\mathrm{Cv} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)
$$

$$
\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{Cp}\left(\ln \left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right)-\ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)+\operatorname{Cv} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)\right.
$$

$$
\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{Cp} \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right)-\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)+\operatorname{Cvln}\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)
$$

$$
\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)
$$

$$
\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{Cp} \ln \frac{}{\left(\mathrm{n}_{2} / \mathrm{n}_{1}\right)}+\operatorname{Cv} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)
$$

$$
\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)
$$

$$
\mathrm{T}_{2 .} \cdot \mathrm{p}_{1}
$$

$$
\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{Cp} \ln \longrightarrow+C v \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)
$$

$$
\mathrm{T}_{1 . \mathrm{p}_{2}}
$$

$$
\frac{\mathrm{p}_{1} \cdot \mathrm{v}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \cdot \mathrm{v}_{2}}{\mathrm{~T}_{2}}
$$

$$
\frac{\mathrm{T}_{2} \cdot \mathrm{p}_{1}}{\mathrm{~T}_{1} \cdot \mathrm{p}_{2}}=\frac{\mathrm{v}_{2}}{v_{1}}
$$

$$
s_{2}-s_{1}=C p \ln \left(v_{2} / v_{1}\right)+C \ln \left(p_{2} / p_{1}\right)
$$

Representation of particular process on (T-s) diagram.
a- constant volume process (isochoric)
$\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{R} \ln \left(\mathrm{v}_{2} / \mathrm{v}_{1}\right)+\mathrm{Cv} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$
$v_{2}=v_{1}$
$\mathrm{R} \ln \left(v_{2} / v_{1}\right)=0$

$\mathrm{s}_{2}-\mathrm{s}_{1}=\mathbf{C v} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$

For certain arbitrary datum the entropy is assumed $=0$ at $t=t_{o}=0^{\circ} \mathrm{C}$ i.e. $\mathrm{T}=\mathrm{T}_{\mathrm{o}}=273{ }^{\circ} \mathrm{K}$
And $\mathrm{p}=\mathrm{p}_{\mathrm{o}}=0.006112 \mathrm{bar}$ and thus:-
$v_{o}=R\left(T_{o} / p_{o}\right) \quad \mathrm{m}^{3} / \mathrm{kg}$
$\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{R} \ln \left(\mathrm{v}_{2} / \mathrm{v}_{\mathrm{o}}\right)+\mathrm{Cv} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{\mathrm{o}}\right)$
This reduced to

$$
s=R \ln \left(v / v_{0}\right)+C v \ln \left(T / T_{0}\right)
$$

Appling isochoric process put $v=$ const.

$s=$ const $+C v \ln T$

Which it are family curves each of which as a const. volume value a horizontal distance between any two constant volume lines is always const. as it equal :-
$\Delta s=R \ln \left(v_{2} / v_{1}\right)$

b- Isobaric process:-
$\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{Cp} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)-\mathrm{R} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)$
$\mathrm{p}_{2}=\mathrm{p}_{1}$
$\mathrm{S}_{2}-\mathrm{S}_{1}=\mathrm{Cp} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$
Or
$s_{2}-s_{1}=C p \ln \left(v_{2} / v_{1}\right)$

Using the same datum is $\mathrm{s}_{\mathrm{o}}=0, \mathrm{~T}=\mathrm{T}_{\mathrm{o}}=273{ }^{\circ} \mathrm{K}$ And $\mathrm{p}=\mathrm{p}_{\mathrm{o}}=0.006112 \mathrm{bar}$,
$\mathrm{s}=\mathrm{Cp} \ln \left(\mathrm{T} / \mathrm{T}_{\mathrm{o}}\right)-\mathrm{R} \ln \left(\mathrm{p} / \mathrm{p}_{\mathrm{o}}\right)$
As $\mathrm{p}=$ const for isobaric

$\mathrm{s}=\mathrm{const}+\mathrm{Cp} \ln \mathrm{T}$

Where:-
Const $=-\mathrm{Cpln} \mathrm{T}_{\mathrm{o}}-\mathrm{R} \ln \left(\mathrm{p} / \mathrm{p}_{\mathrm{o}}\right)$
This represented a family of curve each of which has a constant pressure Value and the horizontal distance is always constant at which equal:-
$\Delta \mathrm{s}=\mathrm{R} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)$

C- Isothermal process ($\mathbf{T}=$ constant $)$:-
$\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{R} \ln \left(\mathrm{v}_{2} / \mathrm{v}_{1}\right)+\mathrm{Cv} \ln (\underset{2}{ } / \underset{\mathrm{T}}{1} \boldsymbol{0})$

$$
s_{2}-s_{1}=R \ln \left(v_{2} / v_{1}\right)
$$

```
Or \({ }^{0}\)
\(\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{Cp} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)-\mathrm{R} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)\)
\(\mathbf{s}_{2}-\mathbf{s}_{1}=-\mathbf{R} \ln \left(\mathbf{p}_{2} / \mathbf{p}_{1}\right)\)
```


D - Isentropic process (Reversible adiabatic process) $s=$ constant :-

$$
\mathrm{s}_{2}-\mathrm{s}_{1}=0
$$

E- polytropic process :-
$\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{R} \ln \left(\mathrm{v}_{2} / \mathrm{v}_{1}\right)+\mathrm{Cv} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$
$\mathrm{T}_{1} . v_{1}{ }^{\mathrm{n}-1}=\mathrm{T}_{2} . v_{2}{ }^{\mathrm{n}-1}$
$\left(v_{2} / v_{1}\right)^{n-1}=T_{1} / T_{2}$
$\left(v_{2} / v_{1}\right)=\left(T_{1} / T_{2}\right)^{1 / n-1}$
$\left(v_{2} / v_{1}\right)=\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)^{-1 / \mathrm{n}-1}$
$\mathrm{Cv}=\mathrm{R} / \gamma-1$
$\left.\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{R} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)^{-1 / \mathrm{n}-1}+\mathrm{R} /(\gamma-1)\right) \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$
$=\mathrm{R} * \frac{1}{\mathrm{n}-1} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}+\frac{\mathrm{R}}{\gamma-1} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}$
$=\mathrm{R} * \frac{1}{\mathrm{n}-1} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}+\frac{\mathrm{R}}{\gamma-1} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}$
$=\left(\frac{-\mathrm{R}}{\mathrm{n}-1}+\frac{\mathrm{R}}{\gamma-1}\right) \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
$S_{2}-S_{1}=\frac{R(n-\gamma)}{(n-1)(\gamma-1)} \quad \ln \frac{T_{2}}{T_{1}}$

Entropy change in irreversible process:-

1-2` Isentropic reversible adiabatic, $\mathrm{s}=$ const. $\mathrm{Q}=0, \Delta \mathrm{~s}=0$

1-2 Irreversible adiabatic, $s \neq$ const. $Q \neq 0, \Delta s \neq 0$
$\left.\begin{array}{l}\mathrm{p}_{\text {irrev }}>\mathrm{p}_{\text {rev }} \\ \mathrm{T}_{\text {irrev }}>\mathrm{T}_{\text {rev }}\end{array}\right\}$ Exp \& comp., $\mathrm{V}=$ const.
From diagram we have constant volume, heat addition from (2` -2)
$\mathrm{T}_{2} \cdot \mathrm{~V}_{2}=\mathrm{T}_{1} \cdot \mathrm{~V}_{1}{ }^{\gamma-1}$
$\mathrm{T}_{2} . \mathrm{V}_{2}=\mathrm{T}_{1} \cdot \mathrm{~V}_{1}^{\mathrm{n}-1}$
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}$
$T_{2}=T_{1}\binom{V_{1}}{V_{2}}^{\mathrm{n}-1}$
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{2}}=\frac{\left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)^{\mathrm{n}-1}}{\left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)^{\gamma-1}}$
$\mathrm{V}_{2}=\mathrm{V}_{2}$
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{2}}=\frac{\left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)^{\mathrm{n}-1}}{\left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)^{\gamma-1}}$
$\mathbf{T}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}}=\left(\mathbf{V}_{\mathbf{1}} / \mathbf{V}_{\mathbf{2}}\right)^{\mathbf{n}-\gamma} \quad$ In case of compression where $\mathrm{n}>\gamma \& \mathrm{~V}_{1}>\mathrm{V}_{2}$
$\mathbf{s}_{\mathbf{2}}-\mathbf{s}_{\mathbf{1}}=\mathbf{s}_{\mathbf{2}}-\mathbf{s}_{\mathbf{2}}{ }^{\prime}=\mathbf{C v} \ln \mathbf{T}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}} \quad$ Where $\mathrm{s}_{1}=\mathrm{s}_{2}$
For expansion
$\mathbf{T}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}}{ }^{-}=\left(\mathbf{V}_{\mathbf{1}} / \mathbf{V}_{\mathbf{2}}\right)^{\mathbf{n}-\gamma}$ In case of expansion where $\mathrm{n}<\boldsymbol{\gamma} \& \mathrm{~V}_{1}<\mathrm{V}_{2}$

$$
s_{2}-s_{1}=s_{2}-s_{2}{ }^{\prime}=C v \ln T_{2} / T_{2}
$$

EX: - Air in a piston - cylinder is at 1 bar and $15^{\circ} \mathrm{C}$. The piston is move $\&$ volume reduced to one quarter of the original size. The compressor is adiabatic and:
a- Reversible the law of comp. being $p \cdot \mathbf{V}^{1.4}=$ const.
b- Irreversible and final temperature being $6.6^{\circ} \mathrm{C}$ higher than in case (a)
Compare the w.D $\& \Delta s$ in the two cases
Sol:-
a-
$\mathrm{w}^{`}=\frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}-\mathrm{p}_{2} \cdot \mathrm{~V}_{2}}{\gamma-1}$
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)^{\gamma-1}$
$\mathrm{T}_{2}=(15+273)\left(\mathrm{V}_{1} / 0.25 \mathrm{~V}_{1}\right)^{1.4-1}$
$\mathrm{T}_{2}=501.1^{\circ} \mathrm{K}$
$\mathrm{w}^{`}=\frac{\mathrm{R}\left(\mathrm{T}_{1}-\mathrm{T}_{2}{ }^{`}\right)}{\gamma^{-1}}$
$\mathrm{w}^{`}=\frac{0.287(288-501.1)}{1.4-1}$

$$
=-152.9 \mathrm{~kJ} / \mathrm{kg}
$$

$\Delta \mathrm{s}=0$
b-
$\mathrm{T}_{2}=\mathrm{T}_{2}+6.6$
$\mathrm{T}_{2}=501.1-273=228.1^{\circ} \mathrm{C}$
$\mathrm{T}_{2}=228.1+6.6$

$$
=234.7^{\circ} \mathrm{C}=507.7^{\circ} \mathrm{K}
$$

$$
\mathrm{w}_{12}=-\Delta \mathrm{u}_{12}=-\operatorname{Cv}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)
$$

$$
\begin{aligned}
\mathrm{w} & =-\frac{}{\gamma-1} *\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =-\frac{0.287}{1.4-1} *(507.7-288)
\end{aligned}
$$

$$
=-157.6 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\Delta \mathrm{s}=\mathrm{Cv} \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{2}\right)
$$

$$
\Delta \mathrm{s}=\frac{\mathrm{R}}{\gamma-1} \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{2}\right)
$$

$$
\Delta \mathrm{s}=\frac{0.287}{1.4-1} \ln (507.7 / 501.1)=0.009259 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

EX: - 1 kg of fluid at $1.5 \mathrm{bar} \& 111.4^{\circ} \mathrm{C}$ is heated at constant volume to $300^{\circ} \mathrm{C}$. Calculates the final pressure $\&$ change in entropy when fluid a- air b-steam.
Sol:-
$\mathrm{m}=1 \mathrm{~kg}, \mathrm{p}_{1}=1.5 \mathrm{bar}, \mathrm{T}_{1}=111.4+273=384.4^{\circ} \mathrm{K}, \mathrm{V}=$ const. $, \mathrm{T}_{2}=300+273=573^{\circ} \mathrm{K}, \mathrm{p}_{2}=$?
a- air
$\mathrm{p}_{2} / \mathrm{T}_{2}=\mathrm{p}_{1} / \mathrm{T}_{1}$
$\mathrm{p}_{2}=\mathrm{T}_{2}\left(\mathrm{p}_{1} / \mathrm{T}_{1}\right)$
$=573(1.5 / 384.4)$
$=2.235 \mathrm{bar}$

$$
\begin{aligned}
\Delta \mathrm{s}_{12} & =\mathrm{Cv} \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right) \\
& =0.717 \ln (573 / 384.4) \\
& =0.286 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
\end{aligned}
$$

b-steam

From steam table at $\mathrm{T}=300^{\circ} \mathrm{C}$ \& $v_{1}=v_{2}=1.159 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{p}=2$ bar at $v=1.316 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{p}=3$ bar at $v=0.8754 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\mathrm{p}_{2}=2+\frac{1.159-1.316}{0.8754-1.316}(3-2)
$$

$=2.357 \mathrm{bar}$
$\mathrm{s}=7.892$ at $v=1.316 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

$\mathrm{s}=7.702$ at $\mathrm{v}=0.8754 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

$$
\begin{aligned}
\mathrm{s}_{2} & =7.892+\frac{1.159-1.316}{0.8754-1.316}(7.702-7.892) \\
& =7.824 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} \\
\Delta \mathrm{~s}_{12} & =\mathrm{s}_{2}-\mathrm{s}_{1} \\
& =7.824-7.223 \\
& =0.601 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
\end{aligned}
$$

EX: - 1 kg of air at 1 bar $\& 15^{\circ} \mathrm{C}$ is heated at constant pressure to $149^{\circ} \mathrm{C}$. Calculate the $\Delta \mathrm{s}_{12}$, $\Delta \mathbf{V}_{12}, \mathbf{W}_{12}, \Delta \mathbf{U}_{12} \& \Delta \mathbf{H}_{12}$.

Sol:-
$\mathrm{m}=1 \mathrm{~kg}, \mathrm{p}_{1}=1 \mathrm{bar}, \mathrm{T}_{1}=15+273=288^{\circ} \mathrm{K}, \mathrm{p}_{1}=\mathrm{p}_{2}=1 \mathrm{bar}, \mathrm{T}_{2}=149+273=422^{\circ} \mathrm{K}$,
$10^{2} \cdot \mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{1}$

$$
\begin{aligned}
\mathrm{V}_{1} & =\frac{\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}}{10^{2} \cdot \mathrm{p}_{1}} \\
\mathrm{~V}_{1} & =\frac{1 * 0.287 * 288}{10^{2 *} 1} \\
& =0.827 \mathrm{~m}^{3}
\end{aligned}
$$

$\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$
$\mathrm{V}_{2}=\mathrm{T}_{2}\left(\mathrm{~V}_{1} / \mathrm{T}_{1}\right)$

$$
=422(0.827 / 288)
$$

$$
=1.212 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
\Delta \mathrm{V}_{12} & =\mathrm{V}_{2}-\mathrm{V}_{1} \\
& =1.212-0.827 \\
& =0.385 \mathrm{~m}^{3} \\
\mathrm{w}_{12} & =10^{2} \mathrm{p}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
\end{aligned}
$$

$$
=10^{2} * 1 *(0.385)
$$

$$
=38.5 \mathrm{~kJ}
$$

$$
\begin{aligned}
\Delta \mathrm{U}_{12} & =\mathrm{m} \cdot \mathrm{Cv} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =1 * 0.717(422-288) \\
& =94.4 \mathrm{~kJ}
\end{aligned}
$$

$$
\mathrm{Q}_{12}=\Delta \mathrm{H}_{12}=\mathrm{m} \cdot \mathrm{Cp} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

$$
=\mathrm{w}_{12}+\Delta \mathrm{U}_{12}=38.5+94.4=132.9 \mathrm{~kJ}
$$

$$
\begin{aligned}
\Delta \mathrm{s}_{12} & =C \ln \left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =1.005 \ln (422 / 288)=0.378 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

EX: - Consider a compressor with air at $1 \mathrm{bar} \& 15^{\circ} \mathrm{C}$ compressing
a- At constant temperature to 27.59 bar .
b- At $p . V^{n}=$ const. $\& n=1.3$, to same pressure, Calculate, $\mathbf{T}_{2}, w_{12}, q_{12}, \Delta u_{12}, \Delta s_{12}$ for two cases.
Sol:-
$\mathrm{p}_{1}=1 \mathrm{bar}, \mathrm{T}_{1}=15+273=288^{\circ} \mathrm{K}$
a-
$\mathrm{T}=$ const. Comp., $\mathrm{p}_{2}=27.59 \mathrm{bar}$,
$\mathrm{T}_{1}=\mathrm{T}_{2}=288^{\circ} \mathrm{K}$
$\mathrm{w}_{12}=\mathrm{R} \cdot \mathrm{T}_{1} \ln \left(\mathrm{p}_{1} / \mathrm{p}_{2}\right)$

$$
=0.287 * 288 \ln (1 / 27.59)
$$

$$
=-263.47 \mathrm{~kJ} / \mathrm{kg}=\mathrm{q}_{12}
$$

$\Delta \mathrm{u}_{12}=0$

$$
\Delta \mathrm{s}_{12}=\mathrm{R} \ln \left(\mathrm{p}_{1} / \mathrm{p}_{2}\right)
$$

$$
=0.287 \ln (1 / 27.59)
$$

$$
=-0.915 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

b- $\mathrm{p} \cdot \mathrm{V}^{\mathrm{n}}=$ const.
$\frac{\mathrm{T}_{1}}{\mathrm{p}_{1}^{\mathrm{n}-1 / \mathrm{n}}}=\frac{\mathrm{T}_{2}}{\mathrm{p}_{2}^{\mathrm{n}-1 / \mathrm{n}}}$

$$
\begin{aligned}
\mathrm{T}_{2} & =\mathrm{T}_{1}\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\mathrm{n}-1 / \mathrm{n}} \\
& =288(27.59 / 1)^{(1.3-1) / 1 . .3} \\
& =619.2^{\circ} \mathrm{K}
\end{aligned}
$$

$$
=\frac{10^{2}\left(\mathrm{p}_{1} \cdot \mathrm{~V}_{1}-\mathrm{p}_{2} \cdot \mathrm{~V}_{2}\right)}{\mathrm{n}-1}
$$

$$
\begin{aligned}
\mathrm{w}_{12} & =\frac{\mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{n}-1} \\
\mathrm{w}_{12} & =\frac{0.287(288-619.2)}{121}
\end{aligned}
$$

$$
1.3-1
$$

$$
=-316.84 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{q}_{12}=\mathrm{w}_{12}+\Delta \mathrm{u}_{12}
$$

$$
\Delta \mathrm{u}_{12}=\mathrm{Cv}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

$$
=0.717(619.2-288)
$$

$$
=237.61 \mathrm{~kJ} / \mathrm{kg}
$$

$$
q_{12}=-316.84+237.61
$$

$$
=-79.23 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\Delta \mathrm{s}_{12}=\frac{(\mathrm{n}-\gamma) \mathrm{R}}{(\gamma-1)(\mathrm{n}-1)} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

$$
=\frac{(1.3-1.4) 0.287}{(1.4-1)(1.3-1)} \ln \frac{619.2}{288}
$$

$$
=-0.18594 \mathrm{~kJ} / \mathrm{kgK}
$$

Problems:-

$8-11 \mathrm{~m}^{3}$ of air is heated reversibly at constant pressure from $15^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$, and is then cooled reversibly at constant volume back to the initial temperature. The initial pressure is 1.03 bar . Calculate the net heat flow and the overall change of entropy, and sketch the process on a T-s diagram.
(101.5kJ; 0.246kJ/ K)
$8-21 \mathrm{~kg}$ of air is allowed to expand reversibly in a cylinder behind a piston in such a way that the temperature remains constant at $260^{\circ} \mathrm{C}$ while the volume is doubled. The piston is then moved in, and heat is rejected by the air reversibly at constant pressure until the volume is the same as it was initially. Calculate the net heat flow and the
overall change of entropy. Sketch the processes on a T-s diagram.
($-161.9 \mathrm{~kJ} / \mathrm{kg} ;-0.497 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$)
8-3 1 kg of steam at 20 bar, dryness fraction 0.9 , is heated reversibly at constant pressure to a temperature of $300^{\circ} \mathrm{C}$. Calculate the heat supplied, and change of entropy and show the process on T-s diagram, indicating the area which represented the heat flow.
($415 \mathrm{~kJ} / \mathrm{kg} ; 0.8173 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K})$
$8-4$ steam at 0.05 bar, $100^{\circ} \mathrm{C}$ is to be condensed completely by a reversible constant pressure process. Calculate the heat flow to be removed per kg of steam, and the change of entropy. Sketch the process on a $\mathbf{T}-\mathrm{s}$ diagram and shade in the area which represented heat flow.
($2550 \mathrm{~kJ} / \mathrm{kg}$; $8.292 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$)
$8-51 \mathrm{~kg}$ of air at $1.013 \mathrm{bar}, 17^{\circ} \mathrm{C}$ is compressed according to the law $\mathrm{pv}^{1.3}=$ constant, until the pressure is 5 bar. Calculate the change of entropy and sketch the process on a T -s diagram, indicating the area which represents the heat flow.
(-0.0885kJ/kg.K)
$8-6$ steam at 15 bar is throttled to 1 bar and a temperature of $150^{\circ} \mathrm{C}$. Calculate the the initial dryness fraction and the change of entropy. Sketch the process on a $T-s$ diagram.
(0.992; 1.202kJ/kg.K)

Unit nine

Gas power
cycle

Gas power cycle

Air standard cycles:-

1- Otto cycles 7
2- Diesel cycle comp\& exp., s = constant, +ve work done
3- Dual cycle

Heat added \& heat rejected:-

1- Otto cycle heat added \& heat rejected at constant volume.
2 - Diesel cycle heat added at constant pressure, \& heat rejected at constant volume.
3- Dual cycle heat added at constant pressure \& constant volume, heat rejected at constant volume.
-In all these cycles the main purpose is to produce mechanical work.
The following assumptions are made:-
1- Air is the working substance
2- All processes are reversible at constant entropy
3- $\mathrm{Cp}, \mathrm{Cv}, \gamma, \mathrm{e}$, for air are constant .
1- Otto cycle:-
The Otto cycle is the ideal air standard cycle for petrol engine, the gas engine, and the high speed oil engine.

T.D.C $=$ top dead center
B.D.C = bottom dead center

Process (1-2) reversible adiabatic comp. (s = const.) (-ve w.D) on the gas
Process $(2-3)$ heat added at constant volume

Process (3-4) reversible adiabatic exp. (+ve w.D)
Process $(4-1)$ heat rejected at constant volume \& return gas to original condition.
$\mathrm{p}_{\text {max }}=\mathrm{p}_{3}, \quad \mathrm{p}_{\text {min }}=\mathrm{p}_{1}$
$\mathrm{T}_{\text {max }}=\mathrm{T}_{3}, \quad \mathrm{~T}_{\text {min }}=\mathrm{T}_{1}$
$\mathrm{V}_{\text {max }}=\mathrm{V}_{1}=\mathrm{V}_{4}, \mathrm{~V}_{\text {min }}=\mathrm{V}_{2}=\mathrm{V}_{3}$

+ ve w.D $=-\Delta u_{34}$

$$
\begin{aligned}
& =\frac{10^{2}\left(\mathrm{p}_{3} \cdot \mathrm{~V}_{3}-\mathrm{p}_{4} \cdot \mathrm{~V}_{4}\right)}{\gamma-1} \\
& =\frac{\mathrm{m} \cdot \mathrm{R}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)}{\gamma-1}=\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)
\end{aligned}
$$

$-\mathrm{ve} \mathrm{w} \cdot \mathrm{D}=-\Delta \mathrm{u}_{12}$

$$
\begin{aligned}
& =\frac{10^{2}\left(\mathrm{p}_{1} \cdot \mathrm{~V}_{1}-\mathrm{p}_{2} \cdot \mathrm{~V}_{2}\right)}{\gamma-1} \\
& =\frac{\mathrm{m} \cdot \mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\gamma-1}=\mathrm{m} \cdot \operatorname{Cv}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{add}}=\Delta \mathrm{u}_{23}=\mathrm{m} \cdot \operatorname{Cv}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$
$\mathrm{Q}_{\mathrm{rej}}=\Delta \mathrm{u}_{41}=\mathrm{m} . \mathrm{Cv}\left(\mathrm{T}_{4}-\mathrm{T}_{1}\right)$
N.W.D $=\mathrm{Q}_{\mathrm{add}}-\mathrm{Q}_{\mathrm{rej}}$

Compression ratio(r):- is defined as the ratio between maximum volume in the cycle $\left(\mathrm{V}_{1}=\mathrm{V}_{4}\right)$ to the minimum volume in the cycle $\left(\mathrm{V}_{2}=\mathrm{V}_{3}\right)$.
$r=\frac{V_{1}}{V_{2}}=\frac{V_{4}}{V_{3}}$

Process (1-2):-
$\mathrm{T}_{1} \cdot \mathrm{~V}_{1}{ }^{\gamma-1}=\mathrm{T}_{2} \cdot \mathrm{~V}_{2}{ }^{\gamma-1}$
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{V}_{1}}{\overline{\mathrm{~V}_{2}}}\right)^{\gamma-1}=\mathrm{r}^{\gamma-1}$
$\mathrm{T}_{2}=\mathrm{T}_{1} * \mathrm{r}^{\gamma-1}$
Process (3-4):-
$\mathrm{T}_{3} \cdot \mathrm{~V}_{3}{ }^{\gamma-1}=\mathrm{T}_{4} \cdot \mathrm{~V}_{4}{ }^{\gamma-1}$
$\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4}}=\left(\frac{\mathrm{V}_{4}}{\mathrm{~V}_{3}}\right)^{\gamma-1}=\mathrm{r}^{\gamma-1}$
$\mathrm{T}_{3}=\mathrm{T}_{4} * \mathrm{r}^{\gamma-1}$
$\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{4}}$
$\eta_{\text {Otto }}=1-\frac{\mathrm{Q}_{\mathrm{rej}}}{\mathrm{Q}_{\mathrm{add}}}$

$$
\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{~T}_{4}-\mathrm{T}_{1}\right)
$$

$$
=1-
$$

$$
\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)
$$

$$
=1-\frac{\left(\mathrm{T}_{4}-\mathrm{T}_{1}\right)}{\left(\mathrm{T}_{4} * \mathrm{r}^{\gamma-1}\right)-\left(\mathrm{T}_{1} * \mathrm{r}^{\gamma-1}\right)}
$$

$$
=1-\frac{\left(\mathrm{T}_{4}-\mathrm{T}_{1}\right)}{\left(\mathrm{T}_{4}-\mathrm{T}_{1}\right) * \mathrm{r}^{\gamma-1}}
$$

$$
=1-\frac{1}{\mathrm{r}^{\gamma-1}}
$$

$$
\eta_{\mathrm{Otto}}=1-\frac{1}{\mathbf{r}^{\gamma-1}}
$$

-As (r) increased eff. also increased.
-As (r) increased $p_{2} \& T_{2}$ increase.

- Petrol octane no, which limit the value of (r).

EX: - In an Otto air standard cycle the minimum pressure and temperature are 1bar $\& 15^{\circ} \mathrm{C}$, the maximum volume is $0.8 \mathrm{~m}^{3}$, the minimum volume is $0.1 \mathrm{~m}^{3}$, the maximum temperature in the cycle is $800^{\circ} \mathrm{C}$ find:-a- cycle efficiency b-N.W.D c- Qrej d-p,V.T. at all cycle.[take $\gamma=1.4, \mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$]

Sol:-
Otto cycle, $\mathrm{p}_{1}=1 \mathrm{bar}, \mathrm{T}_{1}=15+273=288^{\circ} \mathrm{K}, \mathrm{V}_{1}=\mathrm{V}_{4}=0.8 \mathrm{~m}^{3}, \mathrm{~V}_{2}=\mathrm{V}_{3}=0.1 \mathrm{~m}^{3}$,
$\mathrm{T}_{3}=800+273=1073^{\circ} \mathrm{K}$

$$
\begin{aligned}
\eta_{\text {Otto }} & =1-\frac{1}{8^{1.4-1}} \\
& =0.565=56.5 \%
\end{aligned}
$$

b-
N.W.D $=\mathrm{Q}_{\text {add }} * \eta_{\text {Otto }}$
$\mathrm{Q}_{\mathrm{add}}=\mathrm{m} \cdot \operatorname{Cv}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$

$$
\mathrm{m}=\frac{10^{2} \mathrm{p}_{1} * \mathrm{~V}_{1}}{\mathrm{R} * \mathrm{~T}_{1}}=\frac{10^{2} * 1 * 0.8}{0.287 * 288}=0.96 \mathrm{~kg}
$$

$$
\mathrm{Cv}=\frac{\mathrm{R}}{\gamma-1}=\frac{0.287}{1.4-1}=0.717 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

$$
\mathrm{T}_{2}=\mathrm{T}_{1} * \mathrm{r}^{\gamma-1}=288^{*} * 8^{1.4-1}=662^{\circ} \mathrm{K}
$$

$$
\mathrm{Q}_{\mathrm{add}}=0.96 * 0.717(1073-662)
$$

$$
=282 \mathrm{~kJ}
$$

N.W.D $=282 * 0.565$

$$
\mathrm{c}-\quad=160 \mathrm{~kJ}
$$

$$
\mathrm{Q}_{\mathrm{rej}}=\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{~T}_{4}-\mathrm{T}_{1}\right)
$$

= Qadd - N.W.D

$$
=282-160=122 \mathrm{~kJ}
$$

$$
\mathrm{T}_{3}=\mathrm{T}_{4} \cdot \mathrm{r}^{\gamma-1}
$$

$$
\mathrm{T}_{4}=\mathrm{T}_{3} / \mathrm{r}^{\gamma-1}
$$

$$
=1073 / 8^{1.4-1}=467.05^{\circ} \mathrm{K}
$$

$\mathrm{p}_{1} \cdot \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2}{ }^{\gamma}$
$\mathrm{p}_{2}=\mathrm{p}_{1}\left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)^{\gamma}=\mathrm{p}_{1 .} . \mathrm{r}^{\gamma}$

$$
=1 * 8^{1.4}=18.379 \mathrm{bar}
$$

Or
$10^{2} \cdot \mathrm{p}_{2} \cdot \mathrm{~V}_{2}=\mathrm{m} \cdot \mathrm{R} \cdot \mathrm{T}_{2}$

$$
\begin{aligned}
& \mathrm{p}_{2} / \mathrm{T}_{2}=\mathrm{p}_{3} / \mathrm{T}_{3} \\
& \mathrm{p}_{3}=\frac{\mathrm{p}_{2} \cdot \mathrm{~T}_{3}}{\mathrm{~T}_{2}}=\frac{18.2 * 1073}{662}=29.618 \mathrm{bar}
\end{aligned}
$$

$$
\mathrm{p}_{3} \cdot \mathrm{~V}_{3}{ }^{\gamma}=\mathrm{p}_{4} \cdot \mathrm{~V}_{4}^{\gamma}
$$

$$
\mathrm{p}_{3}=\mathrm{p}_{4}\left(\mathrm{~V}_{4} / \mathrm{V}_{3}\right)^{\gamma}=\mathrm{p}_{4} . \mathrm{r}^{\gamma}
$$

$$
\mathrm{p}_{4}=\mathrm{p}_{3} / \mathrm{r}^{\gamma}
$$

$$
=29.618 / 8^{1.4}=1.6115 \mathrm{bar}
$$

2- The Diesel cycle:-

The engines in use today which are called diesel engines are far removed from the original engine invented by Diesel in 1892. Diesel worked on the idea of spontaneous ignition of powdered coal, which was blasted into the cylinder by compressed air .oil became the accepted fuel used in the compression - ignition engines, and the oil was originally blasted into the cylinder in the same way that Diesel had intended to inject the powdered coal this gave a cycle of operation which has as its ideal counterpart the ideal air standard Diesel cycle shown in fig below.
Process (1-2) reversible adiabatic, isentropic comp., (-ve w.D)
Process $(2-3)$ isobaric heat added at constant pressure which is called (cut of point) at which heat addition is stop
Process (3-4) isentropic exp. From cut of point to initial volume at 4 and (+ve w.D) is produce Process $(4-1)$ isochoric heat rejected at constant volume, that brings gas back to original condition.

1- Compression ratio (r):-

2- Expansion ratio (re):-
re $=\frac{\text { Max .vol. }}{\text { Cut of point }}=\frac{V_{1} \text { or } V_{4}}{V_{3}}$

3- Cut of ratio (e):-

$$
\mathrm{e}=\frac{\text { Cut of point }}{\text { min.vol. }}=\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}
$$

$\mathrm{r}=\mathrm{V}_{1} / \mathrm{V}_{2}, \mathrm{e}=\mathrm{V}_{3} / \mathrm{V}_{2}$
$\frac{r}{e}=\frac{V_{1} / V_{2}}{V_{3} / V_{2}}=\frac{V_{1}}{V_{3}}=\frac{V_{4}}{V_{3}}=r e$
Calculation:-
$\mathrm{Q}_{\text {add }}=\mathrm{m} \cdot \mathrm{Cp}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$
$\mathrm{Q}_{\mathrm{rej}}=\mathrm{m} \cdot \operatorname{Cv}\left(\mathrm{T}_{4}-\mathrm{T}_{1}\right)$
N.W.D $=\mathrm{Q}_{\mathrm{add}}-\mathrm{Q}_{\mathrm{rej}}$
$\eta_{\mathrm{D}}=\frac{\mathrm{N} \cdot \mathrm{W} \cdot \mathrm{D}}{\mathbf{Q}_{\text {add }}}=1-\frac{Q_{\text {rej }}}{Q_{\text {add }}}$
$\eta_{\mathrm{D}}=1-\frac{\mathrm{m} \cdot \mathrm{Cv}\left(\mathrm{T}_{4}-\mathrm{T}_{1}\right)}{\mathrm{m} \cdot \mathrm{Cp}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)}$
$\mathrm{T}_{1} \cdot \mathrm{~V}_{1}{ }^{\gamma-1}=\mathrm{T}_{2} \cdot \mathrm{~V}_{2}{ }^{\gamma-1}$

$$
\mathbf{T}_{2}=\mathbf{T}_{1 \cdot} \cdot \mathbf{r}^{\gamma-1}
$$

$\mathrm{T}_{3} \cdot \mathrm{~V}_{3}{ }^{\gamma-1}=\mathrm{T}_{4} \cdot \mathrm{~V}_{4}{ }^{\gamma-1}$
$\mathrm{T}_{4}=\mathrm{T}_{3}\left(\mathrm{~V}_{3} / \mathrm{V}_{4}\right)^{\gamma-1}$

$$
\begin{equation*}
=\mathrm{T}_{3}(1 / \mathrm{re})^{\gamma-1} \tag{2}
\end{equation*}
$$

$\mathrm{T}_{4}=\mathrm{T}_{3}(\mathrm{e} / \mathrm{r})^{\gamma-1}$
$\mathrm{V}_{2} / \mathrm{T}_{2}=\mathrm{V}_{3} / \mathrm{T}_{3}$ at $\mathrm{p}=$ const.
$\mathrm{T}_{3}=\mathrm{T}_{2} *\left(\mathrm{~V}_{3} / \mathrm{V}_{2}\right)$

$$
\mathbf{T}_{3}=\mathbf{T}_{\mathbf{2}} . \mathbf{e} \quad \ldots .3
$$

Sub 3 in 2
$\mathrm{T}_{4}=\mathrm{T}_{2} . \mathrm{e}(\mathrm{e} / \mathrm{r})^{\gamma-1}$
Sub 1 in this equation
$\mathrm{T}_{4}=\mathrm{T}_{1} . \mathrm{r}{ }^{\gamma-1} . \mathrm{e}(\mathrm{e} / \mathrm{r})^{\gamma-1}$

$$
\mathbf{T}_{\mathbf{4}}=\mathbf{T}_{\mathbf{1}} . \mathbf{e}^{\gamma} \ldots \ldots 4
$$

$$
\begin{aligned}
\eta_{\mathrm{D}} & =1-\frac{\mathrm{Cv}\left(\mathrm{~T}_{4}-\mathrm{T}_{1}\right)}{\mathrm{Cp}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)} \\
\eta_{\mathrm{D}} & =1-\frac{1\left(\mathrm{~T}_{1} \cdot \mathrm{e}^{\gamma}-\mathrm{T}_{1}\right)}{\gamma\left(\mathrm{T}_{2} \cdot \mathrm{e}-\mathrm{T}_{2}\right)} \\
& =1-\frac{\mathrm{T}_{1}\left(\mathrm{e}^{\gamma}-1\right)}{\gamma \cdot \mathrm{T}_{2}(\mathrm{e}-1)}
\end{aligned}
$$

$$
\eta_{\mathrm{D}}=1-\frac{\mathrm{T}_{1}\left(\mathrm{e}^{\gamma}-1\right)}{\gamma \cdot \mathrm{T}_{1} \cdot \mathrm{r}^{\gamma-1}(\mathrm{e}-1)}
$$

$$
\eta_{\mathrm{D}}=1-\frac{1}{\mathrm{r}^{\gamma-1}} * \frac{\left(\mathrm{e}^{\gamma}-1\right)}{\gamma(\mathrm{e}-1)}
$$

$$
\operatorname{Put} \zeta=\frac{\left(\mathrm{e}^{\gamma}-1\right)}{\gamma(\mathrm{e}-1)}
$$

$$
\eta_{\mathrm{D}}=1-\frac{1}{\mathrm{r}^{\gamma-1}} * \zeta
$$

EX: - The diesel cycle has the minimum temperature of $27^{\circ} \mathrm{C}$ and maximum temperature of $1327^{\circ} \mathrm{C}$ the quantity of heat added is 700 kJ find:
1- Efficiency of the cycle. 2- N.W.D.
3- Compare this cycle with the Otto cycle working between the same limits of temperature and consuming the same amount of heat added.
4- The compression ratio for each cycle.
5- Efficiency of the corresponding Carnot cycle increase in net w.D between these cycle and other two cycle two cycle above.[take $\mathbf{C p}=1.0 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \gamma=1.4, \mathrm{~m}=1 \mathrm{~kg}$]

Sol:-

$\mathrm{T}_{1}=27+273=300^{\circ} \mathrm{K}, \mathrm{T}_{3}=1327+273=1600^{\circ} \mathrm{K}$,

1-

$$
\eta_{\mathrm{D}}=1-\frac{1}{\mathrm{r}^{\gamma-1}} * \zeta
$$

$\zeta=\frac{\left(\mathrm{e}^{\gamma}-1\right)}{\gamma(\mathrm{e}-1)}$
$\mathrm{e}=\mathrm{V}_{3} / \mathrm{V}_{2}$
$\mathrm{r}=\mathrm{V}_{1} / \mathrm{V}_{2}$
$Q_{\text {add }}=m \cdot C p .\left(T_{3}-T_{2}\right)$
$700=1^{*} 1^{*}\left(1600-\mathrm{T}_{2}\right)$
$\mathrm{T}_{2}=900^{\circ} \mathrm{K}$
$\mathrm{T}_{1} \cdot \mathrm{~V}_{1}{ }^{\gamma-1}=\mathrm{T}_{2} \cdot \mathrm{~V}_{2}{ }^{\gamma-1}$
$\mathrm{T}_{2}=\mathrm{T}_{1} \cdot \mathrm{r}^{\gamma-1}$
$900=300 * r^{1.4-1}$
$900 / 300=r^{0.4}$
$(900 / 300)^{1 / 0.4}=\mathrm{r}$
$r=15.5$
$\mathrm{V}_{2} / \mathrm{T}_{2}=\mathrm{V}_{3} / \mathrm{T}_{3}$
$\mathrm{V}_{3} / \mathrm{V}_{2}=\mathrm{T}_{3} / \mathrm{T}_{2}=\mathrm{e}$
$e=1600 / 900=1.78$
$\zeta=\frac{\left(1.78^{1.4}-1\right)}{1.4(1.78-1)}$

$$
=1.135
$$

$$
\begin{aligned}
\eta_{D} & =1-\frac{1}{15.5^{1.4-1}} * 1.135 \\
& =62.3 \%
\end{aligned}
$$

2-

$$
\begin{aligned}
& \text { N.W.D }=\eta_{\mathrm{D}} * \mathrm{Q}_{\text {add }} \\
& \quad=0.623 * 700 \\
& 3-\quad 436 \mathrm{~kJ} \\
& \eta_{\text {Otto }}=1-\frac{1}{\mathrm{r}^{\gamma-1}} \\
& \mathrm{~T}_{2}=\mathrm{T}_{1} \cdot \mathrm{r}^{\gamma-1} \\
& \mathrm{r}^{\gamma-1}=\mathrm{T}_{2} / \mathrm{T}_{1} \\
& \mathrm{Q}_{\text {add }}=\mathrm{m} . \mathrm{Cv}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \\
& \mathrm{Cv}=\mathrm{Cp} / \gamma=1 / 1.4=0.717 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& 700=1 * 0.717\left(1600-\mathrm{T}_{2}\right) \\
& \mathrm{T}_{2}=620^{\circ} \mathrm{K} \\
& \mathrm{~T}_{2}=\mathrm{r}^{\gamma-1} * \mathrm{~T}_{1}
\end{aligned}
$$

$620=r^{1.4-1} * 300$
$r=6.1$

$$
\begin{aligned}
\eta_{\text {Otto }} & =1-\frac{1}{6.1^{1.4-1}} \\
& =0.515=51.1 \%
\end{aligned}
$$

$$
\text { N.W.D }=\eta_{\text {Otto }} * \mathrm{Q}_{\text {add }}
$$

$$
=0.515 * 700
$$

$$
=360 \mathrm{~kJ}
$$

4-
$\mathrm{r}_{\text {diesel }}=15.5$
rotto $=6.1$

5-
$\eta_{\text {Carnot }}=1-\frac{\mathrm{T}_{\text {min }}}{\mathrm{T}_{\text {max }}}$

$$
\begin{aligned}
& \begin{aligned}
\eta_{\text {Carnot }} & =1-\frac{300}{1600} \\
& =0.82
\end{aligned}=82 \% \\
& \begin{aligned}
(\text { N.W.D })_{\text {Carnot }} & =\eta_{\text {Carnot }} * Q_{\text {add }} \\
& =0.82 * 700 \\
& =574 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

Increase (N.W.D) Diesel $=574-436$

$$
=138 \mathrm{~kJ}
$$

Increase (N.W.D) otto $=574-360$

$$
=214 \mathrm{~kJ}
$$

3- Dual cycle:-

Modern oil engines although still called diesel engines are more closely derived from an engine invented by Ackroyd- Stuart in 1888. all oil engines today use solid injection of the fuel ; the fuel injected by a spring -loaded injector the fuel pump being operated by a cam driven from the engine crankshaft.the ideal cycle used as a basis for comparison is called the Dual combustion cycle or the mixed cycle, as shown on a (p.v) diagram below

Process 1to 2 is isentropic compression,(-ve W.D)

$$
\mathbf{r}=\mathbf{V}_{1} / \mathbf{V}_{2}
$$

Process 2 to 3 is reversible constant volume heating, $\mathrm{Q}_{\text {add } 23}$ with pressure ratio,

$$
\mathbf{r}_{\mathbf{p}}=\mathbf{p}_{3} / \mathbf{p}_{2}
$$

Process 3 to 4 is reversible constant pressure heating, $\mathrm{Q}_{\text {add 34, }}$

$$
\mathbf{e}=\mathbf{V}_{4} / \mathbf{V}_{3}
$$

Process 4 to 5 is isentropic expansion, (+ve W.D)

$$
\mathbf{r e}=V_{5} / V_{4}
$$

Process 1 to 5 is reversible constant volume cooling, $\mathrm{Q}_{\mathrm{rej}}$,
$\mathrm{Q}_{\text {add }}=\mathrm{Q}_{\text {add 23 }}+\mathrm{Q}_{\text {add }} 34$

$$
=\mathrm{m} \cdot \operatorname{Cv}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)+\mathrm{m} \cdot \operatorname{Cp}\left(\mathrm{~T}_{4}-\mathrm{T}_{3}\right)
$$

$\mathrm{Q}_{\mathrm{rej}}=\mathrm{m} . \operatorname{Cv}\left(\mathrm{T}_{5}-\mathrm{T}_{1}\right)$
N.W.D $=\mathrm{Q}_{\mathrm{add}}-\mathrm{Q}_{\mathrm{rej}}$
$\eta_{\text {Dual }}=\frac{\text { N.W.D }}{Q_{\text {add }}}=1-\frac{Q_{\text {rej }}}{Q_{\text {add }}}$

$$
D=\frac{r_{p} * e^{\gamma-1}}{\left(r_{p}-1\right)+\gamma \cdot r_{p}(e-1)}
$$

Mean effective pressure

Is defined as the height of a rectangle having the same length and area as the cycle plotted on (p.v) diagram the rectangle ABCDA is the same length as the cycle 12341 , and area ABCDA is equal to area 12341 then the mean effective pressure, p_{m}, is the height $A B$ of the rectangle.

$$
p_{m}=\frac{N \cdot W \cdot D}{10^{2}\left(v_{1}-v_{2}\right)}
$$

-The term $\left(v_{1}-v_{2}\right)$ is proportional to the swept volume of the cylinder.
-The law p_{m} is used for three cycles (Otto, Diesel, Dual)
EX: - A Diesel engine operates on the Dual cycle with volumetric compression ratio 10:1 ambient temperature $\&$ pressure are $27^{\circ} \mathrm{C} \& 2 \mathrm{bar}$, maximum pressure $100 \mathrm{bar} \&$ cut off point ratio 1.5:1 find $\eta_{\text {Dual }}$, N.W.D\& $p_{m}[$ Take $\gamma=1.4 \& \mathbf{C p}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}]$.

Sol:-

$r=10: 1$
$10=\mathrm{V}_{1} / \mathrm{V}_{2}, \mathrm{~T}_{1}=273+27=300^{\circ} \mathrm{K}, \mathrm{p}_{1}=2 \mathrm{bar}, \mathrm{p}_{\max }=\mathrm{p}_{3}=\mathrm{p}_{4}=100 \mathrm{bar}, \mathrm{e}=\mathrm{V}_{4} / \mathrm{V}_{3}=1.5$
$\eta_{\text {Dual }}=1-\frac{1}{\mathrm{r}^{\gamma-1}} * \mathrm{D}$
$\mathrm{D}=\frac{\mathrm{r}_{\mathrm{p}} * \mathrm{e}^{\gamma-1}}{\left(\mathrm{r}_{\mathrm{p}}-1\right)+\gamma \cdot \mathrm{r}_{\mathrm{p}}(\mathrm{e}-1)}$
$\mathrm{r}_{\mathrm{p}}=\mathrm{p}_{3} / \mathrm{p}_{2}$
$\mathrm{p}_{1} . \mathrm{V}_{1}{ }^{\gamma}=\mathrm{p}_{2} . \mathrm{V}_{2}{ }^{\gamma}$
$\mathrm{p}_{2}=\mathrm{p}_{1}\left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)^{\gamma}$

$$
\begin{aligned}
& \mathrm{p}_{2}=\mathrm{p}_{1 .} \cdot \mathrm{r}^{\gamma} \\
&=2 * 10^{1.4} \\
&=50 \mathrm{bar} \\
& \mathrm{r}_{\mathrm{p}}=\mathrm{p}_{3} / \mathrm{p}_{2} \\
&=100 / 50 \\
&=2: 1 \\
& \begin{aligned}
& \mathrm{D}=\frac{2}{(2-1)+[1.4 * 2(1.5-1)]} \\
& \begin{aligned}
\mathrm{D} & =0.979 \\
\eta_{\text {Dual }} & =1-\frac{1}{10^{1.4-1}} * 0.979
\end{aligned} \\
&=0.61=61 \%
\end{aligned}
\end{aligned}
$$

$$
\eta_{\text {Dual }}=\frac{\text { N.W.D }}{q_{\text {add }}}
$$

$$
\text { N.W.D }=\mathrm{q}_{\text {add }} * \eta_{\text {Dual }}
$$

$$
\mathrm{q}_{\mathrm{add}}=\mathrm{q}_{\text {add23 }}+\mathrm{q}_{\text {add } 34}
$$

$$
\mathrm{q}_{\text {add23 }}=\mathrm{Cv}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)
$$

$$
\mathrm{Cv}=\mathrm{Cp} / \gamma
$$

$$
=1.005 / 1.4
$$

$$
=0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

$$
\begin{aligned}
& \mathrm{T}_{2}=\mathrm{T}_{1} \cdot \mathrm{r}^{\gamma-1} \\
&=300 * 10^{1.4-1} \\
&=753.566^{\circ} \mathrm{K} \\
& \mathrm{~T}_{3} / \mathrm{T}_{2}=\mathrm{p}_{3} / \mathrm{p}_{2} \\
& \mathrm{~T}_{3}=\mathrm{r}_{\mathrm{p}} * \mathrm{~T}_{2} \\
&=2 * 753.566=1507.132^{\circ} \mathrm{K}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{q}_{\text {add23 }}=0.718(1507.132-753.566) \\
&=540.306 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{q}_{\text {add34 }}=\mathrm{Cp}\left(\mathrm{~T}_{4}-\mathrm{T}_{3}\right) \\
& \mathrm{V}_{4} / \mathrm{V}_{3}=\mathrm{T}_{4} / \mathrm{T}_{3} \\
& \mathrm{~T}_{4}=\mathrm{T}_{3} . \mathrm{e} \\
& \mathrm{~T}_{4}=1507.132 * 1.5 \\
&= 2260.698^{\circ} \mathrm{K} \\
& \mathrm{q}_{\text {add34 }}=1.005(2260.698-1507.132) \\
&= 753.56 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{q}_{\text {add }}= 540.306+753.56 \\
&= 1293.866 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

N.W.D $=1293.866 * 0.61$

$$
=789.258 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{p}_{\mathrm{m}}=\frac{\mathrm{N} \cdot \mathrm{~W} \cdot \mathrm{D}}{10^{2}\left(v_{1}-v_{2}\right)}
$$

$$
\left(v_{1}-v_{2}\right)=v_{1}\left[1-\left(v_{2} / v_{1}\right)\right]
$$

$$
=v_{1}[1-(1 / r)]
$$

$$
\left(v_{1}-v_{2}\right)=\frac{\mathrm{R} \cdot \mathrm{~T}_{1}}{10^{2} \cdot \mathrm{p}_{1}} *(1-(1 / \mathrm{r}))
$$

$$
\mathrm{R}=\mathrm{Cp}-\mathrm{Cv}
$$

$$
=1.005-0.718=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

$$
\left(v_{1}-v_{2}\right)=\frac{0.287 * 300}{10^{2} * 2} *(1-(1 / 10))=0.387 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\mathrm{p}_{\mathrm{m}}=\frac{789.258}{10^{2} * 0.387}=20.39 \mathrm{bar}
$$

EX: - An oil engine take air at 1.01 bar $\& 20^{\circ} \mathrm{C}$ the maximum cycle pressure is 69 bar , the Compression ratio is 18:1.calculate the air standard thermal efficiency based on the Dual combustion cycle. Assume that the heat added at constant volume is equal to the heat added at constant pressure. Also calculate the mean effective pressure for the cycle. [Take γ $=1.4, \mathrm{Cv}=0.718 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}]$

Sol:-

$\mathrm{T}_{2} / \mathrm{T}_{1}=\left(v_{1} / v_{2}\right)^{\gamma-1}=18^{0.4}=3.18$
$\mathrm{T}_{2}=3.18 * \mathrm{~T} 1$

$$
=3.18 * 293=931^{\circ} \mathrm{K}
$$

(Where $\mathrm{T}_{1}=20+273=293^{\circ} \mathrm{K}$)
$\mathrm{p}_{3} / \mathrm{p}_{2}=\mathrm{T}_{3} / \mathrm{T}_{2}$

$$
\begin{aligned}
\mathrm{T}_{3} & =\left(\mathrm{p}_{3} / \mathrm{p}_{2}\right) * \mathrm{~T}_{2} \\
& =\left(69 / \mathrm{p}_{2}\right) * 931
\end{aligned}
$$

$\mathrm{p}_{2} / \mathrm{p}_{1}=\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\gamma}$

$$
\begin{aligned}
& \mathrm{p}_{2} / 1.01=(18)^{1.4} \\
& \mathrm{p}_{2}=57.8 \mathrm{bar} \\
& \mathrm{~T}_{3}=\left(\mathrm{p}_{3} / \mathrm{p}_{2}\right) * \mathrm{~T}_{2} \\
&=(69 / 57.8) * 931=1112^{\circ} \mathrm{K}
\end{aligned}
$$

Now the heat added at constant volume is equal to the heat added at constant pressure, therefore,

$$
\mathrm{Cv}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=\mathrm{Cp}\left(\mathrm{~T}_{4}-\mathrm{T}_{3}\right)
$$

$$
0.718(1112-931)=1.005\left(\mathrm{~T}_{4}-1112\right)
$$

$\mathrm{T}_{4}=1241.4^{\circ} \mathrm{K}$
To find T_{5} it is necessary to know the value of the volume ratio, $v_{5}=v_{4}$. At constant pressure from 3 to 4 ,

$$
\begin{aligned}
v_{4} / v_{3} & =T_{4} / T_{3} \\
& =1241.4 / 1112=1.116
\end{aligned}
$$

Therefore,
$v_{5} / v_{3}=v_{1} / v_{4}$
$v_{5} / v_{3}=\frac{v_{1}}{v_{2}} * \frac{v_{3}}{v_{4}}=18 *(1 / 1.116)=16.14$
$\mathrm{T}_{4} / \mathrm{T}_{5}=\left(v_{5} / v_{4}\right)^{\gamma-1}=16.14^{1.4-1}=3.04$
$\mathrm{T}_{5}=1241.4 / 3.04=408^{\circ} \mathrm{K}$
$\mathrm{Q}_{\mathrm{add}}=\mathrm{Cv}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)+\mathrm{Cp}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)$
$=0.718(1112-931)+1.005(1241.4-1112)$
$=260 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{Q}_{\mathrm{rej}}=\operatorname{Cv}\left(\mathrm{T}_{5}-\mathrm{T}_{1}\right)$
$=0.718(408-293)=82.6 \mathrm{~kJ} / \mathrm{kg}$
$\eta_{\text {Dual }}=1-\frac{\mathrm{Q}_{\mathrm{rej}}}{\mathrm{Q}_{\text {add }}}$
$=1-\frac{82.6}{260}$
$=68.2 \%$
$\eta_{\text {Dual }}=$ N.W.D $/ Q_{\text {add }}$

$$
\begin{aligned}
\text { N.W.D } & =\eta_{\text {Dual }} * Q_{\text {add }} \\
& =0.682 * 260=177 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

N.W.D $=p_{m}\left(v_{1}-v_{2}\right)$
$\left(v_{1}-v_{2}\right)=v_{1}\left[1-\left(v_{2} / v_{1}\right)\right]$

$$
=v_{1}[1-(1 / r)]
$$

$\left(v_{1}-v_{2}\right)=\frac{\mathrm{R} \cdot \mathrm{T}_{1}}{10^{2} \cdot \mathrm{p}_{1}} *(1-(1 / \mathrm{r}))$
$\mathrm{R}=\mathrm{Cp}-\mathrm{Cv}$
$=1.005-0.718=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\left(v_{1}-v_{2}\right)=\frac{0.287 * 293}{10^{2 *} 1.01} *(1-(1 / 18))=0.786 \mathrm{~m}^{3} / \mathrm{kg}$
177
$\mathrm{p}_{\mathrm{m}}=\frac{}{10^{2} * 0.786}=2.25 \mathrm{bar}$ (mean effective pressure)
EX: - In a Dual combustion cycle the maximum temperature is $2000^{\circ} \mathrm{C}$ and the maximum pressure is 70bar. Calculate the thermal efficiency when the pressure \& temperature at the start of compression are 1 bar $\& 17^{\circ} \mathrm{C}$ respectively. The compression ratio is 18:1 [Take $\mathbf{C p}$ $=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \gamma=1.4]$.

Sol:-

$$
\begin{aligned}
& \mathrm{T}_{\max }=\mathrm{T}_{4}=2000+273=2273^{\circ} \mathrm{K}, \mathrm{p}_{\max }=\mathrm{p}_{3}=\mathrm{p}_{4}=70 \mathrm{bar}, \mathrm{p}_{1}=1 \mathrm{bar}, \mathrm{~T}_{1}=17+273=290^{\circ} \mathrm{K} \\
& \mathrm{r}=18
\end{aligned}
$$

$$
\begin{aligned}
& \eta=1-\frac{1}{r^{\gamma-1}} * D \\
& \mathrm{r}_{\mathrm{p}} * \mathrm{e}^{\gamma-1} \\
& D=\overline{\left(r_{p}-1\right)+\gamma \cdot r_{p}(e-1)} \\
& \mathrm{r}_{\mathrm{p}}=\mathrm{p}_{3} / \mathrm{p}_{2} \\
& \mathrm{p}_{1} \cdot \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2}{ }^{\gamma} \\
& \mathrm{p}_{2}=\mathrm{p}_{1}\left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)^{\gamma} \\
& \mathrm{p}_{2}=\mathrm{p}_{1 .} \mathrm{r}^{\gamma} \\
& =1 * 18^{1.4} \\
& =57.198 \mathrm{bar} \\
& r_{p}=p_{3} / p_{2} \\
& =70 / 57.198 \\
& =1.2238 \\
& \mathrm{~T}_{2}=\mathrm{T}_{1} \cdot \mathrm{r}^{\gamma-1} \\
& =290 * 18^{1.4-1} \\
& =921.524^{\circ} \mathrm{K} \\
& \mathrm{~T}_{3} / \mathrm{T}_{2}=\mathrm{p}_{3} / \mathrm{p}_{2} \\
& \mathrm{~T}_{3}=\mathrm{r}_{\mathrm{p}} * \mathrm{~T}_{2} \\
& =1.2238^{*} 921.524=1127.95^{\circ} \mathrm{K} \\
& \mathrm{e}=\mathrm{V}_{4} / \mathrm{V}_{3}=\mathrm{T}_{4} / \mathrm{T}_{3}=2273 / 1127.95=2.0152 \\
& \mathrm{D}=\frac{1.224 * 2.0152^{1.4-1}}{(1.224-1)+[1.4 * 1.224(2.0152-1)]} \\
& =0.8249 \\
& \eta=1-\frac{1}{18^{1.4-1}} * 0.8249 \\
& =0.74=74 \%
\end{aligned}
$$

Cycle	Difference	Fluid used In the cycle	Similar
Carnot	$\mathrm{Q}_{\text {add }} \& \mathrm{Q}_{\text {rej }}$ at $\mathrm{T}=$ constant	Air or steam	$\begin{aligned} & \eta=\frac{N . W . D}{Q_{\text {add }}}=1-\frac{Q_{\text {rej }}}{Q_{\text {add }}} \\ & \text { N.W.D }=Q_{\text {add }}-Q_{\mathrm{rej}} \end{aligned}$
Otto	$\mathrm{Q}_{\text {add }} \& \mathrm{Q}_{\mathrm{rej}}$ at $\mathrm{V}=\mathrm{constant}$	Air	
Diesel	$\mathrm{Q}_{\text {add }}$ at $\mathrm{p}=$ constant, $\mathrm{Q}_{\text {rejat }} \mathrm{V}=$ constant	Air	
Dual	$\mathrm{Q}_{\text {add }}$ at $\mathrm{p} \& \mathrm{~V}=$ constant, $\mathrm{Q}_{\text {rej }}$ at $\mathrm{V}=\mathrm{constant}$	Air	$\mathrm{Q}_{\text {add }}>\mathrm{Q}_{\text {rej }}$
Rankine	$\mathrm{Q}_{\text {add }} \& \mathrm{Q}_{\text {rej }}$ at $\mathrm{p}=$ constant	steam	

Carnot	Reverse Carnot
$\eta=\frac{\text { N.W.D }}{Q_{\text {add }}}=1-\frac{Q_{\mathrm{rej}}}{Q_{\text {add }}}<1$	$\text { C.O.P }=\frac{Q_{\text {add }} \text { or } Q_{\text {rej }}}{\text { w.D }}>1$
$\mathbf{W} . \mathrm{D}=\mathbf{Q}_{\text {add }}-\mathbf{Q}_{\text {rej }}$	$\mathbf{W} . \mathbf{D}=\mathbf{Q}_{\text {rej }}-\mathbf{Q}_{\text {add }}$
$\mathbf{Q}_{\text {add }}>\mathbf{Q}_{\text {rej }}$	$\mathbf{Q}_{\text {rej }}>\mathbf{Q}_{\text {add }}$
H.E	H.P\&ref.
From high temperature	From low temperature
+ve w.D	-ve w.D

Problems

$9-1$ In an air standard Otto cycle the maximum and minimum temperatures are $1400^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$. The heat supplied per kg of air is 800 kJ . Calculate the compression ratio and the thermal efficiency. Calculate also the ratio of maximum and minimum pressures in the cycle.
($5.26 / 1 ; 48.6 \% ; 30.5 / 1)$

9-2 Calculate the thermal efficiency and mean effective pressure of an air standard diesel cycle with a compression ratio of $15 / 1$, and maximum and minimum cycle temperatures of $1650^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ respectively. The maximum cycle pressure is 45 bar . (59.1\%; 8.39bar)

9-3 An air standard dual combustion cycle has a mean effective pressure of 10bar. The minimum pressure and temperature are 1 bar and $17^{\circ} \mathrm{C}$ respectively, and the compression ratio is $16 / 1$. Calculate the maximum cycle temperature when the thermal efficiency is 60%. The maximum cycle pressure is 60bar.
$\left(1959^{\circ} \mathrm{C}\right)$

Unit ten

Steam cycles

The Carnot cycle for steam:-

Process $(1-2)$ isothermal at constant temperature, $\mathrm{T}_{1}=\mathrm{T}_{2}, \mathrm{Q}_{\text {add }}$
Process (2-3) isentropic expansion $\mathrm{s}_{3}=\mathrm{s}_{2}(+$ Ve.W.D)
Process (3-4) isothermal at constant temperature, $\mathrm{T}_{3}=\mathrm{T}_{4}, \mathrm{Q}_{\mathrm{rej}}$
Process (4-1) isentropic compression, $\mathrm{s}_{1}=\mathrm{s}_{4}$, (- Ve .W.D)

$$
\begin{aligned}
\mathrm{Q}_{\text {add }} & =\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{h}_{\mathrm{g}}-\mathrm{h}_{\mathrm{f}} \quad \text { at } \mathrm{p}_{1} \\
& =\mathrm{T}_{1}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right)
\end{aligned}
$$

$$
\eta_{\mathrm{Car}}=1-\frac{\mathrm{Q}_{\mathrm{rej}}}{\mathrm{Q}_{\mathrm{add}}}
$$

$$
\eta_{\mathrm{Car}}=1-\frac{\mathrm{T}_{\min }\left(\mathrm{s}_{2}-\mathrm{s}_{1}\right)}{\mathrm{T}_{\max }\left(\mathrm{s}_{2}-\mathrm{s}_{1}\right)}
$$

EX:-Find the Carnot efficiency for steam working between the pressure 100bar \& 1bar.
Sol:-

s
$\eta_{\text {Car }}=1-\frac{\mathrm{T}_{\text {min }}}{\mathrm{T}_{\text {max }}}$

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{rej}}=\mathrm{h}_{3}-\mathrm{h}_{4} \\
& =\mathrm{T}_{3}\left(\mathrm{~s}_{3}-\mathrm{s}_{4}\right) \\
& =\mathrm{T}_{3}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right) \\
& \mathrm{T}_{\text {max }}=\mathrm{T}_{1}=\mathrm{T}_{2} \\
& \mathrm{~T}_{\text {min }}=\mathrm{T}_{3}=\mathrm{T}_{4} \\
& + \text { ve W.D }=h_{2}-h_{3} \\
& \text { - ve W.D = } \mathrm{h}_{1}-\mathrm{h}_{4}
\end{aligned}
$$

At $p=100$ bar from steam table $\mathrm{t}_{\mathrm{s}}=311^{\circ} \mathrm{C}=\mathrm{T}_{\text {max }}$
At $p=1$ bar from steam table $t_{s}=99.6^{\circ} \mathrm{C}=\mathrm{T}_{\text {min }}$
$\eta_{\text {Car }}=1-\frac{(99.6+273)}{(311+273)} \quad=0.36=36 \%$

Simple Rankine cycle:-

Process $(1-2)$ isobaric heat addition in the boiler where the water is given sensible \& latent.
Process $(2-3)$ isentropic expansion in turbine where (+ve w.D) is developed and expansion take place from high pressure p_{1} (boiler pressure) tp the lower pressure p_{2} (condenser pressure or water pressure).

Process (3-4) isobaric heat rejected in condenser where steam at point 3 is cond. To saturated water at 4.

Process $(4-1)$ isentropic compression from low pressure $\left(p_{2}\right)$ to the boiling pressre $\left(p_{1}\right)$ through (-veW.D)

Calculation:-
$\mathrm{Q}_{\mathrm{add}}=\mathrm{h}_{2}-\mathrm{h}_{1}$

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{rej}} & =\mathrm{h}_{3}-\mathrm{h}_{4} \\
& =\mathrm{h}_{3}-\mathrm{h}_{\mathrm{f}}\left(\text { at } \mathrm{p}_{2}\right)
\end{aligned}
$$

$+\mathrm{ve} . \mathrm{W} \cdot \mathrm{D}=\mathrm{h}_{2}-\mathrm{h}_{3}$

- ve.W.D $=\mathrm{h}_{1}-\mathrm{h}_{4}$

$$
=\mathrm{h}_{1}-\mathrm{h}_{\mathrm{f}}\left(\text { at } \mathrm{p}_{2}\right)
$$

$\mathrm{w} . \mathrm{D}=10^{2} \mathrm{~V}\left(\mathrm{p}_{1}-\mathrm{p}_{4}\right)$

$$
=10^{2} v_{\text {fat } 4}\left(p_{1}-p_{4}\right)
$$

$$
\begin{aligned}
\eta_{\text {Rankine }} & =\frac{\mathrm{N} \cdot \mathrm{~W} \cdot \mathrm{D}}{\mathrm{Q}_{\text {add }}} \\
& =\frac{+\mathrm{ve} \cdot \mathrm{~W} \cdot \mathrm{D}-(-\mathrm{ve} \cdot \mathrm{~W} \cdot \mathrm{D})}{\mathrm{Q}_{\mathrm{add}}}
\end{aligned}
$$

$=\frac{\text { Turbine work }- \text { pump work }}{\mathrm{Q}_{\text {add }}}$

$$
=\frac{\left(h_{2}-h_{3}\right)-\left(h_{1}-h_{4}\right)}{h_{2}-h_{1}}
$$

Or

$$
\eta_{\text {Rankine }}=\frac{\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)-\left(\mathrm{h}_{1}-\mathrm{h}_{4}\right)}{\left(\mathrm{h}_{2}-\mathrm{h}_{4}\right)-\left(\mathrm{h}_{1}-\mathrm{h}_{4}\right)}
$$

If the feed pump neglected

$$
\begin{aligned}
\eta_{\text {Rankine }} & =\frac{\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)}{\left(\mathrm{h}_{2}-\mathrm{h}_{4}\right)} \\
\eta_{\text {Rankine }} & =\frac{\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)}{\left(\mathrm{h}_{2}-\mathrm{h}_{\mathrm{f}}\left(\text { at } \mathrm{p}_{2}\right)\right)}
\end{aligned}
$$

N.W.D
 Work ratio = Gross work (work turbine)

Specific steam consumption, (S.S.C):- is the steam flow in Kg / h required to develop 1 KW , Wnet KJ/Kg * S.S.C $=1 \mathrm{KW} * 3600 \mathrm{KJ} / \mathrm{h}$

S.S.C $=\frac{3600}{\text { Wnet }}(\mathrm{Kg} / \mathrm{kW} . \mathrm{h})$
3600

$$
\text { S.S.C }=\frac{}{\left(h_{2}-h_{3}\right)-\left(h_{1}-h_{4}\right)}
$$

Rankine cycle with super heat:-

The purpose of super heat is to raise the efficiency by increasing h_{2} which enter to the turbine.

EX: - steam plant works on the Rankine cycle has the boiler pressure of 100bar and condensed pressure of 1 bar . The initial steam temperature started at saturated condition then $400^{\circ} \mathrm{C}$ the expansion in the turbine is isentropic neglect pump work find the cycle efficiency at each condition $\&$ compare it with Carnot efficiency.

Sol:-
$\mathrm{P}_{\mathrm{H} . \mathrm{P}}=100 \mathrm{bar}, \mathrm{p}_{\mathrm{L} . \mathrm{P}}=1 \mathrm{bar}$,

$\eta_{\text {Rankine }}=\frac{\mathrm{h}_{2}-\mathrm{h}_{3}}{\mathrm{~h}_{2}-\mathrm{h}_{\mathrm{f} 3}}$
$\mathrm{p}_{1}=100 \mathrm{bar}=\mathrm{p}_{2}$ dry \& sat from steam table
$\mathrm{h}_{2}=2725 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}=\mathrm{h}_{\mathrm{g}}, \mathrm{s}_{2}=\mathrm{s}_{\mathrm{g}}=5.615=\mathrm{s}_{3}$
$\mathrm{x}=\frac{\mathrm{s}_{3}-\mathrm{sf}_{3}}{\mathrm{sfg} 3}$

From steam table at $\mathrm{p}=1 \mathrm{bar}, \mathrm{sf}_{3}=1.303 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{sfg} 3=6.056 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$x=\frac{5.615-1.303}{6.056}=0.711$
$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f} 3}+\mathrm{x} \cdot \mathrm{h}_{\mathrm{fg} 3}$
From steam table at $\mathrm{p}=1 \mathrm{bar}, \mathrm{hf}_{3}=417 \mathrm{~kJ} / \mathrm{kg}, \mathrm{sfg}_{\mathrm{fg}}=2258 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=417+0.711 * 2258$

$$
=2023 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f} 3}=417 \mathrm{~kJ} / \mathrm{kg}$

$$
\eta_{\text {Rankine }}=\frac{2725-2023}{2725-417}=0.304=30.4 \%
$$

Carnot

$\eta_{\text {Car }}=1-\frac{\mathrm{T}_{\text {min }}}{\mathrm{T}_{\text {max }}}$
$\mathrm{T}_{\text {min }}=\mathrm{T}_{\mathrm{s}}$ at $\mathrm{p}=1 \mathrm{bar}, \mathrm{T}_{\text {min }}=99.6^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {max }}=\mathrm{T}_{\mathrm{s}}$ at $\mathrm{p}=100 \mathrm{bar}, \mathrm{T}_{\text {max }}=311^{\circ} \mathrm{C}$
$99.6+273$
$\eta_{\text {Car }}=1-\overline{311+273}$

$$
=0.361=36.1 \%
$$

Superheated cycle
$\mathrm{p}=100$ bar \& $\mathrm{T}=400^{\circ} \mathrm{C}$ from superheated table, $\mathrm{h}_{2}=3097 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, \mathrm{s}_{2}=6.213 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

$\mathrm{s}_{2}=6.213 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}=\mathrm{s}_{3}$
From steam table at $\mathrm{p}=1 \mathrm{bar}, \mathrm{sf}_{3}=1.303 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{sfg}_{\mathrm{fg}}=6.056 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{x}=\frac{\mathrm{S}_{3}-\mathrm{sf}_{3}}{\mathrm{Sfg} 3}$
$x=\frac{6.213-1.303}{6.056}=0.811$
$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f} 3}+\mathrm{x} . \mathrm{h}_{\mathrm{fg} 3}$
From steam table at $\mathrm{p}=1 \mathrm{bar}, \mathrm{hf}_{3}=417 \mathrm{~kJ} / \mathrm{kg}, \mathrm{hfg}_{\mathrm{fg}}=2258 \mathrm{~kJ} / \mathrm{kg}$
$h_{3}=417+0.811 * 2258$
$=2247.7 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f} 3}=417 \mathrm{~kJ} / \mathrm{kg}$
$\eta_{\text {Rankine }}=\frac{\mathrm{h}_{2}-\mathrm{h}_{3}}{\mathrm{~h}_{2}-\mathrm{h}_{\mathrm{f} 3}}$
$\eta_{\text {Rankine }}=\frac{3097-2247.7}{3097-417}=0.317=31.7 \%$
$\eta_{\text {Car }}=1-\frac{T_{\text {min }}}{T_{\text {max }}}$
$\mathrm{T}_{\text {min }}=\mathrm{T}_{\mathrm{s}}$ at $\mathrm{p}=1 \mathrm{bar}, \mathrm{T}_{\text {min }}=99.6^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {max }}=400^{\circ} \mathrm{C}$

$$
99.6+273
$$

$\eta_{\text {Car }}=1-\overline{400+273}$

$$
=0.446=44.6 \%
$$

EX: - Inlet pressure to turbine is 60 bar , inlet temperature to turbine is $500^{\circ} \mathrm{C}$, exit pressure from turbine is 2 bar , efficiency isentropic is $\mathbf{8 0 \%}$. Find Rankine efficiency Carnot efficiency \& net work done.

Sol:-
$\mathrm{p}_{1}=60 \mathrm{bar}, \mathrm{T}_{1}=500^{\circ} \mathrm{C}$
$\mathrm{p}_{3}=\mathrm{p}_{4}=2 \mathrm{bar}$

$\eta_{\text {isentropic }}\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)$
$\eta_{\text {Rankine }}=\frac{\mathrm{h}_{2}-\mathrm{h}_{\mathrm{f} 3}}{}$
$\mathrm{h}_{2}=3421 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{2}=6.874 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}=\mathrm{s}_{3}$
$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f} 3}+\mathrm{x} . \mathrm{h}_{\mathrm{fg} 3}$
$\mathrm{X}=\frac{\mathrm{S}_{3}-\mathrm{Sf}_{\mathrm{f}}}{\mathrm{Sfg}_{\mathrm{fg}}}$
From table at $\mathrm{p}=2 \mathrm{bar}, \mathrm{sf}_{\mathrm{f}}=2.53 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{Sfg}_{\mathrm{fg}}=5.597 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{h}_{\mathrm{f} 3}=505 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{h}_{\mathrm{fg} 3}=2202 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
& \mathrm{x}=\frac{6.874-1.53}{5.597}=0.955 \\
& \mathrm{~h}_{3}=505+0.955 * 2202=2607.91 \mathrm{~kJ} / \mathrm{kg} \\
& \eta_{\text {Rankine }}=\frac{0.8(3421-2607.91)}{3421-505} \\
& \quad=0.223=22.3 \%
\end{aligned}
$$

$\eta_{\text {Car }}=1-\frac{\mathrm{T}_{\text {min }}}{\mathrm{T}_{\text {max }}}$
$\mathrm{T}_{\text {min }}=\mathrm{T}_{\mathrm{s}}$ at $\mathrm{p}=2 \mathrm{bar}, \mathrm{T}_{\text {min }}=120^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {max }}=500^{\circ} \mathrm{C}$

$$
\begin{aligned}
\eta_{\text {Car }} & =1-\frac{120+273}{500+273} \\
& =0.49=49 \%
\end{aligned}
$$

N.W.D $=(3421-2216)$

$$
=964 \mathrm{~kJ} / \mathrm{kg}
$$

EX: - Rankine cycle operates between 40bar \& 0.04bar steam enter turbine with degree of superheated $49.7^{\circ} \mathrm{C}$ neglect pump work, Calculate turbine work \& Rankine efficiency.
Sol:-
At 40 bar, $\mathrm{t}_{\mathrm{s}}=250.3^{\circ} \mathrm{C},(\Delta \mathrm{t})_{\mathrm{SH}}=49.7^{\circ} \mathrm{C}$

$T=t_{s}+(\Delta t)_{S H}$

$$
=250.3+49.7=300^{\circ} \mathrm{C}
$$

$\mathrm{h}_{2}=2963 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{2}=6.364 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}=\mathrm{s}_{3}$
at $0.04 \mathrm{bar}, \mathrm{sg}_{\mathrm{g}}=8.473 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}>\mathrm{s}_{2}$ therefore steam is wet
$\mathrm{s}_{\mathrm{f} 3}=0.422 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{s}_{\mathrm{fg} 3}=8.051 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{h}_{\mathrm{f} 3}=121 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{fg} 3}=2433 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{x}=\frac{\mathrm{s}_{3}-\mathrm{S}_{\mathrm{f} 3}}{\mathrm{~s}_{\mathrm{fg} 3}}$
$\mathrm{x}=\frac{6.364-0.422}{8.051}=0.737$
$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f} 3}+\mathrm{x} . \mathrm{h}_{\mathrm{fg} 3}$
$\mathrm{h}_{3}=121+0.737 * 2433=1913.64 \mathrm{~kJ} / \mathrm{kg}$
N.w.D $=\mathrm{h}_{2}-\mathrm{h}_{3}$

$$
=2963-1913.64
$$

$$
=1049.4 \mathrm{~kJ} / \mathrm{kg}
$$

$\eta_{\text {Rankine }}=\frac{\mathrm{h}_{2}-\mathrm{h}_{3}}{\mathrm{~h}_{2}-\mathrm{h}_{\mathrm{f} 3}}$
$\eta_{\text {Rankine }}=\frac{2963-1913.64}{2963-121}=0.369=36.9 \%$
EX: - Rankine cycle operates between boiler pressure 8bar \& condenser pressure 1bar. Calculate Rankine efficiency if dry \& saturated steam enter to the turbine with internal efficiency85\%.

Sol:-
$\eta_{\text {Rankine }}=\frac{\eta_{\text {internal }}\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)}{\mathrm{h}_{2}-\mathrm{h}_{\mathrm{f} 3}}$
From steam table at 8 bar dry \& sat., $\mathrm{h}_{\mathrm{g}}=\mathrm{h}_{2}=2769 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{\mathrm{g}}=\mathrm{s}_{2}=6.663 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
From steam table at $\mathrm{p}=1 \mathrm{bar}, \mathrm{sf}_{3}=1.303 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{sfg} 3=6.056 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{x}=\frac{\mathrm{S}_{3}-\mathrm{sf}_{3}}{\mathrm{sfg} 3}$

$$
x=\frac{6.663-1.303}{6.056}=0.885
$$

From steam table at $\mathrm{p}=1 \mathrm{bar}, \mathrm{hf}_{3}=417 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{fg} 3}=2258 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=417+0.885 * 2258=2415.494 \mathrm{~kJ} / \mathrm{kg}$
0.85 (2769-2415.494)
$\eta_{\text {Rankine }}=\square=0.1277=12.77 \%$ 2769-417

Problems
10 - 1 steam is supplied, dry saturated at 40bar to a turbine and the condenser pressure is 0.035 bar. If the plant operates on the Rankine cycle, calculate, per kg of steam the Rankine efficiency ; \& the specific steam consumption, for the same steam condition calculate the efficiency ; \& the specific steam consumption for a Carnot cycle operating with wet steam. $\quad(36.6 \% ; 3.66 \mathrm{~kg} / \mathrm{kW} \mathrm{h} ; 43 \% ; 4.88 \mathrm{~kg} / \mathrm{kWh})$
$\mathbf{1 0} \mathbf{- 2}$ steam is supplied, at $40 \mathrm{bar} \& \mathbf{3 5 0}^{\circ} \mathrm{C}$ to a turbine and the condenser pressure is $\mathbf{0 . 0 3 5}$ bar. If the plant operates on the Rankine cycle, calculate, per kg of steam the Rankine efficiency\& the specific steam consumption. $\quad(37.8 \% ; 3.2 \mathrm{~kg} / \mathrm{kW} \mathrm{h})$

STEAM TABLES

Saturated Water and Steam

$\frac{t}{{ }^{\circ} \mathrm{C}}$	$\frac{p_{1}}{\mathrm{bar}}$	$\frac{v_{g}}{\mathrm{~m}^{8} / \mathrm{kg}}$	h_{f}	$\frac{h_{f g}}{\mathrm{~kJ} / \mathrm{kg}}$	h_{8}	S_{f}	$\frac{S_{f g}}{\mathrm{~kJ} / \mathrm{kg}}$	$\mathrm{K}^{S_{g}}$
0.01	0.006112	$206 \cdot 1$	$0 *$	$2500 \cdot 8$	$2500 \cdot 8$	$0 \dagger$	9.155	$9 \cdot 155$
1	0.006566	192.6	$4 \cdot 2$	2498.3				
2	0.007054	179.9	8.4	2495.9	$2504 \cdot 3$	0.015 0.031	9.113 9.071	9.128 9.102
3	0.007575	168.2	$12 \cdot 6$	$2493 \cdot 6$	$2506 \cdot 2$	0.046	9.030	9.102 9.076
4	0.008129	$157 \cdot 3$	16.8	2491.3	$2508 \cdot 1$	0.061	8.989	9.050
5	0.008719	147.1	21.0	2488.9	2509.9	0.076		
6	0.009346	137.8	25.2	$2486 \cdot 6$	2509.9 2511.8	0.076	8.948 8.908	9.024 8.999
7	0.01001	129.1	29.4	$2484 \cdot 3$	$2513 \cdot 7$	0.106	8.968 8.868	8.999 8.974
8	0.01072	121.0	33.6	2481.9	2515.5	0.121	8.828	8.974 8.949
9	0.01147	113.4	37.8	2479.6	2517.4	0.136	8.788	8.949 8.924
10	0.01227	$106 \cdot 4$	42.0	$2477 \cdot 2$	$2519 \cdot 2$	0.151	8.749	
11	0.01312	99.90	46.2	2474.9	2521.1	0.166	8.749 8.710	8.900 8.876
12	0.01401	93.83	50.4	$2472 \cdot 5$	$2522 \cdot 9$	0.180	8.671	8.876 8.851
13	0.01497	88.17	54.6	$2470 \cdot 2$	$2524 \cdot 8$	0.195	8.633	8.851 8.828
14	0.01597	82.89	58.8	$2467 \cdot 8$	$2526 \cdot 6$	0.210	8.594	8.804
15	0.01704	77.97	62.9	$2465 \cdot 5$	2528.4			
16	0.01817	73.38	67\%	$2463 \cdot 1$	2538.2	0.224 0.239	8.556 8.518	8.780 8.757
17	0.01936	69.09	71.3	$2460 \cdot 8$	$2532 \cdot 1$	0.239 0.253	8.518 8.481	8.757 8.734
18	0.02063	65.08	75.5	$2458 \cdot 4$	$2533 \cdot 9$	0.253 0.268	8.481 8.444	8.734 8.712
19	0.02196	61.34	79.7	2456.0	$2535 \cdot 7$	0.288 0.282	8.444 8.407	8.712 8.689
20	0.02337	57.84	83.9	2453.7	2537.6			
1	0.02486	54.56	88.0	2451.4	2539.4	0.310	8.370 8.334	8.666 8.644
22	0.02642	51.49	$92 \cdot 2$	2449.0	2541.2	$0 \cdot 325$	8.297	$8.62{ }^{8}$
4	0.02808	$48 \cdot 6,2$	$96 \cdot 4$	$2446 \cdot 6$	2543.0	0.339	$8 \cdot 261$	8.6200
4	0.02982	45.92	100.6	2444.2	2544.8	0.353	8.226	8.579
5	0.03166	43.40	$104 \cdot 8$	2441.8	$2546 \cdot 6$	0.367		
6	0.03360	41.03	108.9	2439.5	$2548 \cdot 4$	0.381	8.190 8.155	8.557 8.536
7	0.03564	38.81	$113 \cdot 1$	$2437 \cdot 2$	$2550 \cdot 3$	0.395	8.120	8.515
8	0.03778	36.73	117.3	$2434 \cdot 8$	2552.1	0.409	8.085	8.494
9	0.04004	34.77	121.5	$2432 \cdot 4$	2553.9	0.423	8.050	8.473
0	0.04242	32.93	$125 \cdot 7$					
2	0.04754	29.57	134.0	$2425 \cdot 3$	25559.7	0.436 0.464	8.016 7.948	8.452 8.412
4	0.05318 0.05940	26.60	142.4	$2420 \cdot 5$	$2562 \cdot 9$	0.491	-. 881	8.372
8	0.05940 0.06624	23.97 21.63	150.7	$2415 \cdot 8$	$2566 \cdot 5$	0.518	7.814	$8 \cdot 332$
	0.06624	21.63	159.1	2411.0	$2570 \cdot 1$	0.545	7.749	8.294
0	0.97375	19.55	167.5	$2406 \cdot 2$		0.572		
2	0.08198	17.69	$175 \cdot 8$	2401.4	2577.2	0.599	7.684 7.620	8.256 8.219
4	0.09100	16.03	$184 \cdot 2$	$2396 \cdot 6$	$2580 \cdot 8$	0.625	7.557	8.182
8	$0 \cdot 1009$	14.55	192.5	2391.8	2584.3	0.651	7.494	8.145
	0.1116	13.23	$200 \cdot 9$	2387.0	2587.9	0.678	7.433	8.111
	0.1233	12.04	209.3	$2382 \cdot 1$				
	0.1574	0.578	$230 \cdot 2$	$2370 \cdot 1$	$2600 \cdot 3$	0.764	7.371 7.223	8.80
	(1.1992	7.678	$251 \cdot 1$	$2357 \cdot 9$	2609.0	${ }_{0}^{0.7681}$	7.223 7.078	7.981 7.909
	0.2501	6.201	$272 \cdot 0$	$2345 \cdot 7$	2617.7	0.893	6.937	7.830
	$0 \cdot 3116$	$5 \cdot 045$	293.0	$2333 \cdot 3$	$2626 \cdot 3$	0.955	6.800	7.755
	0.3855	$4 \cdot 133$	313.9	2320.8	$2634 \cdot 7$	1.015		
	0.4736	$3 \cdot 4.08$	334.9	$2308 \cdot 3$	$2643 \cdot 2$	1.075	6.666 6.536	7.681
	0.5780	$2 \cdot 828$	355.9	2295.6	2651.5	1.134	$6 \cdot 410$	7.544
	$0 \cdot 7011$	$2 \cdot 361$	$376 \cdot 9$	2282.8	2659.7	1.192	6.286	7.478
	0.8453	1.982	398.0	2269.8	2667 -8	1.250	6.166	$7 \cdot 416$
	1.01325	1.673	419.1	2256.7	$2675 \cdot 8$	1.307	6.048	$7 \cdot 355$

[^0]Saturated Water and Steam

p	t	v_{6}	ψ_{f}	u^{\prime}	h_{f}	$h_{\text {ft }}$	$h_{\text {g }}$	S_{t}	$5_{f t}$	S_{t}
0.006112	0.01	206.1	$0 \dagger$	2375	0 *	2501	25r, 1	$0 \dagger$	9-155	9.155 *
0.010	7.0	129.2	29	2385	29	2485	2514	$0 \cdot 106$	8.858	
0.015	13.0	87.98	55	2393	55	2470	2525	0.196	8.631	8.974 8.827
0.020	17.5	67.01	73	2399	73	2460	2533	0.261	8.462	8.723
0.025	21.1	54.26	88	2403	88	2451	2539	0.312	8.330	8.642
0.030	24.1	45.67	101	2408	101	2444	2545	0.354	8.222	8.576
0.035	$26 \cdot 7$	39.48	112	2412	112	2438	2550	0.391	8.130	8.521
0.040 ;	29.0	34.80	121	2415	121	2433	2554	0.422	8.051	8.473
0.045	31.0	31.14	130	2418	130	2428	2558	0.451	7.980	8.431
0.050	$32 \cdot 9$	28.20	138	2420	138	2423	2561	0.476	7.918	8.394
0.055	34:6	25.77	145	2422	145	2419	2564	0.500	7.860	$8 \cdot 360$
0.060	$36 \cdot 2$	23.74	152	2425	152	2415	2567	0.521	7.808	8.329
0.065	37.7	22.02	158	2427	158	2412	2570	0.541	7.760	$8 \cdot 301$
0.070	39.0	20.53	163	2428	163	2409	2572	0.559	7.715	8.274
0.075	$40 \cdot 3$	19.24	169	2430	169	2405	2574	0.576	7.674	8.250
0.080	41.5	18.10	174	2432	174	2402	2576	0.593	7.634	$8 \cdot 227$
0.085	$42 \cdot 7$	17-10	179	2434	179	2400	2579	0.608	7.598	8.206
0.090	43.8	16.20	183	2435	183	2397	2580	0.622	7.564	8.186
0.095	$44 \cdot 8$	15.40	188	2436	188	2394	2582	0.636	7.531	$8 \cdot 167$
0.100	45.8	14.67	192	2437	192	2392	2584	0.649	7.500	8.149
0.12	49.4	12.36	207	2442	207	2383	2590	0.696	7.389	8.085
0.14	52.6	10.69	220	2446	220	2376	2596	0.737	7.294	8.031
0.16	$55 \cdot 3$	9.432	232	2450	232	2369	2601	0.772	$7 \cdot 213$	7.985
0.18	57.8	8.444	242	2453	242	2363	2605	0.804	7.140	7.944
0.20	$60 \cdot 1$	7.648	251	2456	251	2358	2609	0.832	70075	7.907
0.22	$62 \cdot 2$	6.994	260	2459	260	2353	2613	0.858	7.016	7.874
0.24	64.1	6.445	268	2461	268	2248	2616	0.882	6.962	7.844
0.26	65.9	5.979	276	2464	276	2343	2619	0.904	6.913	7.817
0.28	67.5	5.578	283	2466	283	2339	2622	0.925	6.866	7.791
0.30	69.1	$5 \cdot 228$	289	2468	289	2336	2625	0.944	6.823	7.767
0.32	70-6	4.921	295	2470	295	2332	2627	0.962	6.783	7.745
0.34	72.0	4.649	302	2472	302	2328	2630	0.980	6.745	7.725
0.36	73.4	$4 \cdot 407$	307	2473	307	2325	2632	0.996	6.709	7.705
0.38	74.7	4.189	312	2475	312	2322	2634	1.011	6.675	7.686
0.40	75.9	3.992	318	2476	318	2318	2636	1.026	6.643	7.669
0.42	77.1	3.814	323	2478	323	2315	2638	1.040	6.612	$7 \cdot 652$
0.44	$78 \cdot 2$	3.651	327	2479	327	2313	2640	1.054	$6 \cdot 582$	7.636
0.46	$79 \cdot 3$	3.502	332	2481	332	2310	2642	1.067	6.554	7.621
0.48	$80 \cdot 3$	$3 \cdot 366$	336	2482	336	2308	2644	1.079	6.528	7.607
0.50	$81 \cdot 3$	3.239	340	2483	340	2305	2645	1.091	6.502	7.593
0.55	83.7	2.964	351	2486	351	2298	26.49	1.119	6.442	7.561
0.60	86.0	2.731	360	2489	360	2293	26.53	1.145	6.386	7.531
0.65	88.0	2.535	369	2492	369	2288	2557	1.169	6.335	7. 934
0.70	90.0	2.364	377	2494	377	2283	2660	1.192	6.286	7.478
0.75	91.8	$2 \cdot 217$	384	2496	384	2278	2662	1.213	6.243	$7 \cdot 456$
0.80	93.5	2.087	392	2498	392	2273	2655	1.233	6.201	7.434
0.85	95.2	1.972	399	2500	399	2269	2668	1.252	6.162	7.414
0.90	96.7	1.869	405	2502	405	2266	2671	1.270	6.124	7.394
0.95	98.2	1.777	411	2504	411	2262	2673	1.287	6.089	7.376
1.00	99.6	1.694	417	2506	417	2258	2675	1.303	6.956	7.359

$\dagger u$ and s are chosen to be zero for saturated liquid at the triple point
$\frac{h_{f}}{\mathrm{~kJ} / \mathrm{kg}}=\frac{\mathrm{pv}}{\mathrm{kJ} / \mathrm{kg}}=\left(\frac{p}{\mathrm{bar}}\right) \times \frac{105 \mathrm{~N}}{\mathrm{~m}^{2}} \times\left(\frac{v_{\mathrm{f}}}{\mathrm{m}^{3} / \mathrm{kg}}\right) \times \frac{\mathrm{m}^{3}}{\mathrm{~kg}} \times \frac{\mathrm{kJ}}{10^{3} \mathrm{~N} \mathrm{~m}} \times \frac{1}{\mathrm{~kJ} / \mathrm{kg}}$

Saturated Water and Steam
1

Saturated Water and Steam

Superheated Steam

$\begin{gathered} p \\ \left(t_{1}\right) \end{gathered}$			t	50	100	150	200	250	300	400	500
0	$n=n-R T$		\checkmark	2446	2517	2589	2662	2737	2812	2969	3132
			h	2595	2689	2784	2880	2978	3077	3280	3489
$\begin{gathered} 0.006112 \\ (0.01) \end{gathered}$	${ }^{0} 8$	206.1	v	$243 \cdot 9$	281.7	319.5	$357 \cdot 3$	$395 \cdot 0$	$432 \cdot 8$	508.3	583.8
	${ }_{4}$	2375	μ	2446	2517	2589	2662	2737	2812	2969	3132
	${ }_{4}$	2501	\boldsymbol{H}	2595	2689	2784	'980	2978	3077	3280	3489
	s_{t}	$9 \cdot 155$	s	9.468	9.739	9.978	J. 193	$10 \cdot 390$	10.571	10.897	$11 \cdot 187$
$\begin{aligned} & 0.01 \\ & (7.0) \end{aligned}$	$0{ }_{6}$	129.2	v	$149 \cdot 1$	172.2	195.3	218.4	241.4	264.5	$310 \cdot 7$	356.8
	\sim_{6}	2385	\%	2446	2517	2589	2662	2737	2812	2969	3132
	h_{6}	2514	\hbar	2595	2689	2784	2880	2978	3077	3280	3489
	s_{8}	8.974	s	$9 \cdot 241$	9.512	9.751	9.966	10.163	$10 \cdot 344$	10.670	10.960
$\begin{gathered} 0.05 \\ (32 \cdot 9) \end{gathered}$	v_{8}	28.20	,	29.78	34.42	39.04	43.66	48.28	52.90	62.13	71.36
	u_{s}	2420	u	2445	2516	2589	2662	2737	2812	2969	3132
	h_{g}	2561	h	2594	2688	2784	2880	2978	3077	3280	3489
	s_{t}	8.394	s	8.496	8.768	9.008	9.223	$9 \cdot 420$	9.601	9.927	10.217
$\begin{gathered} 0 \cdot 1 \\ (45 \cdot 8) \end{gathered}$	v_{g}	14.67	v	14.87	17.20	19.51	21.83	24.14	26.45	31.06	35.68
	${ }_{4}$	2437	${ }^{4}$	2443	2516	2588	2662	2736	2812	2969	3132
	h_{8}	2584	h	2592	2688	2783	2880	2977	3077	3280	3489
	58	$8 \cdot 149$	s	$8 \cdot 173$	8.447	8.688	8.903	9.100	9.281	9.607	9.897
$\begin{gathered} 0.5 \\ (81 \cdot 3) \end{gathered}$	$v g$	3.239	0		3.420	3.890	4.356	4.821	$5 \cdot 284$	6.209	7.134
	${ }_{4}$	2483	$\stackrel{ }{2}$		2512	2585	2660	2735	2812	2969	3132
	h_{s}	2645	h		2683	2780	2878	2976	3076	3279	3489
	s_{6}	7.593	5		7.694	7.940	8.158	$8 \cdot 355$	8.537	8.864	9.154
$\begin{gathered} 0.75 \\ (91 \cdot 8) \end{gathered}$	v_{6}	2.217	v		2.271	2.588	2.901	3.211	3.521	$4 \cdot 138$	4.755
	u_{6}	2496	${ }^{\mathbf{4}}$		2510	2585	2659	2734	2811	2969	3132
	h_{g}	2662	h		2680	2779	2877	2975	3075	3279	3489
	s_{8}	7.456	s		7.500	7.750	7.969	8.167	8.349	8.676	8.967
$\begin{gathered} 1 \\ (99 \cdot 6) \end{gathered}$	v_{8}	1.694	v		1.696	1.937	2.173	2.406	2.639	3.103	3.565
	${ }_{4}$	2506	${ }^{\text {u }}$		2506	2583	2659	2734	2811	2968	3131
	h_{1}	2675	h		2676	2777	2876	2975	3075	3278	3488
	58		s			7.614	7.834	8.033	8.215	8.543	8.834
$\begin{aligned} & 1.01325 \\ & 2609 \end{aligned}$	0_{8}	1.673	v			1.912	2.145	2.375	$2 \cdot 604$	3.062	3.519
	u_{1}	2506	$\stackrel{ }{*}$			2583	2659	2734	2811	2968	3131
	k_{t}	2676	h			2777	2876	2975	3075	3278	3488
	s_{1}	7.355	s			7.608	7.828	8.027	8.209	8.537	8.828
$\begin{aligned} & 5 \cdot 5 \\ & 1 \cdot[1-6) \end{aligned}$	0	1.159	v			1.286	1.445	1.601	1.757	2.067	2.376
	u_{z}	2519	μ			2580	2656	2733	2809	2967	3131
	h_{6}	2693	h			2773	2873	2973	3073	3277	3488
	5_{6}	7.223	s			7.420	7.643	7.843	8.627	8.355	$8 \cdot 646$
$\stackrel{2}{i 120-2)}$	${ }^{0} 6$	0.8856	v			0.9602	1.081	1.199	1.316	1.549	1.781
	${ }^{2}{ }_{6}$	$\begin{aligned} & 2530 \\ & 2707 \end{aligned}$	$\stackrel{3}{6}$			2578	2655	2731	2809	2967	3131
	${ }_{6}$	2707 $7-127$	h			2770	2871	2971	3072	3277	3487
			s			$7 \cdot 280$	$7 \cdot 507$	7.708	7.892	$8.22 i$	8.513
$\stackrel{3}{(133 \cdot 5)}$	v_{8}	0.6057	0			0.6342	0.7166	0.7965	0.8754	1.031	1.187
	${ }_{\text {H }}^{6}$	2544	$\stackrel{4}{4}$			2572	2651	2729	2807	2966	3130
	h_{2}	2725 6.993	h			2762	2866	2968	3070	3275	3486
	s_{t}	6.993	5			7.078	7.312	7.517	$7 \cdot 702$	8.032	8.324
$\stackrel{4}{(1+3.6)}$	${ }_{8}$	0.4623	0			$0-4710$	0.5345	0.5953	0.6549	0.7725	0.8893
	${ }^{4}$	2554	4			2565	2648	2727	2805	2965	3129
	h_{8}	${ }^{2739}$	h			2753	2862	2965	3067	3274	3485
	s_{s}	$6 \cdot 897$	s			6.929	$7 \cdot 172$	7.379	7.566	7.898	8-191

Superheated Steam											
$\begin{gathered} p \\ \left(t_{2}\right) \end{gathered}$			t	200	250	300	350	400	- 450	500	600
$\stackrel{5}{(151.8)}$	v_{6}	0.3748	v	0.4252	0.4745	0.5226	0.5701	0.6172	0.6641	0.7108	8 0.8040
	${ }_{6}$	2562	${ }^{\sim}$	2644	2725	2804	2883	2963	3045	3129	3300
	${ }^{h_{5}}$	2749 6.822	h	2857	2962	3065	3168	3272	3377	3484	3702
	s_{s}	6.822	s	7.060	$7 \cdot 271$	$7 \cdot 460$	7.633	$7 \cdot 793$	$7 \cdot 944$	3.087	8.351
$\begin{gathered} \stackrel{6}{(158.8)} \end{gathered}$	v	0.3156	v	0.3522	0.3940	0.4344	0.4743	0.5136	0.5528	0.5919	$0 \cdot 6697$
	${ }_{4}{ }_{8}$	2568	${ }^{\text {r }}$	2640	2722	2801	2881	2962	3044	3128	3299
	h_{8}	2757	h	2851	2958	3062	3166	3270	3376	3483	3701
	s_{t}	6.761	s	6.968	$7 \cdot 182$	$7 \cdot 373$	7.546	7.707	7.858	8.001	8.267
$\begin{gathered} 7 \\ (165.0) \end{gathered}$	t_{1}	0.2728	v	0.3001	0.3364	- 0.3714	40.4058	0.4397	0.4734	$0 \cdot 5069$	0.5737
	${ }^{2}{ }_{4}$	2573	${ }^{\text {u }}$	2636	2720	2800	2880	2961	3043	3127	3298
	${ }_{4}{ }_{6}$	2764	h	2846	2955	3060	3164	3269	3374	3482	3700
	s_{8}	6.709	s	6.888	$7 \cdot 106$	$7 \cdot 298$	7.473	$7 \cdot 634$	7-786	7.929	8.195
$\begin{gathered} 8 \\ (170-4) \end{gathered}$	v_{4}	0.2403	v	0.2610	0.2933	0.3242	0.3544	0.3842	0.4138	0.4432	$0 \cdot 5018$
	${ }^{h_{6}}$	2577 2769	${ }^{\mu}$	2631	2716	2798	2878	2960	3042	3126	3298
	${ }^{h_{6}}$	2769 6.663	h	2840	2951	3057	3162	3267	3373	3481	3699
	${ }^{8}$		s	$6 \cdot 817$	7.040	7.233	$7 \cdot 409$	$7 \cdot 571$	7.723	7.866	$8 \cdot 132$
$\begin{gathered} 9 \\ (175 \cdot 4) \end{gathered}$	v_{8}	0.2149	v	0.2305	0.2597	0.2874	0.3144	$0 \cdot 3410$	$0 \cdot 3674$	0.3937	0.4458
		2774	h	2628	2714 2948	2796	2877	2959	3041	3126	3298
	s_{8}	6.623	s	6.753	6.980	3055 7.176	3160 7.352	3266 7.515	3372 7667	3480 7811	3699 8.077
$\begin{gathered} 10 \\ (179 \cdot 9) \end{gathered}$	v_{8}	$0 \cdot 1944$	v	$0 \cdot 2061$	$0 \cdot 2328$	$0 \cdot 2580$	0.2825	$0 \cdot 3065$	0.3303	$0 \cdot 3540$	0.4010
	${ }^{u_{8}}$	2584	$\boldsymbol{\sim}$	2623	2711	2794	2875	2957	3040	3124	3297
	${ }^{\text {n }}$	2778	h	2829	2944	3052	3158	3264	3370	3478	3698
	s_{8}	6.586	s	6.695	6.926	$7 \cdot 124$	$7 \cdot 301$	$7 \cdot 464$	$7 \cdot 617$	7.761	8.028
$\begin{gathered} 15 \\ (198.3) \end{gathered}$	v_{1}	${ }^{0} 151317$	v	0.1324	$0 \cdot 1520$	$0 \cdot 1697$	$0 \cdot 1865$	$0 \cdot 2029$	0.2191	0.2351	$0 \cdot 2667$
	\sim_{6}	2595	น	2597	2697	2784	2868	2952	3035	3120	3294
	h_{1}	2792		2796	2925	3039	3148	3256	3364	3473	3694
	5_{6}	6.445	s	6.452	6.711	6.919	7-102	$7 \cdot 268$	$7 \cdot 423$	7.569	7.838
$\begin{gathered} 20 \\ (212 \cdot 4) \end{gathered}$	u_{8} u_{8}	0.0996 2600	${ }^{*}$		0.1115 2681	0.1255	$0 \cdot 1386$	$0 \cdot 1511$	$0 \cdot 1634$	$0 \cdot 1756$ 3116	$0 \cdot 1995$
	h_{6}	2799	${ }^{\prime}$		2681 2904	2774	2861 3138	2946	3030	3116	3291
	s_{8}	6.340	s		2904 6.547	3025	3138	3248	3357	3467	3690
	${ }^{6}$		s		$6 \cdot 547$	6.768	6.957	$7 \cdot 126$	$7 \cdot 283$	$7 \cdot 431$	$7 \cdot 701$
$\begin{gathered} 30 \\ (233 \cdot 8) \end{gathered}$	ν_{48}	$0 \cdot 0666$ 2603	4		0.0706	$0 \cdot 0812$	0.0905	0.0993	$0 \cdot 1078$	0.1161	0.1324
	${ }^{\mu_{g}}$	2603	$\stackrel{\text { r }}{ }$		2646	2751	2845	2933	3020	3108	3285
	s_{6}	6.186	,		28.289	2995 6.541	3117 6.744	3231 6.921	3343 7.082	3456 7.233	3682 7.507
$\begin{gathered} 40 \\ (250 \cdot 3) \end{gathered}$	v_{6}	0.0498	v			0.0588	0.0664	0.0733	0.0800	0.0864	$0 \cdot 0988$
	${ }^{u_{4}}$	2602 2801	${ }^{4}$			2728	2828	2921	3010	3099	3279
	${ }_{5}$	6.070	n			2963	3094	3214	3330	3445	3674
	${ }^{\text {s }}$		s			6.364	$6 \cdot 584$	6.769	6.935	7.089	? 360
$\begin{gathered} 50 \\ (263 \cdot 9) \end{gathered}$	v_{s}	0.0394	v			0.0453	0.0519	0.0578	0.0632	$0 \cdot 0685$	(6)
	${ }^{\text {W }}$	2397	${ }^{\mu}$			2700	2810	. 2907.	3000	3090	2275
			K			2927	3070	3196	3316	3433	3660
	s_{8}		s			$6 \cdot 212$	6.451	6.646	6.818	6.975	7.258
$\begin{gathered} 60 \\ (275 \cdot 6) \end{gathered}$	v_{8}	0.0324	v			0.0362	0.0422	0.0473	$0 \cdot 0521$	0.0566	0.0652
	${ }^{4}$	2590 2784	${ }^{2}$			2670	2792	2893	2988	3081	3266
	s_{s}	5.890	$\frac{n}{s}$			2887	3045	3177	3301	3421	3657
			s			6.071	6.336	6.541	6.719	6.879	7.166
$\begin{gathered} 70 \\ (285.8) \end{gathered}$	v_{g}	0.0274	v			0.0295	0.0352	$0 \cdot 0399$	0.0441	0.0481	0.0556
	${ }^{u_{8}}$	2581	u			2634	2772	2879	2978	3073	3260
	${ }_{6}$	2772	h			2841	3018	3158	3287	3410	36.49
	${ }_{5}$	5.814	s			5.934	6.231	6.448	6.632	6.796	7.088

Superheated Steam

$\begin{gathered} \hat{p} \\ \left(t_{s}\right) \end{gathered}$		t	350	375	400	425	450	500	600	700
$\begin{gathered} 80 \\ (2950) \end{gathered}$	$v_{8} 0.02352$	$v \times 10^{*}$	2.994	$3 \cdot 220$	3.428	3.625	3.812	$4 \cdot 170$	4.839	5.476
	$\mathrm{A}_{8} 2758$	\ldots	2990	3067	3139	5207	3272	3398	3641	3881
	$s_{s g} 5.744$	5	$6 \cdot 133$	$6 \cdot 255$	$6 \cdot 364$	6.463	6.555	6.723	7.019	$7 \cdot 279$
$\begin{gathered} 90 \\ (303 \cdot 3) \end{gathered}$	$v_{6} \quad 0.02048$	$v \times 10^{8}$	2.578	2.794	2.991	3.173	3.346	$3 \cdot 673$	4.279	4.852
	$h_{t} 2743$	\cdots	2959	3042	3118	3189	3256	3385	3633	3874
	$s_{t} 5.675^{\text {c }}$	s	$6 \cdot 039$	$6 \cdot 171$	6.286	$6 \cdot 390$	6.484	6.657	6.958	$7 \cdot 220$
$\begin{gathered} 100 \\ (311 \cdot 0) \end{gathered}$	$v_{8} 0.01802$	$v \times 10^{2}$	$2 \cdot 241$	$2 \cdot 453$	2.639	2.812	2.972	3.275	3.831	4.353
	$h_{8} 2725$	\%	2926	3017	3097	3172	3241	3373	3624	3863
	$s_{\mathfrak{g}} 5.615$	s	$5 \cdot 947$	6.091	$6 \cdot 213$	$6 \cdot 321$	$6 \cdot 419$	6.596	6.902	7160
$\begin{gathered} 110 \\ (318.0) \end{gathered}$	$\begin{array}{lll}v_{8} & 0.01598\end{array}$	$v \times 10^{1}$	1.960	$2 \cdot 169$	2.350	2.514	2.666	2.949	3.465	3.945
	$h_{8} 2705$	h	2889	2989	3075	3153	3225	3360	3616	3862
	si 5.553	s	$5 \cdot 856$	6.014	6.143	$6 \cdot 257$	6.358	6.539	6.850	$7 \cdot 117$
$\begin{gathered} 120 \\ (324 \cdot 6) \end{gathered}$	v 0.01426	$v \times 10^{2}$	1.719	1.931	2.107	$2 \cdot 265$	$2 \cdot 410$	$2 \cdot 677$	3.159	3.605
	$h_{8} 2685$	h	2849	2960	3052	3134	3209	3348	3607	3856
	$s_{8} 5.493$	s	5.762	5.937	6.076	$6 \cdot 195$	$6 \cdot 301$	6.487	6.802	7.072
$\begin{gathered} 130 \\ (330 \cdot 8) \end{gathered}$	$v_{8} 0.01278$	$v \times 10^{\prime \prime}$	1.509	1.726	1.901	2.053	2.193	2.447	2.901	$3 \cdot 318$
	$h_{8} 2662$	h	2804	2929	3028	3114	3192	3335	3599	3850
	$s_{6} \quad 5 \cdot 433$	s	5.664	5-862	$6 \cdot 011$	$6 \cdot 136$	6.246	6.437	6.758	7030
$\begin{gathered} 140 \\ (336 \cdot 6) \end{gathered}$	$v_{8} 0.01149$	$v \times 10^{\prime}$	$1 \cdot 321$	1.548	1.722	1.872	$2 \cdot 006$	$2 \cdot 250$	2.579	3.071
	$r_{88} 26.38$	h	2753	2896	3003	3093	3175	3322	3590	3843
	$s_{6} 5.373$	s	5.559	$5 \cdot 784$	5.946	6.079	$6 \cdot 193$	6.390	6.716	6.991
$\begin{gathered} 150 \\ (342 \cdot 1) \end{gathered}$	is 0.01035	$v \times 10^{3}$	1.146	1.391	1.566	1.714	1.844	2.078	2.487	2.857
	$h_{5} 2611$	h	2693	2861	2977	3073	3157	3309	3581	3837
	$s_{8} 5.312$	s	$5 \cdot 443$	$5 \cdot 707$	5.883	6.023	6.142	6.345	0.677	6.954
$\begin{gathered} 160 \\ (347 \cdot 3) \end{gathered}$	$v_{8} 0.00932$	$v \times 10^{3}$	0.976	1.248	1.427	1.573	1.702	1.928	2.319	2.670
	$h_{g} 2582$	-	2617	2821	2949	3051	3139	3295	3573	3831
	$s_{z} 5 \cdot 248$	s	$5 \cdot 304$	$5 \cdot 626$	$5 \cdot 820$	$5 \cdot 968$	6.093	6.301	6.639	6.919
$\begin{gathered} 170 \\ (352 \cdot 3) \end{gathered}$	$\nu_{8} 0.00838$	$v \times 10^{2}$		$1 \cdot 117$	1.303	1.449	1.576	1.796	$2 \cdot 171$	2.506
	$h_{8} 2548$	h		2778	2920	3028	3121	3281	3564	3825
	$s_{8} 5.181$	s		$5 \cdot 541$	5.756	$5 \cdot 914$	$6 \cdot \mathrm{~F}+$	$6 \cdot 260$	6.603	6:886
$\begin{gathered} 180 \\ (357 \cdot 0) \end{gathered}$	ct 0.00751	$v \times 10^{\prime}$		0.997	1.191	1.338	1.453	1.678	$2 \cdot 1399$	2.359
	$h_{k} 2510$	h		2729	2888	3004	3102	3268	3555	is18
	$\therefore 5 \cdot 103$	s		5.449	5.691	$5 \cdot 861$	5.997	6.219	6.509	0.855
$\begin{gathered} 190 \\ (361.4) \end{gathered}$	v_{8} (1.00653	$v \times 10^{\prime}$		0.882	1.089	1.238	1.362	1.572	1.921	2.22x
	$h_{x} 2466$	is		2674	2855	2980	3082	3254	3546	3×12
	s, $5 \cdot 0.7$	s		$5 \cdot 348$	5.625	5.807	5.950	6.18:	6.536	C.825
$\begin{gathered} 200 \\ (365 \cdot 7) \end{gathered}$	$\begin{array}{lll}v_{8} & 0.00585\end{array}$	2×10^{8}		0.768	0.995	1.147	1.270	1.477	1.815	2.110
	$h_{t} 2431$	h		2605	2819	2955	3062	3239	3537	3806
	$s_{8} 4.928$	5		$5 \cdot 228$	5.556	5.753	$5 \cdot 904$	6.142	6.505	6.796
$\begin{gathered} 210 \\ (369 \cdot 8) \end{gathered}$	v. 0.00498			$0 \cdot 650$	0.908	1.064	$1 \cdot 187$	1.390	1.719	2.003
	h: 23.36	h		2500	2781	2928	3041	3225	3528	3799
	$s_{s t} 4.803$	s		5.050	$5 \cdot 484$	$5 \cdot 699$	$5 \cdot 859$	6.105	6.474	6.768
$\begin{gathered} 220 \\ (373 \cdot 7) \end{gathered}$	vi 0.00368					0.987	1.111	1.312	1.632	1.906
	hi 2178	h		2300	2738	2900	3020	3210	3519	3793
	$s_{1} 4.552$	s		4.725	$5 \cdot 409$	5.645	$5 \cdot 813$	6.068	$6 \cdot 44$:	6.742
$\begin{gathered} 221 \cdot 2 \\ (374 \cdot 15) \end{gathered}$	vc 0.00317	$v \times 10^{2}$	0.163	0.351	0.816	0.978	1.103	1.303	1.622	1.895
	$h_{c} 2084$	h	1637	2139	2733	2896	3017	3208	3518	3792
	sc 4.406		3.708	4.490	5.398	$5 \cdot 638$	$5 \cdot 807$	6.064	$6 \cdot 441$	6.739

Linear interpolation is not accurate near the critical point

CONTENTS

Unit one (introduction of thermodynamic)	Pages
Force	5
Pressure	5
Absolute pressure	5
Atmospheric pressure	6
Gauge pressure	7
Temperature	10
Thermal equilibrium	13
Zero law of thermodynamic	13
Energy	13
Potentional energy	13
Kinetic energy	14
Heat	14
System	14
Boundary	14
Surrounding	14
Work	14
Internal energy	15
Flow energy	16
Power	16
Enthalpy	18
Property	18
State	18
Property diagram	18
Process cycle	18
Unit two (the first law of thermodynamic)	
The first law of thermodynamic	20
Application to close system process	20
Cyclic process	21
Working done at the moving boundary a closed system	21
Unit three (ideal gas)	
Ideal perfect gas	25
Boyles law	25
Charles law	25
Gay - lussac law	26

Equation of state	27
Avogadro law	30
Specific heat	32
Ratio of specific heat	33
Unit four (particular closed system)	
The isobaric process	36
The isochoric process	36
The isothermal process	38
The adiabatic process	44
The polytropic process	47
Unit five (application to open flow system)	
application to open flow system	73
Application to open flow for s.F.E.E	74
The compressor	74
The turbine	74
The throttle valve	75
The nozzle	75
Evaporator	76
Unit six (steam)	
Steam formation	81
Sensible heat	81
Latent heat	81
superheated	81
Dryness friction	83
Degree of super heated	86
Steam process	87
Unit seven (the second law of thermodynamic)	
the second law of thermodynamic	101
Heat engine	102
Heat pump	102
Kelvin - Planck statement	104
Clausis - statement	104
The Carnot cycle	105
Reversible irreversible process	114
The meaning of ($\mathrm{p}-\mathrm{V}$) diagram for irreversible process	116
Unit eight (entropy)	
Entropy	118

Temperature - entropy diagram (T-s) diagram	119
Entropy equation for an ideal gas	121
Representation of particular process on (T-s) diagram	123
Isobaric pocess	124
	Unit nine (gas power cycle)
Otto cycle	135
The Diesel cycle	140
The Dual cycle	146
Mean effective pressure	148
	158
The Carnot steam cycle	160
Simple Rankine cycle	163
Rankine cycle with superheated (steam cycles)	
APPENDIX (steam tables)	172
Saturated water \&steam	176
Superheated steam	179
Supercritical steam	

[^0]: Tand See page 3 for footnotes

