Northern Technical University Technical College of Kirkuk Mechanical Power Techniques Engineering Department



الجامعة التقنية الشمالية الكلية التقنية كركوك قسم هندسة تقنيات ميكانيك القوى

# Course Description

ENGI

OWER TECH

# **Course Description (First Level)**

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| ineering       |
|----------------|
| ep.            |
|                |
| Power          |
| ce)            |
| ring and       |
| develop<br>lls |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

10 . Learning Outcomes ,Teaching ,Learning and Assessment Methode

A-Knowledge and Understanding

- A-1 The student knows to use the right word and its synonym in the right place.
- A-2 The student learns to use English grammar.
- A-3 The student learns to use define all what it related to his/her specialization.

B. Subject-specific skills

B1 – Writing research paper in English.

- B2 Learn to how to use English in seminars.
- B3 Learn how to do seminars in English.

**Teaching and Learning Methods** 

- 1. Theoretical and practical lectures.
- 2. Data Show using.
- 3. Weekly tests.

#### C. Thinking Skills

C1 Work in a team spirit.

C2 He adheres to the ethics of the university institution.

C3 Receives and accepts knowledge.

C4 The student feels the responsibility placed on him

Teaching and Learning Methods

Theoretical lectures

Assessment Methods

- 1- Semester and final exams.
- 2- Brief exams (Quiz).

# D. General and Transferable Skills (other skills relevant to employability and personal development)

- D-1 Developing the student's self-trust while speaking English.
- D-2 The students acquire skills and information in different types in Engineering vocabulary.

D-3 The student acquires the knowledge of practical sides of the subject.

D-4 The student acquires the knowledge of using different for the subject.

#### 11. Course Structure Hours ILOS Unit/modul or Teaching week Assessment topic title method Method The student 1 2 theoretical understands the Student life Theoretical Quiz lesson The student 2 2 theoretical understands the Student life Theoretical Quiz lesson The student 3 2 theoretical understands the Daily Routine Theoretical Quiz lesson The student People & the 4 2 theoretical understands the Theoretical Quiz environment lesson The student People & the 5 2 theoretical understands the Theoretical Quiz environment lesson The student Architecture 6 2 theoretical understands the Theoretical Ouiz lesson The student Educations 7 2 theoretical Theoretical understands the Quiz lesson The student Technology 8 2 theoretical understands the Theoretical Quiz lesson The student Food drink and 9 2 theoretical Theoretical understands the Quiz culture lesson The student Food drink and 10 2 theoretical understands the Theoretical Ouiz culture + exam lesson The student Cites of the word 11 2 theoretical Theoretical understands the Quiz lesson The student Cites of the word 12 2 theoretical understands the Theoretical Quiz lesson The student Brain power 13 2 theoretical understands the Theoretical Quiz lesson The student Staying alive 14 2 theoretical Theoretical understands the Quiz lesson The student Staying alive + exam 15 2 theoretical understands the Theoretical Quiz lesson

#### 12.Infrastructure

R. Harrison, acadmic Skills Level 1 students books. UK: Oxford, 2011.

# 13. Admissions

- 1- Encourage students to do seminars in English.
- 2- Encouraging the student to write articles in English.
- 3- Maximum number of students

# HIGHER EDUCATION PERFORMANCE REVIEW: COURSE REVIEW

This program specification provides a concise summary of the main features of the program and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the program.

| 1. Teaching Institution        | Northern Technical University - Engineering          |
|--------------------------------|------------------------------------------------------|
|                                | Technical College / Kirkuk                           |
| 2. University                  | Mechanics Power Tech. Eng. Dep.                      |
| Department/Centre              |                                                      |
| 3. Courser Title               | Engineering Drawing Using AutoCAD                    |
| 4. Title of Final Award        | Bachelor of Engineering Mechanics Power              |
|                                | Technologies                                         |
| 5. Modes of Attendance offered | Annual (Weekly attendance)                           |
| 6. Accreditation               | Accreditation Board for Engineering and              |
|                                | Technology (ABET)                                    |
| 7. Other external              | 1. Training courses for students to develop          |
| influences                     | students' professional skills                        |
|                                | 2. Field visits                                      |
| 8. Date of                     | 1/9/2023                                             |
| production/revision of         |                                                      |
| this specification             |                                                      |
| •                              |                                                      |
| 9. Aims of the Program         |                                                      |
| 1- Introducing the stude       | ent to the importance of engineering drawing and its |
| relationship to other          | engineering subjects.                                |
|                                |                                                      |

- الصفحة 1 -

| 2- Develop the student's mental abilities in drawing simple and complex                                                        |   |
|--------------------------------------------------------------------------------------------------------------------------------|---|
| shapes.                                                                                                                        |   |
| 3- Expanding the horizons of the student's imagination of geometric shapes                                                     | : |
|                                                                                                                                | • |
| and identifying their components, parts, mechanics and their working                                                           |   |
| principle                                                                                                                      |   |
|                                                                                                                                |   |
| 10.Learning Outcomes, Teaching, Learning and Assessment Methods                                                                |   |
| A. Knowledge and Understanding                                                                                                 |   |
| A1. To familiarize the student with the importance of engineering drawing                                                      |   |
| A2. To teach the student how to imagine geometric shapes                                                                       |   |
| A3. To distinguish the mechanical components and parts and their working principle                                             |   |
|                                                                                                                                |   |
|                                                                                                                                |   |
| D. Caliert and Starbille                                                                                                       |   |
| B. Subject-specific skills<br>B1. To develop the student's mental ability to draw simple and complex shapes                    |   |
| B2. The student learns how to develop a strategy and sequence for drawing and assembling and                                   |   |
| deconstructing geometric shapes                                                                                                |   |
| B3. The student learns to draw geometrical projections and set geometric dimensions                                            |   |
| Teaching and Learning Methods                                                                                                  |   |
| 1- Theoretical and practical lectures.                                                                                         |   |
| 2- Pre and post questions.                                                                                                     |   |
| 3- Weekly tests.                                                                                                               |   |
| 4- Semester exams.                                                                                                             |   |
| 5- Using the computer in engineering drawing.                                                                                  |   |
|                                                                                                                                |   |
| Assessment methods                                                                                                             |   |
| 1- Discussion and dialogue with students.                                                                                      |   |
| 2- Attendance.                                                                                                                 |   |
| 3- Written + practical exams.                                                                                                  |   |
| 4- Using the computer in drawing engineering drawings.                                                                         |   |
| C. Thinking Skills                                                                                                             |   |
|                                                                                                                                |   |
| C1. The student listens attentively to the teacher's explanation.<br>C2. To take care of the student calm and class order.     |   |
|                                                                                                                                |   |
| C3. To familiarize the student with the importance of engineering drawing and its relationship with other engineering subjects |   |
| its relationship with other engineering subjects $C4$ . Describe the importance of installing mechanical parts                 |   |
| C4. Describe the importance of installing mechanical parts                                                                     |   |
|                                                                                                                                |   |
|                                                                                                                                |   |

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Using AutoCAD to draw complex shapes in various fields of work.

D2. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D3. Develop sound thinking methods and release potential energy

| week | Hours | ILOS                                            | Unit/module or<br>topic title                                                                                         | Teaching<br>method   | Assessment<br>Method |
|------|-------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|
| 1    | 3     | The<br>student<br>understan<br>ds the<br>lesson | Principles of<br>drawing                                                                                              | practical<br>lecture | Weekly<br>exams      |
| 2    | 3     | The<br>student<br>understan<br>ds the<br>lesson | Title Block                                                                                                           | practical<br>lecture | Weekly<br>exams      |
| 3    | 3     | The<br>student<br>understan<br>ds the<br>lesson | drawing geometric<br>shapes<br>the basic                                                                              | practical<br>lecture | Weekly<br>exams      |
| 4-5  | 3     | The<br>student<br>understan<br>ds the<br>lesson | Graphic<br>Adjustments -<br>Computer Graphics<br>Aids                                                                 | practical<br>lecture | Weekly<br>exams      |
| 6-8  | 3     | The<br>student<br>understan<br>ds the<br>lesson | Geometric line-<br>Types of<br>engineering<br>drawing lines-<br>Geometric<br>operations-<br>Dimensional<br>placement. | practical<br>lecture | Weekly<br>exams      |
| 9-10 | 3     | The<br>student<br>understan<br>ds the<br>lesson | Orthographic<br>Projections                                                                                           | practical<br>lecture | Weekly<br>exams      |
| 11   | 3     | The<br>student<br>understan                     | Principle of First<br>Angle Projection                                                                                | practical<br>lecture | Weekly<br>exams      |

الصفحة 4

|       |   | ds the    |                     |           |        |
|-------|---|-----------|---------------------|-----------|--------|
|       |   | lesson    |                     |           |        |
| 12-13 | 3 | The       | Principle of Thired | practical | Weekly |
|       |   | student   | Angle Projection    | lecture   | exams  |
|       |   | understan |                     |           |        |
|       |   | ds the    |                     |           |        |
|       |   | lesson    |                     |           |        |
| 14    | 3 | The       | Put dimensions on   | practical | Weekly |
|       |   | student   | perspective and     | lecture   | exams  |
|       |   | understan | projections.        |           |        |
|       |   | ds the    |                     |           |        |
|       |   | lesson    |                     |           |        |
| 15    | 3 | The       | The conclusion of a | practical | Weekly |
|       |   | student   | third projection    | lecture   | exams  |
|       |   | understan | from                |           |        |
|       |   | ds the    | Two known           |           |        |
|       |   | lesson    | locations.          |           |        |
|       |   |           |                     |           |        |

| 12.Infrastructure                                                                          |                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required reading:                                                                          | <ul> <li>1-Computer lab equipped with</li></ul>                                                                                                                          |
| . CORE TEXTS                                                                               | modern display equipment <li>2-Computer lab equipped with</li>                                                                                                           |
| . COURSE MATERIALS                                                                         | modern computers necessary for                                                                                                                                           |
| . OTHER                                                                                    | practical application.                                                                                                                                                   |
| Special requirements (include for example<br>workshops ,periodicals,IT software ,Websites) | 1-AutoCAD Exercises -<br>Sachidanand Jha.<br>2-Ashleigh Fuller, Antonio<br>Ramirez, Douglas Smith -<br>Technical Drawing with<br>AutoCAD 2017-SDC Publications<br>(2017) |
| Community –based facilities (include for                                                   | Basic Mechanical Drawing                                                                                                                                                 |
| example ,guest Lectures,intership,field,studies)                                           | website tutorials                                                                                                                                                        |

# 13. Admissions

# Pre-requisites

# Maximum number of students

50

#### HIGHER EDUCATION PERFORMANCE REVIEW: COURSE REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution           |                                                                                                                                   |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                  | Northern Technical University                                                                                                     |
| 2- University Department /centre | Technical College Eng. of Kirkuk                                                                                                  |
|                                  | Mechanics Power Tech. Eng. Dep                                                                                                    |
| 3-Course title                   | Electricity technology                                                                                                            |
| 4-title of final Award           | Bachelor's degree in power engineering                                                                                            |
| 5-Modes of Attendance offered    | Class lectures                                                                                                                    |
| 6-Accreditation                  | The student must be qualified to work in the ELECTRIC and                                                                         |
|                                  | be graduated from the department after completing four years<br>of study in which he is eligible to obtain a Bachelor's degree in |
|                                  | Power Mechanical Technology Engineering                                                                                           |
| 7-Other external influences      | The student will be able to CONNECT DIFFERENT                                                                                     |
|                                  | CIRCUIT                                                                                                                           |
| 8- Data of production /revision  | 3/24/2024                                                                                                                         |
| of this specification            |                                                                                                                                   |
| 9-Amis of the Course .1          |                                                                                                                                   |
|                                  |                                                                                                                                   |

1- Connect electrical circuits and compare theoretical results with practical1.

Introduce the student to understand electrical theories and prove them in practice

2- Connect electrical circuits and compare theoretical results with practical1.

### 10 . Learning Outcomes ,Teaching ,Learning and Assessment Methode

#### A-Knowledge and Understanding

1. To familiarize the student with the importance of The most important electrical principles

2. Learning Outcomes, Teaching, Learning and Assessment Methods

To distinguish the electrical components and parts and their working principle.

B.Subject-specific skills B1.The student acquires connection, measurement, and fault knowledge skills

**Teaching and Learning Methods** 

Theoretical and practical lectures.

2- Semester written exams.

3- Weekly tests/practical + written.

4- Pre and post questions.

5- Using modern methods on YouTube to consolidate ideas

C. Thinking Skills

C1. The student acquires connection, measurement, and fault knowledge skills .

Teaching and Learning Methods

Theoretical and practical lectures.

- 2- Semester written exams.
- 3- Weekly tests/practical + written.
- 4- Pre and post questions.

5- Using modern methods on YouTube to consolidate ideas

#### Assessment Methods

- 1- Discussion and dialogue with students.
- 2- Attendance.
- 3- Weekly tests: oral + written + practical.
- 4- Asking important questions that indicate the student's understanding

D. General and Transferable Skills (other skills relevant to employability and personal development)

.D1- That the student listens attentively to the professor's explanation C2- The student should pay attention to the calm and order of the .classroom

.C3- That the student recognizes the importance of electrical circuits C4- The student should describe the importance of the advantages and disadvantages of connecting electrical circuits .

| week | Hours | ILOS                   | Unit/modul or                              | Teaching                   | Assessment    |
|------|-------|------------------------|--------------------------------------------|----------------------------|---------------|
|      |       |                        | topic title                                | method                     | Method        |
| 1    | 2     | Theoretical lecture +  | How to use measuring devices for the       | The student<br>understands | Weekly        |
|      |       | Practical lecture      | purpose of measuring<br>(R, I, V)          | the lesson                 | exams         |
| 2    | 2     | Theoretical lecture +  | Ohm's law Connecting<br>resistors to mixed | The student understands    | Weekly exams  |
|      |       | Practical lecture      | parallel                                   | the lesson                 |               |
| 3    | 2     | Theoretical lecture    | Kirchhoff's law for                        | The student                | Weekly exams  |
|      |       | +<br>Practical lecture | voltage and current                        | understands                |               |
| 4    |       | Theoretical lecture    | Amplications of                            | the lesson<br>The student  | Waaldy around |
| 4    | 2     | +                      | Applications of<br>Kirchhoff's law         | understands                | Weekly exams  |
|      |       | Practical lecture      |                                            | the lesson                 |               |
| 5    | 2     | Theoretical lecture    | Thevenin Theory                            | The student                | Weekly exams  |
|      | _     | +<br>Practical lecture |                                            | understands                |               |
| 6    |       | Theoretical lecture    | Nerter Theory                              | the lesson                 | W/1-1         |
| 6    | 2     | +                      | Norton Theory                              | The student<br>understands | Weekly exams  |
|      |       | Practical lecture      |                                            | the lesson                 |               |
| 7    | 2     | Theoretical lecture    | Tractorism Theory                          | The student                | Weekly exams  |
|      | -     | +                      |                                            | understands                |               |
|      |       | Practical lecture      |                                            | the lesson                 |               |
| 8    | 2     | Theoretical lecture    | Nodal theory                               | The student<br>understands | Weekly exams  |
|      |       | Practical lecture      |                                            | the lesson                 |               |
| 9    | 2     | Theoretical lecture    | Series circuits                            | The student                | Weekly exams  |
|      |       | +                      | consisting of a coil                       | understands                | •             |
|      |       | Practical lecture      |                                            | the lesson                 |               |
| 10   | 2     | Theoretical lecture    | Parallel circuits                          | The student                | Weekly exams  |
|      |       | Practical lecture      | consisting of a coil                       | understands<br>the lesson  |               |
| 11   | 2     | Theoretical lecture    | Series circuits                            | The student                | Weekly exams  |
|      | 2     | +                      | consisting of a                            | understands                |               |
|      |       | Practical lecture      | capacitor                                  | the lesson                 |               |
| 12   | 2     | Theoretical lecture    | Parallel circuits                          | The student                | Weekly exams  |
|      |       | Practical lecture      | consisting of a                            | understands                |               |
| 13   | 2     | Theoretical lecture    | capacitor<br>Resonant circuit              | the lesson<br>The student  | Weekly exams  |
| 15   | Z     | +                      | Resonant encur                             | understands                | Weekiy exams  |
|      |       | Practical lecture      |                                            | the lesson                 |               |
| 14   | 2     | Theoretical lecture    | Applications of series                     | The student                | Weekly exams  |
|      | _     | +<br>Practical lecture | circuits                                   | understands                |               |
| 15   |       | Theoretical lecture    | Annliactions of                            | the lesson                 | Waaldy avar   |
| 15   | 2     | +                      | Applications of<br>parallel circuits       | The student understands    | Weekly exams  |
|      |       | Practical lecture      | paranereneults                             | the lesson                 |               |

Required reading: . CORE TEXTS

. COURSE MATERIALS

. OTHER

| Special requirements (include for example<br>workshops ,periodicals,IT software<br>,Websites)   |  |
|-------------------------------------------------------------------------------------------------|--|
| Community –based facilities (include for<br>example ,guest<br>Lectures,intership,field,studies) |  |

## 13. Admissions

Pre-requisites

Maximum number of students Maximum number of students

#### HIGHER EDUCATION PERFORMANCE REVIEW: COURSE REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                     | Northern Technical University - Engineering<br>Technical College / Kirkuk |
|--------------------------------------------|---------------------------------------------------------------------------|
| 2- University Department<br>/centre        | Mechanics Power Tech. Eng. Dep.                                           |
| 3-Course title                             | Computer Application 4 MPE 020                                            |
| 4-title of final Award                     | Bachelor of Engineering Mechanics Power<br>Technologies                   |
| 5-Modes of Attendance offered              | Simister (Weekly attendance )                                             |
| 6-Accreditation                            | Accreditation Board for Engineering and<br>Technology (ABET)              |
| 7-Other external influences                | Training courses for students to develop students' professional skills    |
| 8- Data of production                      | 2024/09/01                                                                |
| /revision of this specification            |                                                                           |
| 9-Amis of the Course .1                    |                                                                           |
| 8A- Introducing the student to computer an | nd its fundamentals                                                       |
| system types                               | parts and their functions as well as operating                            |
| 8C- Helping the students to use the compu  |                                                                           |
| 8D- Helping the students to use Microsoft  |                                                                           |
| 8E- Helping the students to use Microsoft  | Excel                                                                     |
|                                            |                                                                           |
|                                            |                                                                           |
|                                            |                                                                           |

- الصفحة 1

10. Learning Outcomes, Teaching, Learning and Assessment Methode A-Knowledge and Understanding A-1 The student knows the working mechanism of the operating system. A-2 The student learns to use MS Word in a beneficial way. A-3 The student learns to use MS Excel in a beneficial way. **B.** Subject-specific skills B1 – Creating documents according to certain specifications. B2 – Creating specified tables with medium level. B3 – Learn how MS Office applications work together. **Teaching and Learning Methods** 1. Theoretical and practical lectures. 2. Data Show using. 3. Weekly tests. C. Thinking Skills C1 Work in a team spirit. C2 He adheres to the ethics of the university institution. C3 Receives and accepts knowledge. C4 The student feels the responsibility placed on him **Teaching and Learning Methods** 1- Theoretical lectures 2- Training students in the laboratory **Assessment Methods** 1- Semester and final exams. 2- Brief exams (Quiz).

D. General and Transferable Skills (other skills relevant to employability and personal development)

D-1 Developing the student's ability to use the computer.

D-2 The students acquire the skills in using MS Word.

D-3 The student acquires the knowledge of practical sides of the subject.

D-4 The student acquires the knowledge of using different for the subject.

| week | Hours                                          | ILOS                                     | Unit/modul or<br>topic title                    | • Teaching<br>method          | Assessment<br>Method |
|------|------------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------|----------------------|
| 1    | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Introduction to the subject                     | Theroritical and practical    | Quiz                 |
| 2    | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Identification of computer                      | Theroritical and practical    | Quiz                 |
| 3    | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Applications of computer                        | Theroritical and practical    | Quiz                 |
| 4    | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Operating systemss                              | Theroritical and practical    | Quiz                 |
| 5    | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Windows operating<br>system                     | Theroritical and practical    | Quiz                 |
| 6    | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Introduction into<br>Microsoft Word             | Theroritical and practical    | Quiz                 |
| 7    | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Using MS Word-1                                 | Theroritical and practical    | Quiz                 |
| 8    | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Using MS Word-2                                 | Theroritical and practical    | Quiz                 |
| 9    | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Using MS Word-3                                 | Theroritical and practical    | Quiz                 |
| 10   | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Using MS Word-4                                 | Theroritical and practical    | Quiz                 |
| 11   | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Using MS Excel-1                                | Theroritical and practical    | Quiz                 |
| 12   | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Using MS Excel-2                                | Theroritical and practical    | Quiz                 |
| 13   | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Using MS Excel-3                                | Theroritical and practical    | Quiz                 |
| 14   | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Using MS Excel-4                                | Theroritical and practical    | Quiz                 |
| 15   | 1 theoretical<br>1 practical                   | The student<br>understands the<br>lesson | Cooperations between<br>MS Word and MS<br>Excel | Theroritical and practical    | Quiz                 |
| 1    | 2.Infrastructure                               |                                          | l                                               |                               | l                    |
|      | Required reading<br>CORE TEXTS<br>COURSE MATEF | -                                        |                                                 | Computer App<br>Beginner's Gu | olications: The      |

| . OTHER                                                                                         |  |
|-------------------------------------------------------------------------------------------------|--|
| Special requirements (include for example<br>workshops ,periodicals,IT software<br>,Websites)   |  |
| Community –based facilities (include for<br>example ,guest<br>Lectures,intership,field,studies) |  |

# 13. Admissions

- 1- Encourage students to gain more skills using computer
- 2- Encouraging the students to gain more information in coding languages.

Maximum number of students Maximum number of students

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                                                                                                       |                                                                                                                                                                                                                                                             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                              | Northern Technical University                                                                                                                                                                                                                               |  |  |  |
| 2- University Department /centre                                                                                             | Technical College Eng. of Kirkuk                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                              | Mechanics Power Tech. Eng. Dep                                                                                                                                                                                                                              |  |  |  |
| 3-Course title                                                                                                               | Mathematics                                                                                                                                                                                                                                                 |  |  |  |
| 4-title of final Award                                                                                                       | Bachelor's degree in power engineering                                                                                                                                                                                                                      |  |  |  |
| 5-Modes of Attendance offered Class lectu                                                                                    |                                                                                                                                                                                                                                                             |  |  |  |
| 6-Accreditation                                                                                                              | The student must be qualified to work in the fields of<br>refractories and be graduated from the department after<br>completing four years of study in which he is eligible to obtain<br>a Bachelor's degree in Power Mechanical Technology<br>.Engineering |  |  |  |
| 7-Other external influences The student will be able to maintain and repair cooling device                                   |                                                                                                                                                                                                                                                             |  |  |  |
| 8- Data of production / revision 3/24/202                                                                                    |                                                                                                                                                                                                                                                             |  |  |  |
| of this specification                                                                                                        |                                                                                                                                                                                                                                                             |  |  |  |
| 9-aims of the Course .1                                                                                                      |                                                                                                                                                                                                                                                             |  |  |  |
| Providing the student with a comprehensive, thorough, and up-to-date treatment of engineering mathematics                    |                                                                                                                                                                                                                                                             |  |  |  |
| Solving the mathematical equations to get the unknown variables, using matrices                                              |                                                                                                                                                                                                                                                             |  |  |  |
| Giving an idea about limits and there engineering applications                                                               |                                                                                                                                                                                                                                                             |  |  |  |
| Providing the student with introduction to matrices and their calculations with the methods of solving simultaneous equation |                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                              | oduction to derivatives and methods of                                                                                                                                                                                                                      |  |  |  |
| 0                                                                                                                            | ounction to derivatives and methods of                                                                                                                                                                                                                      |  |  |  |
| integrations                                                                                                                 |                                                                                                                                                                                                                                                             |  |  |  |

Methods learning outcomes teaching, Learning and Assessment

#### A-Knowledge and Understanding

. - Concept and applications of Mathematics I

- 1. To provide students with a foundation in basic mathematical concepts, this foundation is essential for further studies in advanced mathematics and its applications.
- 2. To develop a foundation in mathematical concepts, principles, and problem-solving techniques.
- 3. To enhance logical reasoning, critical thinking, and analytical skills.
- 4. To promote mathematical literacy and numeracy among students.
- 5. To develop students' ability to analyze problems and apply mathematical principles to solve complex problems in various contexts.

Mathematics is essential for developing numerical literacy, which involves understanding and working with numbers, data, measurements, and calculations

**Teaching and Learning Methods** 

Explanation on the board, showing educational videos, comparing examples . with what suits our daily lives

C. Thinking Skills

C1. able to interpret scientific facts

C2-Solving problems related to Mathematics

C3- Urging students to work together by solving class assignments in groups .C4- The student should be able to understand physical terms

**Teaching and Learning Methods:** 

Explanation on the board, showing educational videos, comparing examples with what is consistent with our daily lives

Assessment Methods:

.Daily exams, monthly exams, homework, and in-class assignments

D. General and Transferable Skills (other skills relevant to employability and personal development)

Practical training: Practical exercises and assignments are an important .1 part of learning yoga. Opportunities should be provided to practice solving .questions. Act wisely and reinforce concepts

Tutorials: Small group science lessons can provide additional support .2 and guidance for hobbyists. We can offer these sessions on problem solving and debugging techniques. They provide an interactive audience to ask questions to personal assistance. . Peer collaboration: Encouraging peer collaboration can be beneficial in physics. Students can work together on projects, share knowledge and exchange ideas. Collaborative activities promote teamwork, communication, and deeper understanding .of physics concepts

Assessments: Regular assessments, such as quizzes, quizzes, or .4 programming

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>8<br>9<br>10 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | To know the meaning<br>of forces<br>To know the effect of<br>forces<br>To know the difference<br>between distance and<br>displacement<br>To know the difference<br>between distance and<br>displacement<br>What are the laws of<br>average speed?<br>What are the laws of<br>instantaneous speed?<br>What are the laws of<br>acceleration and its<br>symbol? | topic title<br>Matrices and<br>Determinants<br>Cramer's Rule<br>Trigonometry<br>Graph of Equations<br>Vectors<br>2D and 3D Vectors<br>Equations and Limits | method<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation | Method<br>Explanation on<br>the board<br>Examples with<br>YouTube<br>Explanation on<br>the board<br>Explanation on<br>the board<br>Examples with<br>YouTube<br>Explanation on<br>the board |
|------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                 | 3<br>3<br>3<br>3<br>3<br>3<br>3                | of forces<br>To know the effect of<br>forces<br>To know the difference<br>between distance and<br>displacement<br>To know the difference<br>between distance and<br>displacement<br>What are the laws of<br>average speed?<br>What are the laws of<br>instantaneous speed?<br>What are the laws of<br>acceleration and its<br>symbol?                        | Determinants<br>Cramer's Rule<br>Trigonometry<br>Graph of Equations<br>Vectors<br>2D and 3D Vectors                                                        | resentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation                                                          | the board<br>Examples with<br>YouTube<br>Explanation on<br>the board<br>Explanation on<br>the board<br>Examples with<br>YouTube<br>Explanation on                                          |
| 3<br>4<br>5<br>6<br>7<br>8<br>9                      | 3<br>3<br>3<br>3<br>3<br>3                     | To know the effect of<br>forces<br>To know the difference<br>between distance and<br>displacement<br>To know the difference<br>between distance and<br>displacement<br>What are the laws of<br>average speed?<br>What are the laws of<br>instantaneous speed?<br>What are the laws of<br>acceleration and its<br>symbol?                                     | Cramer's Rule<br>Trigonometry<br>Graph of Equations<br>Vectors<br>2D and 3D Vectors                                                                        | Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation                                                                         | Examples with<br>YouTube<br>Explanation on<br>the board<br>Explanation on<br>the board<br>Examples with<br>YouTube<br>Explanation on                                                       |
| 4<br>5<br>6<br>7<br>8<br>9                           | 3 3 3 3                                        | To know the difference<br>between distance and<br>displacement<br>To know the difference<br>between distance and<br>displacement<br>What are the laws of<br>average speed?<br>What are the laws of<br>instantaneous speed?<br>What are the laws of<br>acceleration and its<br>symbol?                                                                        | Graph of Equations<br>Vectors<br>2D and 3D Vectors                                                                                                         | Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation<br>Theoretical<br>presentation                                                                                                        | Explanation on<br>the board<br>Explanation on<br>the board<br>Examples with<br>YouTube<br>Explanation on                                                                                   |
| 5<br>6<br>7<br>8<br>9                                | 3 3 3                                          | To know the difference<br>between distance and<br>displacement<br>What are the laws of<br>average speed?<br>What are the laws of<br>instantaneous speed?<br>What are the laws of<br>acceleration and its<br>symbol?                                                                                                                                          | Vectors<br>2D and 3D Vectors                                                                                                                               | Theoretical<br>presentation<br>Theoretical<br>presentation                                                                                                                                                                      | the board<br>Examples with<br>YouTube<br>Explanation on                                                                                                                                    |
| 6<br>7<br>8<br>9                                     | 3                                              | average speed?<br>What are the laws of<br>instantaneous speed?<br>What are the laws of<br>acceleration and its<br>symbol?                                                                                                                                                                                                                                    | 2D and 3D Vectors                                                                                                                                          | presentation<br>Theoretical<br>presentation                                                                                                                                                                                     | YouTube<br>Explanation on                                                                                                                                                                  |
| 7 8 9                                                | 3                                              | instantaneous speed?<br>What are the laws of<br>acceleration and its<br>symbol?                                                                                                                                                                                                                                                                              |                                                                                                                                                            | presentation                                                                                                                                                                                                                    |                                                                                                                                                                                            |
| 8                                                    |                                                | acceleration and its symbol?                                                                                                                                                                                                                                                                                                                                 | Equations and Limits                                                                                                                                       | Theoretical                                                                                                                                                                                                                     | and counter                                                                                                                                                                                |
| 9                                                    | 3                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            | presentation                                                                                                                                                                                                                    | Explanation on the board                                                                                                                                                                   |
|                                                      |                                                | Memorize the three laws of motion                                                                                                                                                                                                                                                                                                                            | Application on Limits                                                                                                                                      | Theoretical presentation                                                                                                                                                                                                        | Examples with YouTube                                                                                                                                                                      |
| 10                                                   | 3                                              | Explain exceptions to<br>Newton's law                                                                                                                                                                                                                                                                                                                        | Derivative Theory                                                                                                                                          | Theoretical presentation                                                                                                                                                                                                        | Explanation on the board                                                                                                                                                                   |
|                                                      | 3                                              | Fast bodies to which<br>Newton's law does not<br>apply                                                                                                                                                                                                                                                                                                       | Chain Rule                                                                                                                                                 | Theoretical presentation                                                                                                                                                                                                        | Explanation on the board                                                                                                                                                                   |
| 11                                                   | 3                                              | It applies to static objects                                                                                                                                                                                                                                                                                                                                 | Inverse Functions                                                                                                                                          | Theoretical presentation                                                                                                                                                                                                        | Examples with YouTube                                                                                                                                                                      |
| 12                                                   | 3                                              | Applies to moving<br>objects                                                                                                                                                                                                                                                                                                                                 | Logarithmic and<br>Exponential<br>Derivatives                                                                                                              | Theoretical presentation                                                                                                                                                                                                        | Explanation on the board                                                                                                                                                                   |
| 13                                                   | 3                                              | Every action has an<br>equal and opposite<br>reaction                                                                                                                                                                                                                                                                                                        | Conic Sections                                                                                                                                             | Theoretical presentation                                                                                                                                                                                                        | Explanation on the board                                                                                                                                                                   |
| 14                                                   | 3                                              | Weight law                                                                                                                                                                                                                                                                                                                                                   | Applications                                                                                                                                               | Theoretical presentation                                                                                                                                                                                                        | Examples with YouTube                                                                                                                                                                      |
| 15                                                   | 3                                              | The effect of friction on force                                                                                                                                                                                                                                                                                                                              | Integration                                                                                                                                                | Theoretical presentation                                                                                                                                                                                                        | Explanation on the board                                                                                                                                                                   |
|                                                      |                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            | 12.In                                                                                                                                                                                                                           | frastructure                                                                                                                                                                               |
| Required real<br>CORE TEXT<br>COURSE MA              | ГS                                             | S                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                                                                            |
| Special requ                                         |                                                | (include for exam                                                                                                                                                                                                                                                                                                                                            | ple                                                                                                                                                        |                                                                                                                                                                                                                                 | periodicals                                                                                                                                                                                |
| ,Websites)                                           |                                                | als,IT software                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                                                                            |
| Community<br>example ,gu                             |                                                | acilities (include fo                                                                                                                                                                                                                                                                                                                                        | or                                                                                                                                                         |                                                                                                                                                                                                                                 |                                                                                                                                                                                            |

Pre-requisites

Maximum number of students Maximum number of students

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1 The solution to set used                                                                                              |                                                                  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| 1-Teaching institution                                                                                                  |                                                                  |  |  |  |
|                                                                                                                         | Northern Technical University                                    |  |  |  |
| 2- University Department /centre                                                                                        | Technical College Eng. of Kirkuk                                 |  |  |  |
|                                                                                                                         | Mechanics Power Tech. Eng. Dep                                   |  |  |  |
| 3-Course title Specialized physics                                                                                      |                                                                  |  |  |  |
|                                                                                                                         |                                                                  |  |  |  |
| 4-title of final Award                                                                                                  | Bachelor's degree in power engineering                           |  |  |  |
| 5-Modes of Attendance offered                                                                                           | Class lectures                                                   |  |  |  |
| 6-Accreditation                                                                                                         | The student must be qualified to work in the fields of           |  |  |  |
|                                                                                                                         | refractories and be graduated from the department after          |  |  |  |
|                                                                                                                         | completing four years of study in which he is eligible to obtain |  |  |  |
|                                                                                                                         | a Bachelor's degree in Power Mechanical Technology               |  |  |  |
| Engineering                                                                                                             |                                                                  |  |  |  |
| 7-Other external influences The student will be able to maintain and repair cooling devices                             |                                                                  |  |  |  |
| 8- Data of production / revision 3/24/2024                                                                              |                                                                  |  |  |  |
| of this specification                                                                                                   |                                                                  |  |  |  |
| 9-aims of the Course .1                                                                                                 |                                                                  |  |  |  |
| 1. To acquire a systematic body of physical knowledge and develop an understanding of the concepts, principles and      |                                                                  |  |  |  |
| applications of physics. In understanding the concepts & principles, then one can further education in physics          |                                                                  |  |  |  |
| 2. To develop a scientific attitude by looking at issues systematically and applying systematic methods of              |                                                                  |  |  |  |
| (analysis (clear steps or procedures                                                                                    |                                                                  |  |  |  |
| 3. To develop a range of skills important for scientific investigation                                                  |                                                                  |  |  |  |
| 4.To stimulate curiosity, interest and enjoyment of physics through methods of inquiry and care for the                 |                                                                  |  |  |  |
| environment. This will help in motivating the students because it is only a motivated person that spends more time on a |                                                                  |  |  |  |
| subject and achieves more as a result. In science the best method of inquiry is the practical approach                  |                                                                  |  |  |  |
| 5. To develop an understanding on the consequences of physics on man and his environment such as                        |                                                                  |  |  |  |
|                                                                                                                         | communication, transport                                         |  |  |  |

10 . Learning Outcomes ,Teaching ,Learning and Assessment Method . Knowledge of Physics: Students will develop a solid understanding of physics, .including its applications and roles

Applying physics to projects: Students will be able to apply physics .2 knowledge to real-world projects, and demonstrate their ability to design and .implement specific requirements

3. Analyzing and improving physics: Students should be able to analyze physics for performance, and apply optimization techniques to improve these metrics A-Knowledge and Understanding

. Explanation on the board, showing educational videos, comparing examples with what suits our daily lives

B.Subject-specific skills

able to interpret scientific facts

C2-Solving physics problems related to movement

C3- Urging students to work together by solving class assignments in groups

C4- The student should be able to understand physical terms.

**Teaching and Learning Methods** 

able to interpret scientific facts

C2-Solving physics problems related to movement

C3- Urging students to work together by solving class assignments in groups

.C4- The student should be able to understand physical terms

C. Thinking Skills

C1. able to interpret scientific facts

C2-Solving physics problems related to movement

C3- Urging students to work together by solving class assignments in groups .C4- The student should be able to understand physical terms

Teaching and Learning Methods:

Explanation on the board, showing educational videos, comparing examples with what is consistent with our daily lives

Assessment Methods:

.Daily exams, monthly exams, homework, and in-class assignments

D. General and Transferable Skills (other skills relevant to employability and personal development)

Practical training: Practical exercises and assignments are an important .1 part of learning yoga. Opportunities should be provided to practice solving .questions. Act wisely and reinforce concepts

Tutorials: Small group science lessons can provide additional support .2 and guidance for hobbyists. We can offer these sessions on problem solving and debugging techniques. They provide an interactive audience to ask questions to personal assistance. . Peer collaboration: Encouraging peer collaboration can be beneficial in physics. Students can work together on projects, share knowledge and exchange ideas. Collaborative activities promote teamwork, communication, and deeper understanding .of physics concepts

Assessments: Regular assessments, such as quizzes, quizzes, or .4 programming

| week                  | Hours | ILOS                                                           | Unit/modul or                                                      | Teaching                                                          | Assessment               |
|-----------------------|-------|----------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|
|                       |       |                                                                | topic title                                                        | method                                                            | Method                   |
| 1                     | 3     | To know the meaning of forces                                  | Power                                                              | To know the meaning of forces                                     | Explanation on the board |
| 2                     | 3     | To know the effect of forces                                   | the movement                                                       | To know the effect of forces                                      | Examples with<br>YouTube |
| 3                     | 3     | To know the difference<br>between distance and<br>displacement | displacement                                                       | To know the<br>difference<br>between distance<br>and displacement | Explanation on the board |
| 4                     | 3     | To know the difference<br>between distance and<br>displacement | distance                                                           | To know the<br>difference<br>between distance<br>and displacement | Explanation on the board |
| 5                     | 3     | What are the laws of average speed?                            | Medium speed                                                       | What are the laws of average speed?                               | Examples with<br>YouTube |
| 6                     | 3     | What are the laws of instantaneous speed?                      | Instantaneous speed                                                | What are the laws<br>of instantaneous<br>speed?                   | Explanation on the board |
| 7                     | 3     | What are the laws of acceleration and its symbol?              | Acceleration                                                       | What are the laws<br>of acceleration<br>and its symbol?           | Explanation on the board |
| 8                     | 3     | Memorize the three laws of motion                              | Laws of motion on a<br>straight line with<br>constant acceleration | Memorize the<br>three laws of<br>motion                           | Examples with<br>YouTube |
| 9                     | 3     | Explain exceptions to<br>Newton's law                          | The first rule to which<br>Newton's law does not<br>apply          | Explain<br>exceptions to<br>Newton's law                          | Explanation on the board |
| 10                    | 3     | Fast bodies to which<br>Newton's law does not<br>apply         | The second rule to<br>which Newton's law<br>does not apply         | Fast bodies to<br>which Newton's<br>law does not<br>apply         | Explanation on the board |
| 11                    | 3     | It applies to static objects                                   | Newton's first law of motion                                       | It applies to static<br>objects                                   | Examples with YouTube    |
| 12                    | 3     | Applies to moving<br>objects                                   | Newton's second law<br>of motion                                   | Applies to moving<br>objects                                      | Explanation on the board |
| 13                    | 3     | Every action has an<br>equal and opposite<br>reaction          | Newton's third law of motion                                       | Every action has<br>an equal and<br>opposite reaction             | Explanation on the board |
| 14                    | 3     | Weight law                                                     | the weight                                                         | Weight law                                                        | Examples with YouTube    |
| 15                    | 3     | The effect of friction on force                                | Friction                                                           | The effect of friction on force                                   | Explanation on the board |
|                       |       |                                                                |                                                                    | 12.In:                                                            | frastructure             |
| Required<br>. CORE TE | -     |                                                                |                                                                    |                                                                   |                          |

Special requirements (include for example workshops ,periodicals,IT software

,Websites)

periodicals

| Community –based facilities (include for<br>example ,guest<br>Lectures,intership,field,studies) |  |
|-------------------------------------------------------------------------------------------------|--|
| 13. Admissions                                                                                  |  |

Pre-requisites

Maximum number of students Maximum number of students Republic of Iraq Ministry of Higher Education & Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation

# Academic Program Specification Form for the Academic

University:

College:

Department:

**Date of Form Completion**:

Dean's Name

**Date**: / /

Signature

/

Dean's Assistant for Scientific Affairs Date: / /

Signature

Head of Department

**Date**: / /

Signature

**Quality Assurance and University Performance Manager** 

Date: /

Signature

#### HIGHER EDUCATION PERFORMANCE REVIEW: COURSE REVIEW

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the programs.

| 1 Tea    | ching Institution                            | Northern Technical University- Engineering                  |
|----------|----------------------------------------------|-------------------------------------------------------------|
| 1        |                                              | Technical College /Kirkuk                                   |
| 2. Uni   | versity                                      | Mechanical Power Tec. Eng. Dep                              |
| Dep      | partment/Centre                              |                                                             |
| 3. Cou   | urse Title                                   | Mechanical Engineering/static                               |
| 4. Title | e of Final Award                             | Bachelor of Engineering Mechanics Power<br>Technologies     |
|          | des of Attendance<br>ered                    | Pologna trac                                                |
| 6. Acc   | reditation                                   | Accreditation Board for Engineering and<br>Technology (ABET |
| 7. Oth   | ner external                                 | 1. Training courses for students to develop                 |
| infl     | uences                                       | students' professional skills                               |
|          |                                              | 2. Field visits                                             |
| 8. Dat   | e of                                         | 24/3/2024                                                   |
| pro      | duction/revision of                          |                                                             |
| this     | specification                                |                                                             |
| 9. Aim   | ns of the Course                             | I                                                           |
|          | for him Role promine<br>devices And the numl | nt in building design Machines And the machines And<br>ber. |

- Preparation research and studies To improve And development a job Devices.
- Gain Students Skill Scientific Empower them from to treat Problems in Devices Mechanical
- situation Proposals And the alternatives To develop Mechanical devices.

10.Learning Outcomes, Teaching, Learning and Assessment Methods

A. Knowledge and Understanding

A1. That He recognizes requester on analysis Powers The influencer on the body moving

A2. That Understands requester How finding center Speed And displacement and accelerate the body Mobile

A3. That He learns requester finding Speed And accelerate Shells

A4. That He distinguishes requester between Processes Mechanically For Stillness And the movement to Objects

A5. That requester Understands principle Work And ability

A6.That He recognizes requester on principle Vibration

B. Subject-specific skills

B1. Solution Many from Problems Mechanical.

B2. Accuracy And clarity And achievement With expression.

B3 . Development Ability on Thinking Logical Sequential.

B4. solution Questions not Stereotype require skills many.

Teaching and Learning Methods

Lectures , Laboratories And the workshops Training Summer , Projects Graduation .

Assessment methods

Tests Daily , Exams Quarterly (theory +Process) - Discussion And dialogue with Students – Attendance - duties Home

D. General and Transferable Skills ( other skills relevant to employability and personal development )

D1. development skills Mentality He managed The graduate from Benefit from the information that He learns it And skills that He acquires it And add it in service His requirements As an individual And in service Goals the society from where Development Social

And economic.

D2. acquisition some Skills in analysis Powers Influencer on the body Moving D3. development Techniques thinking Intact.

Programe Structure.10

| week | Hours                       | ILOS                                     | Unit/modul or<br>topic title                                                                                                                                            | Teaching<br>method            | Assessmen<br>Method |
|------|-----------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|
| 1    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Principle information                                                                                                                                                   | Theroritical and practical    | Quiz                |
| 2    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Vector quantities<br>and scalar<br>quantities .2D<br>resolve force                                                                                                      | Theroritical and practical    | Quiz                |
| 3    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Represents forces<br>along line .3D<br>resolve force                                                                                                                    | Theroritical and practical    | Quiz                |
| 4    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Equilibrium. Dot product                                                                                                                                                | Theroritical and practical    | Quiz                |
| 5    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Moment                                                                                                                                                                  | Theroritical and practical    | Quiz                |
| 6    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | transformation Powers<br>And energy Latent:<br>energy Latent -<br>transformation energy                                                                                 | Theroritical<br>and practical | Quiz                |
| 7    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Impulse and<br>Momentum -<br>Principles of Linear<br>Impulse and<br>MomentumFor a<br>system of particles -<br>linear momentum<br>transform for a<br>system of particles | Theroritical<br>and practical | Quiz                |
| 8    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Couple. Resultant                                                                                                                                                       | Theroritical and practical    | Quiz                |
| 9    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | 2D Equilibrium.<br>3D Equilibrium                                                                                                                                       | Theroritical and practical    | Quiz                |
| 10   | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Shock                                                                                                                                                                   | Theroritical and practical    | Quiz                |
| 11   | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Friction                                                                                                                                                                | Theroritical and practical    | Quiz                |
| 12   | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Area Centroid<br>under curve                                                                                                                                            | Theroritical and practical    | Quiz                |
| 13   | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | principles Basic in science<br>Mechanics                                                                                                                                | Theroritical and practical    | Quiz                |

| 14         | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson |   | entroid und<br>curve<br>ht Centroid |     | Theroritical and practical      | Quiz   |
|------------|-----------------------------|------------------------------------------|---|-------------------------------------|-----|---------------------------------|--------|
| 15         | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson |   | ent of iner(<br>nponent ar          |     | Theroritical and practical      | Quiz   |
|            |                             |                                          |   |                                     |     |                                 |        |
| Level/Year | Course or<br>Module Code    | Course or Modul<br>Title                 | - | Credit<br>Rating                    | 12. | Awards and C                    | redits |
|            |                             |                                          |   |                                     |     | chelor Degre<br>equires (x) cre |        |
|            |                             |                                          |   |                                     | -   |                                 |        |
|            |                             |                                          |   |                                     |     |                                 |        |

## 13. Admissions

Pre-requisites

Maximum number of students Maximum number of students

|              | Development Planning                |  |
|--------------|-------------------------------------|--|
|              |                                     |  |
|              |                                     |  |
|              |                                     |  |
|              |                                     |  |
|              |                                     |  |
| 4. Admissi   | on criteria.                        |  |
|              |                                     |  |
|              |                                     |  |
|              |                                     |  |
|              |                                     |  |
|              |                                     |  |
|              |                                     |  |
| <b>7 1</b> 7 |                                     |  |
| 5. Key sou   | ces of information about the Course |  |
|              |                                     |  |
| Kraige G     | L. Meriam, .L. J                    |  |
| Engineerin   | g Mechanics                         |  |
|              |                                     |  |
| R(`Hibbel    | r Engineering Mechanics             |  |
| Statics      |                                     |  |

|             | Please      | tick relevant box | Curriculu<br>es where individua |    |                                       | -  | ing | Outc | ome | s are     | bein | ig ass    | sesse | ed         |           |                                                                                                                    |    |    |   |  |
|-------------|-------------|-------------------|---------------------------------|----|---------------------------------------|----|-----|------|-----|-----------|------|-----------|-------|------------|-----------|--------------------------------------------------------------------------------------------------------------------|----|----|---|--|
|             | Course Lea  | rning Outcomes    |                                 |    |                                       |    |     |      |     |           |      |           |       |            |           |                                                                                                                    |    |    |   |  |
| Year/ Level | Course code | Course title      | Core (c) title or<br>option (O) |    | Knowledge and<br>understanding Skills |    |     |      |     |           | ific | Thi       | inkir | ıg Sk      | tills     | General an<br>Transferab<br>Skills (or)<br>Is Other Skill<br>relevant to<br>employabili<br>and person<br>developme |    |    |   |  |
|             |             |                   |                                 | A1 | A2                                    | A3 | A4  | B1   | B2  | <b>B3</b> | B4   | <b>C1</b> | C2    | <b>C</b> 3 | <b>C4</b> | D1                                                                                                                 | D2 | D3 | D |  |
|             |             |                   |                                 |    |                                       |    |     |      |     |           |      |           |       |            |           |                                                                                                                    |    |    |   |  |
|             |             |                   |                                 |    |                                       |    |     |      |     |           |      |           |       |            |           |                                                                                                                    |    |    |   |  |
|             |             |                   |                                 |    |                                       |    |     |      |     |           |      |           |       |            |           |                                                                                                                    |    |    |   |  |
|             |             |                   |                                 |    |                                       |    |     |      |     |           |      |           |       |            |           |                                                                                                                    |    |    |   |  |

| ſ |  |  |  |  |  |  |  |  |  |  |
|---|--|--|--|--|--|--|--|--|--|--|
| Γ |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |

الصفحة 9

Republic of Iraq Ministry of Higher Education & Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation

## Academic Program Specification Form for the Academic

University:

College:

Department:

**Date of Form Completion**:

Dean's Name

**Date**: / /

Signature

/

Dean's Assistant for Scientific Affairs Date: / /

Signature

Head of Department

**Date**: / /

Signature

**Quality Assurance and University Performance Manager** 

Date: /

Signature

#### **TEMPLATE FOR COURSE SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: COURSE REVIEW

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the programs.

| -  |                        |                                                         |
|----|------------------------|---------------------------------------------------------|
| 1. | Teaching Institution   | Northern Technical University- Engineering              |
|    |                        | Technical College /Kirkuk                               |
| 2. | University             | Mechanical Power Tec. Eng. Dep                          |
|    | Department/Centre      |                                                         |
| 3. | Course Title           | Mechanical Engineering/Dynamic                          |
| 4. | Title of Final Award   | Bachelor of Engineering Mechanics Power<br>Technologies |
| 5. | Modes of Attendance    |                                                         |
|    | offered                |                                                         |
|    |                        |                                                         |
| 6. | Accreditation          | Accreditation Board for Engineering and                 |
|    |                        | Technology (ABET                                        |
| 7. | Other external         | 1. Training courses for students to develop             |
|    | influences             | students' professional skills                           |
|    |                        | 2. Field visits                                         |
| 8. | Date of                | 24/3/2024                                               |
|    | production/revision of |                                                         |
|    | this specification     |                                                         |
|    |                        |                                                         |
| 9. | Aims of the Course     |                                                         |
|    |                        |                                                         |
|    | • for him Role promine | nt in building design Machines And the machines And     |
|    | devices And the num    | ber.                                                    |
|    |                        |                                                         |
| 1  |                        |                                                         |

- Preparation research and studies To improve And development a job Devices.
- Gain Students Skill Scientific Empower them from to treat Problems in Devices Mechanical
- situation Proposals And the alternatives To develop Mechanical devices.

10.Learning Outcomes, Teaching, Learning and Assessment Methods

A. Knowledge and Understanding

A1. That He recognizes requester on analysis Powers The influencer on the body moving

A2. That Understands requester How finding center Speed And displacement and accelerate the body Mobile

A3. That He learns requester finding Speed And accelerate Shells

A4. That He distinguishes requester between Processes Mechanically For Stillness And the movement to Objects

A5. That requester Understands principle Work And ability

A6.That He recognizes requester on principle Vibration

B. Subject-specific skills

B1. Solution Many from Problems Mechanical.

B2. Accuracy And clarity And achievement With expression.

B3 . Development Ability on Thinking Logical Sequential.

B4. solution Questions not Stereotype require skills many.

Teaching and Learning Methods

Lectures , Laboratories And the workshops Training Summer , Projects Graduation .

Assessment methods

Tests Daily , Exams Quarterly (theory +Process) - Discussion And dialogue with Students – Attendance - duties Home

D. General and Transferable Skills ( other skills relevant to employability and personal development )

D1. development skills Mentality He managed The graduate from Benefit from the information that He learns it And skills that He acquires it And add it in service His requirements As an individual And in service Goals the society from where Development Social

And economic.

D2. acquisition some Skills in analysis Powers Influencer on the body Moving D3. development Techniques thinking Intact.

Programe Structure.10

| week | Hours                       | ILOS                                     | Unit/modul or<br>topic title                                                                                                                                            | Teaching<br>method            | Assessmer<br>Method |
|------|-----------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|
| 1    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Particle motion:<br>continuous linear<br>motion - linear motion                                                                                                         | Theroritical and practical    | Quiz                |
| 2    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | General curvilinear<br>motion: rectangular<br>compounds - Projectile<br>movement - vertical and<br>tangential components                                                | Theroritical<br>and practical | Quiz                |
| 3    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | the movement Absolute:<br>two-particle<br>analysis - the<br>relative movement<br>of two particles<br>using translational<br>axes                                        | Theroritical<br>and practical | Quiz                |
| 4    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Work and Energy:<br>Work - Principles of<br>Work and Energy -<br>Principles of Work and<br>Energy of a Particle<br>System                                               | Theroritical<br>and practical | Quiz                |
| 5    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Ability And efficiency                                                                                                                                                  | Theroritical and practical    | Quiz                |
| 6    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | transformation Powers<br>And energy Latent:<br>energy Latent -<br>transformation energy                                                                                 | Theroritical and practical    | Quiz                |
| 7    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Impulse and<br>Momentum -<br>Principles of Linear<br>Impulse and<br>MomentumFor a<br>system of particles -<br>linear momentum<br>transform for a<br>system of particles | Theroritical<br>and practical | Quiz                |
| 8    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Shock                                                                                                                                                                   | Theroritical and practical    | Quiz                |
| 9    | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Rankine cycle<br>regenerative<br>single open feed water<br>heater                                                                                                       | Theroritical and practical    | Quiz                |

| 10         | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Shock                                                                                                                                     | Theroritical and practical                 | Quiz  |
|------------|-----------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|
| 11         | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | Vibration:Undam<br>vibration                                                                                                              | nped Theroritical<br>and practical         | Quiz  |
| 12         | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | principles Basic in sc<br>Mechanics                                                                                                       | ience Theroritical and practical           | Quiz  |
| 13         | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | principles Basic in sc<br>Mechanics                                                                                                       | ience Theroritical<br>and practical        | Quiz  |
| 14         | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | amounts Vector and<br>Powers: The value i<br>Vector (Two-wa<br>analysis)D-2) -<br>Analysis in thre<br>directions - (D-<br>Position vector | Theroritical<br>and practical<br>3)        | Quiz  |
| 15         | 3 theoretical<br>2 tetorial | The student<br>understands the<br>lesson | balance Mole<br>System Powers '<br>way – System Po<br>With a<br>trends                                                                    | Two-<br>Theroritical<br>wers and practical | Quiz  |
|            |                             |                                          |                                                                                                                                           |                                            |       |
| Level/Year | Course or<br>Module Code    | Course or Modu<br>Title                  | le Credit<br>Rating                                                                                                                       | 12. Awards and Cr                          | edits |
|            |                             |                                          |                                                                                                                                           | Bachelor Degree<br>Requires (x) cre        |       |
|            |                             |                                          |                                                                                                                                           | _                                          |       |
|            |                             |                                          |                                                                                                                                           |                                            |       |

13. Admissions

Pre-requisites

Maximum number of students

Maximum number of students

13. Personal Development Planning

14. Admission criteria .

15. Key sources of information about the Course

Kraige G. L. Meriam, .L. J Engineering Mechanics

RC Hibbeler Engineering Mechanics Statics

|             | Please      | tick relevant box | Curriculı<br>es where individua |    |                                       | -  | ning | Outc | ome | s are     | bein      | ng ass    | sesse | ed        |                             |      |       |    |   |
|-------------|-------------|-------------------|---------------------------------|----|---------------------------------------|----|------|------|-----|-----------|-----------|-----------|-------|-----------|-----------------------------|------|-------|----|---|
|             | Course Lea  | rning Outcomes    |                                 |    |                                       |    |      |      |     |           |           |           |       |           | G                           | ener | al ar | nd |   |
| Year/ Level | Course code | Course title      | Core (c) title or<br>option (O) |    | Knowledge and<br>understanding Skills |    |      |      |     |           | Th        | inkir     | ng Sk | tills     | Transferable<br>Skills (or) |      |       |    |   |
|             |             |                   |                                 | A1 | A2                                    | A3 | A4   | B1   | B2  | <b>B3</b> | <b>B4</b> | <b>C1</b> | C2    | <b>C3</b> | <b>C4</b>                   | D1   | D2    | D3 | D |
|             |             |                   |                                 |    |                                       |    |      |      |     |           |           |           |       |           |                             |      |       |    |   |
|             |             |                   |                                 |    |                                       |    |      |      |     |           |           |           |       |           |                             |      |       |    |   |
|             |             |                   |                                 |    |                                       |    |      |      |     |           |           |           |       |           |                             |      |       |    |   |
|             |             |                   |                                 |    |                                       |    |      |      |     |           |           |           |       |           |                             |      |       |    | ┢ |

| ſ |  |  |  |  |  |  |  |  |  |  |
|---|--|--|--|--|--|--|--|--|--|--|
| Γ |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |

الصفحة 9

# **Course Description (Second Level)**

## **TEMPLATE FOR COURSE SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                                                                 | Northern Technical University - Engineering<br>Technical College / Kirkuk                                            |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2- University Department<br>/centre                                                    | Mechanics Power Tech. Eng. Dep.                                                                                      |
| 3-Course title                                                                         | Thermodynamics 3 MPE 020                                                                                             |
| 4-title of final Award                                                                 | Bachelor of Engineering Mechanics Power<br>Technologies                                                              |
| 5-Modes of Attendance offered                                                          | Simister (Weekly attendance )                                                                                        |
| 6-Accreditation                                                                        | Accreditation Board for Engineering and<br>Technology (ABET)                                                         |
| 7-Other external influences                                                            | <ol> <li>Training courses for students to<br/>develop students' professional skills</li> <li>Field visits</li> </ol> |
| 8- Data of production<br>/revision of this specification                               | 2024/09/01                                                                                                           |
| 9-Amis of the Course .1                                                                |                                                                                                                      |
| 8A- Introducing the student to steam proce                                             | edures and cycles                                                                                                    |
| 8B- Introducing the student to the use of st<br>steam and gases, and compression in se | team tables and diagrams, in addition to mixtures of everal stages.                                                  |
| 8C- Steady flow analysis of the compression                                            | *                                                                                                                    |
| 8D- Identify the ideal and practical cycle of                                          | of the gas turbine                                                                                                   |
|                                                                                        |                                                                                                                      |
|                                                                                        |                                                                                                                      |
|                                                                                        |                                                                                                                      |
|                                                                                        |                                                                                                                      |

- الصفحة 1

10. Learning Outcomes, Teaching, Learning and Assessment Methode A-Knowledge and Understanding A-1 The student should know steam and gas turbines A-2 The student should know reciprocating compressors and their applications A-3 The student compares gas turbines and internal combustion engines A-4 It is able to rearrange the steam cycle to increase turbine efficiency **B.Subject-specific skills** B1 - Helping the student to acquire analytical ability regarding applications of thermodynamics B2 - Helping the student to link the theoretical aspect with practical applications of power stations B3 - Helping the student distinguish the applications of both turbines and reciprocating compressors B-4 Helping the student to recognize the real gas laws and mixtures of gases **Teaching and Learning Methods** 1. Theoretical and practical lectures. 2. Pre and post questions. 3. Weekly tests. 4. Semester exams C. Thinking Skills C1 Work in a team spirit. C2 He adheres to the ethics of the university institution. C3 Receives and accepts knowledge. C4 The student feels the responsibility placed on him **Teaching and Learning Methods** 1- Theoretical lectures 2- Training students in the laboratory

Assessment Methods

1- Semester and final exams.

2- Brief exams (Quiz).

D. General and Transferable Skills (other skills relevant to employability and personal development)

D-1 Equipping students to operate in steam and gas power plants

D-2 Enhancing the learner's proficiency with internal combustion engines

D-3 The learner will gain proficiency in thermodynamic system analysis.

D–4. Understanding the true nature of gases and vapors in order to handle their practical applications

| week | Hours                        | ILOS                                     | Unit/modul or<br>topic title                                        | Teaching<br>method         | Assessment<br>Method |
|------|------------------------------|------------------------------------------|---------------------------------------------------------------------|----------------------------|----------------------|
| 1    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Steam overview                                                      | Theroritical and practical | Quiz                 |
| 2    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Methods for<br>measuring dryness<br>fraction                        | Theroritical and practical | Quiz                 |
| 3    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Vapor power cycles                                                  | Theroritical and practical | Quiz                 |
| 4    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Carnot cycle                                                        | Theroritical and practical | Quiz                 |
| 5    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Rankine cycle                                                       | Theroritical and practical | Quiz                 |
| 6    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Rankine cycle with reheating                                        | Theroritical and practical | Quiz                 |
| 7    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Rankine cycle<br>regenerative<br>Single closed feed<br>water heater | Theroritical and practical | Quiz                 |
| 8    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Rankine cycle<br>regenerative<br>tow closed feed water<br>heater    | Theroritical and practical | Quiz                 |
| 9    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Rankine cycle<br>regenerative<br>single open feed water<br>heater   | Theroritical and practical | Quiz                 |
| 10   | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Rankine cycle<br>regenerative<br>two open feed water<br>heater      | Theroritical and practical | Quiz                 |
| 11   | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Gas power cycle                                                     | Theroritical and practical | Quiz                 |
| 12   | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Brayton cycle                                                       | Theroritical and practical | Quiz                 |
| 13   | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Brayton cycle improvements                                          | Theroritical and practical | Quiz                 |
| 14   | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Diesel cycle                                                        | Theroritical and practical | Quiz                 |
| 15   | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Otto cycle                                                          | Theroritical and practical | Quiz                 |

12.Infrastructure

– الصفحة 4 –

| . COURSE MATERIALSthermodynamics. OTHER5Special requirements (include for example<br>workshops ,periodicals,IT software<br>,Websites)-Community -based facilities (include for | Required reading:                        | Engineering thermodynamics, |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|
| . OTHERSpecial requirements (include for example<br>workshops ,periodicals,IT software<br>,Websites)Community -based facilities (include for                                   | CORE TEXTS                               | Fundamentals of engineering |
| Special requirements (include for example<br>workshops ,periodicals,IT software<br>,Websites)Community -based facilities (include for                                          | COURSE MATERIALS                         | thermodynamics              |
| workshops ,periodicals,IT software<br>,Websites)<br>Community –based facilities (include for                                                                                   | OTHER                                    |                             |
| ,Websites)<br>Community –based facilities (include for                                                                                                                         | pecial requirements (include for example |                             |
| Community –based facilities (include for                                                                                                                                       | vorkshops ,periodicals,IT software       |                             |
|                                                                                                                                                                                | Websites)                                |                             |
| example, guest                                                                                                                                                                 | Community –based facilities (include for |                             |
|                                                                                                                                                                                | xample ,guest                            |                             |
| Lectures, intership, field, studies)                                                                                                                                           | ectures, intership, field, studies)      |                             |
|                                                                                                                                                                                |                                          |                             |

#### 13. Admissions

Pre-requisites

Maximum number of students Maximum number of students

## **TEMPLATE FOR COURSE SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| Mechanics Power Tech. Eng. Dep.                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermodynamics 4 MPE 020                                                                                                                         |
| Bachelor of Engineering Mechanics Power<br>Technologies                                                                                          |
| Simister (Weekly attendance )                                                                                                                    |
| Accreditation Board for Engineering and<br>Technology (ABET)                                                                                     |
| <ol> <li>Training courses for students to<br/>develop students' professional skills</li> <li>Field visits</li> </ol>                             |
| 2024/09/01                                                                                                                                       |
|                                                                                                                                                  |
| mixtures<br>culate the properties of mixed gases<br>mpressors and the parts that comprise them<br>we inside reciprocating compressors and how to |
|                                                                                                                                                  |

| A-Knowledge and Understanding                                                                 |                            |
|-----------------------------------------------------------------------------------------------|----------------------------|
| A-1 The student knows pure gases and gases that co                                            | nsist of a mixture of more |
| than one type                                                                                 |                            |
| A-2 The student knows how to find the thermodyna<br>gases                                     | mic properties of mixed    |
| A-3 The student should know the types of compress                                             | ors, their features and    |
| advantages, and the most important differences                                                |                            |
| A-4 The student should be able to perform design ca                                           | lculations for             |
| reciprocating compressors                                                                     |                            |
| B. Subject-specific skills                                                                    |                            |
| B1 - Helping the student to acquire analytical ability thermodynamics                         |                            |
| B2 - Helping the student to link the theoretical aspec                                        | t with practical           |
| applications of power stations                                                                |                            |
| B3 - Helping the student distinguish the applications                                         | s of both pure gases and   |
| mixtures<br>R 4 Holping the student identify the parts of regipro                             | cating comprossors         |
| <u>B-4 Helping the student identify the parts of recipro</u><br>Teaching and Learning Methods |                            |
| 1. Theoretical and practical lectures.                                                        |                            |
| 2. Pre and post questions.                                                                    |                            |
| 3. Weekly tests.                                                                              |                            |
| 4. Semester exams                                                                             |                            |
| C. Thinking Skills                                                                            |                            |
| C1 Work in a team spirit.                                                                     | ti o u                     |
| C2 He adheres to the ethics of the university institu                                         | ition.                     |
| C3 Receives and accepts knowledge.<br>C4 The student feels the responsibility placed on h     | im                         |
| Teaching and Learning Methods                                                                 | 1111                       |
|                                                                                               |                            |
| 1- Theoretical lectures                                                                       |                            |
| 2- Training students in the laboratory                                                        |                            |

- الصفحة 2 –

Assessment Methods

- 1- Semester and final exams.
- 2- Brief exams (Quiz).

D. General and Transferable Skills (other skills relevant to employability and personal development)

- D-1 Developing the student's ability to work inside gas and steam power plants
- D-2 Developing the student's ability to deal with ideal and real gas engines
- D-3 The student acquires the skill of thermodynamic analysis of reciprocating compressors
- D-4 Know the ideal methods that should be followed to reduce the energy consumed by reciprocating compressors

| week Hours |                                                                                                                                                                    | ILOS                                     | Unit/modul or<br>topic title                                                                    | Teaching<br>method         | Assessment<br>Method |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------|----------------------|
| 1          | 3 theoretical<br>2 practicalThe student<br>understands the<br>lessonThermodynamic<br>properties and<br>relationships, general<br>relationships (dh, sd,<br>cp, cv) |                                          | Theroritical and practical                                                                      | Quiz                       |                      |
| 2          | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Maxwell relations                                                                               | Theroritical and practical | Quiz                 |
| 3          | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Maxwell relations                                                                               | Theroritical and practical | Quiz                 |
| 4          | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Clapeyron<br>relationship                                                                       | Theroritical and practical | Quiz                 |
| 5          | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Derivation of the governing equations                                                           | Theroritical and practical | Quiz                 |
| 6          | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Real gas relationships,<br>compression<br>coefficient, equation<br>of state for an ideal<br>gas | Theroritical and practical | Quiz                 |
| 7          | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Gas mixing and<br>combustion                                                                    | Theroritical and practical | Quiz                 |
| 8          | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Dalton's law, molar<br>ratio, volumetric<br>analysis and mass<br>analysis                       | Theroritical and practical | Quiz                 |
| 9          | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Reciprocating<br>compressors,<br>introduction to<br>dynamic analysis                            | Theroritical and practical | Quiz                 |
| 10         | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Reciprocating<br>compressors real flow<br>chart, clearance<br>volume, multistage<br>compression | Theroritical and practical | Quiz                 |
| 11         | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Work calculation for<br>reciprocating<br>compressors                                            | Theroritical and practical | Quiz                 |
| 12         | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Gas turbine types and<br>speed charts                                                           | Theroritical and practical | Quiz                 |
| 13         | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | The effect of friction<br>on gas and steam<br>turbine blades                                    | Theroritical and practical | Quiz                 |
| 14         | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Comparison of gas<br>and steam turbines                                                         | Theroritical and practical | Quiz                 |
| 15         | 3 theoretical<br>2 practical                                                                                                                                       | The student<br>understands the<br>lesson | Internal combustion<br>engines overview                                                         | Theroritical and practical | Quiz                 |

الصفحة 4

| 12.Infrastructure                         |                                                            |
|-------------------------------------------|------------------------------------------------------------|
| Dequired reading:                         | Engineering thermodynamics                                 |
| Required reading:<br>. CORE TEXTS         | Engineering thermodynamics,<br>Fundamentals of engineering |
| . COURSE MATERIALS                        | thermodynamics                                             |
| . OTHER                                   |                                                            |
| Special requirements (include for example |                                                            |
| workshops ,periodicals,IT software        |                                                            |
| ,Websites)                                |                                                            |
| Community –based facilities (include for  |                                                            |
| example ,guest                            |                                                            |
| Lectures, intership, field, studies)      |                                                            |
|                                           |                                                            |

13. Admissions

- 1- Scientific trips to gas and steam power stations
- 2- Encouraging the student to review what science has achieved in the field of thermodynamic applications

Maximum number of students

Maximum number of students

## **TEMPLATE FOR COURSE SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the Course.

| 1-Teaching institution                                | Engineering Technical College / Kirkuk                                                                               |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2- University Department /centre                      | Mechanics Power Tech. Eng. Dep.                                                                                      |
| 3- Course title                                       | Mechanical drawing                                                                                                   |
| 4- Title of final Award                               | Bachelor of Engineering Mechanics Power<br>Technologies                                                              |
| 5- Modes of Attendance offered                        | Simister (Weekly attendance ) mpe205                                                                                 |
| 6- Accreditation                                      | Accreditation Board for Engineering and<br>Technology (ABET)                                                         |
| 7- Other external influences                          | <ol> <li>Training courses for students to develop<br/>students' professional skills</li> <li>Field visits</li> </ol> |
| 8- Data of production /revision of this specification | 2023/9/1                                                                                                             |

9-1 mills of the Course

9 - A - The student should be able to acquire the skill necessary to read technical drawings.

9 - B - Knowledge of engineering symbols and terminology.

9- C- Helping the student to know the standard specifications and drawing of assembled, simple and complex mechanical parts.

9- D- Learn how to use a computer in mechanical drawing.

10. Learning Outcomes, Teaching, Learning and Assessment Methode A-Knowledge and Understanding :-A-1-Helping the student know the types of lines in mechanical drawing. A-2- Helping the student know how to draw simple and complex parts. A-3- Helping the student know how to connect and disassemble the parts. A-4- Helping the student know how to number the disassembled parts according to their sequence. B.Subject-specific skills :-B -1- Helping the student to acquire the imaginative ability to draw geometric parts. B-2 - Helping the student to acquire the skill of imagining what practical reality requires. B-3 - Helping the student to acquire the skill of setting appropriate dimensions and measurements. B-4- Helping the student to acquire the skill of using the best and most accurate methods in design. **Teaching and Learning Methods** 1-Lectures. 2- Use data show. 3-Using other illustrative means (computer, live models to approximate the idea) **Evaluation methods** 1-Summary exams (quiz). 2-Quarterly and annual exams. 3-weekly posts. C- Emotional and value-based goals :-C-1-Working as one team. C-2- Adheres to the ethics of the university institution. C-3- Receives and accepts knowledge. C-4- The student feels the responsibility placed on his shoulders.

#### Teaching and learning methods

1- Theoretical and practical lectures.

2- Training students in the studio.

#### **Evaluation methods**

1- Semester and final exams.

2- Brief exams (quiz).

D - General and qualifying transferable skills (other skills related to employability and personal development) :-

D - 1 - Develops the student's work in the studio.

D-2 - Develops the student's knowledge of how to draw mechanical parts from more than one angle.

D-3 - The student acquires the ability to acquire appropriate alternatives

D-4 - The student acquires skill in using modern drawing methods.

| week      | ekHoursILOSUnit/modul or<br>topic title1 theoretical<br>3 practicalThe student<br>understands the lessonGeneral Review |                                       | Teaching<br>method                | Assessment<br>Method                               |           |
|-----------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|----------------------------------------------------|-----------|
| 1         |                                                                                                                        |                                       | Theoretical and practical         | Quiz                                               |           |
| 2         | 1 theoretical<br>3 practical                                                                                           | The student<br>understands the lesson | Symbols -<br>Terminology          | Theoretical<br>and practical                       | Quiz      |
| 3         | 1 theoretical<br>3 practical                                                                                           | The student<br>understands the lesson | Bolts and nuts                    | Theoretical and practical                          | Quiz      |
| 4         | 1 theoretical<br>3 practical                                                                                           | The student<br>understands the lesson | Bolts and nuts                    | Theoretical and practical                          | Quiz      |
| 5         | 1 theoretical<br>3 practical                                                                                           |                                       | exam                              |                                                    | Quiz      |
| 6         | 1 theoretical<br>3 practical                                                                                           | The student<br>understands the lesson | Key                               | Theoretical and practical                          | Quiz      |
| 7         | 1 theoreticalThe student3 practicalunderstands the lesson1 theoreticalThe student3 practicalunderstands the lesson     |                                       | Pulleys                           | Theoretical and practical                          | Quiz      |
| 8         |                                                                                                                        | understands the lesson Pu             | Pulleys                           | Theoretical and practical                          | Quiz      |
| 9         | 1 theoretical     The student     Pulleys       3 practical     understands the lesson     Pulleys                     |                                       | Theoretical and practical         | Quiz                                               |           |
| 10        | 1 theoretical<br>3 practical                                                                                           | The student<br>understands the lesson | Rivets                            | Theoretical<br>and practical                       | Quiz      |
| 11        | 1 theoretical<br>3 practical                                                                                           | The student<br>understands the lesson | Rivets                            | Theoretical and practical                          | Quiz      |
| 12        | 1 theoretical<br>3 practical                                                                                           | The student<br>understands the lesson | Rivets                            | Theoretical<br>and practical                       | Quiz      |
| 13        | 1 theoretical<br>3 practical                                                                                           |                                       | exam                              |                                                    | Quiz      |
| 14        | 1 theoretical<br>3 practical                                                                                           | The student<br>understands the lesson | Compatibilities and discrepancies | Theoretical<br>and practical                       | Quiz      |
| 15        | 3 practical understands the lesson discrepance                                                                         |                                       | Compatibilities and discrepancies | Theoretical and practical                          | Quiz      |
| 12. Infra | astructure                                                                                                             |                                       |                                   |                                                    |           |
| Prescrib  | ed books and                                                                                                           | d infrastructure                      | 0 0                               | g Drawing Usir<br>awing, Dr. K.I<br>ıh, K. Venkata | Narayana, |
| 13- Coui  | rse developn                                                                                                           | ient plan                             |                                   |                                                    |           |
|           | about the latest<br>al drawing.                                                                                        | t methods used in                     |                                   |                                                    |           |

## **TEMPLATE FOR COURSE SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the Course.

| 1-Teaching institution                                | Engineering Technical College / Kirkuk                                                                               |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2- University Department /centre                      | Mechanics Power Tech. Eng. Dep.                                                                                      |
| 3- Course title                                       | Mechanical drawing                                                                                                   |
| 4- Title of final Award                               | Bachelor of Engineering Mechanics Power<br>Technologies                                                              |
| 5- Modes of Attendance offered                        | Simister (Weekly attendance ) mpe205                                                                                 |
| 6- Accreditation                                      | Accreditation Board for Engineering and<br>Technology (ABET)                                                         |
| 7- Other external influences                          | <ol> <li>Training courses for students to develop<br/>students' professional skills</li> <li>Field visits</li> </ol> |
| 8- Data of production /revision of this specification | 2023/9/1                                                                                                             |

9-1 mills of the Course

9 - A - The student should be able to acquire the skill necessary to read technical drawings.

9 - B - Knowledge of engineering symbols and terminology.

9- C- Helping the student to know the standard specifications and drawing of assembled, simple and complex mechanical parts.

9- D- Learn how to use a computer in mechanical drawing.

10. Learning Outcomes, Teaching, Learning and Assessment Methode A-Knowledge and Understanding :-A-1-Helping the student know the types of lines in mechanical drawing. A-2- Helping the student know how to draw simple and complex parts. A-3- Helping the student know how to connect and disassemble the parts. A-4- Helping the student know how to number the disassembled parts according to their sequence. B.Subject-specific skills :-B -1- Helping the student to acquire the imaginative ability to draw geometric parts. B-2 - Helping the student to acquire the skill of imagining what practical reality requires. B-3 - Helping the student to acquire the skill of setting appropriate dimensions and measurements. B-4- Helping the student to acquire the skill of using the best and most accurate methods in design. **Teaching and Learning Methods** 1-Lectures. 2- Use data show. 3-Using other illustrative means (computer, live models to approximate the idea) **Evaluation methods** 1-Summary exams (quiz). 2-Quarterly and annual exams. 3-weekly posts. C- Emotional and value-based goals :-C-1-Working as one team. C-2- Adheres to the ethics of the university institution. C-3- Receives and accepts knowledge. C-4- The student feels the responsibility placed on his shoulders.

#### Teaching and learning methods

1- Theoretical and practical lectures.

2- Training students in the studio.

#### **Evaluation methods**

1- Semester and final exams.

2- Brief exams (quiz).

D - General and qualifying transferable skills (other skills related to employability and personal development) :-

D - 1 - Develops the student's work in the studio.

D-2 - Develops the student's knowledge of how to draw mechanical parts from more than one angle.

D-3 - The student acquires the ability to acquire appropriate alternatives

D-4 - The student acquires skill in using modern drawing methods.

| week    | Hours                        | ILOS                                  | Unit/modul or<br>topic title                                                     |                       | Teaching<br>method             | g Assessmen<br>Method |
|---------|------------------------------|---------------------------------------|----------------------------------------------------------------------------------|-----------------------|--------------------------------|-----------------------|
| 1       | 1 theoretical<br>3 practical | The student<br>understands the lesson | General Review                                                                   |                       | Theroritical and practical     | Quiz                  |
| 2       | 1 theoretical<br>3 practical | The student<br>understands the lesson | Gears                                                                            |                       | Theroritical and practical     | Quiz                  |
| 3       | 1 theoretical<br>3 practical | The student<br>understands the lesson | Gea                                                                              | rs                    | Theroritical and practical     | Quiz                  |
| 4       | 1 theoretical<br>3 practical | The student<br>understands the lesson | Gea                                                                              | rs                    | Theroritical and practical     | Quiz                  |
| 5       | 1 theoretical<br>3 practical |                                       | exai                                                                             | m                     |                                | Quiz                  |
| 6       | 1 theoretical<br>3 practical | The student<br>understands the lesson | Clearance                                                                        |                       | Theroritical and practical     | Quiz                  |
| 7       | 1 theoretical<br>3 practical | The student<br>understands the lesson | Operating s<br>tables p                                                          | parets                | Theroritical<br>and practical  | Quiz                  |
| 8       | 1 theoretical<br>3 practical | The student<br>understands the lesson | Detailed drawing of<br>advanced mechanical<br>systems                            |                       | Theroritical and practical     | Quiz                  |
| 9       | 1 theoretical<br>3 practical | The student<br>understands the lesson | Detailed drawing of<br>advanced mechanical<br>systems                            |                       | Theroritical and practical     | Quiz                  |
| 10      | 1 theoretical<br>3 practical | The student<br>understands the lesson | Detailed dr<br>advanced m<br>syster                                              | awing of<br>echanical | Theroritical and practical     | Quiz                  |
| 11      | 1 theoretical<br>3 practical | The student<br>understands the lesson | Disassem<br>mechanic                                                             |                       | Theroritical and practical     | Quiz                  |
| 12      | 1 theoretical<br>3 practical | The student<br>understands the lesson | Disassembly of<br>mechanical parts<br>Disassembly of<br>mechanical parts<br>exam |                       | Theroritical and practical     | Quiz                  |
| 13      | 1 theoretical<br>3 practical | The student<br>understands the lesson |                                                                                  |                       | Theroritical and practical     | Quiz                  |
| 14      | 1 theoretical<br>3 practical |                                       |                                                                                  |                       |                                | Quiz                  |
| 15      | 1 theoretical<br>3 practical | The student<br>understands the lesson | Pipes                                                                            |                       | Theroritical and practical     | Quiz                  |
|         | bed books an                 | d infrastructure                      | 2<br>2<br>1                                                                      | AutoČAD<br>2- Machin  | e Drawing, Dr<br>Dr. P. Kannai | . K.L.                |
| 13- Co  | urse developn                | nent plan                             |                                                                                  |                       |                                |                       |
| drawing |                              | t methods used in me<br>am.           | chanical                                                                         |                       |                                |                       |

الصفحة 5

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| (                                                  |                                                                |
|----------------------------------------------------|----------------------------------------------------------------|
| 1-Teaching institution                             | Northern Technical University - Engineering Technical          |
|                                                    | College / Kirkuk                                               |
|                                                    |                                                                |
| 2- University Department /centre                   | Mechanics Power Tech. Eng. Dep.                                |
|                                                    |                                                                |
| 3-Course title                                     | Strength of Materials                                          |
| 5-course the                                       |                                                                |
| 4-title of final Award                             | Bachelor of Engineering Mechanics Power Technologies           |
| 4-uue of final Awaru                               | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                        |
| 5-Modes of Attendance offered                      | courses(Weekly attendance)                                     |
| 5-Modes of Attenuance offered                      |                                                                |
| ( A canaditation                                   | Accreditation Board for Engineering and Technology (ABET)      |
| 6-Accreditation                                    | received and for Engineering and Teenhology (RDET)             |
|                                                    | 1. Training courses for students to develop students'          |
| 7-Other external influences                        | professional skills 2. Field visits                            |
|                                                    |                                                                |
| 8- Data of production /revision                    | 25 /3 / 2024                                                   |
| of this specification                              |                                                                |
| 9-Amis of the Course .1                            |                                                                |
| 9-Amis of the Course .1                            |                                                                |
|                                                    |                                                                |
|                                                    | standing of power plant systems the application of techniques. |
| 2. To understand feed water, reheated and rege     | nerator.                                                       |
| 3. This course deals with the basic concept of p   | power plant.                                                   |
| 4. This is the basic subject for all power plant s | systems.                                                       |
| 5. To understand steam turbine and gas turbine     | problems.                                                      |
|                                                    | •                                                              |
|                                                    |                                                                |
|                                                    |                                                                |
|                                                    |                                                                |
|                                                    |                                                                |
|                                                    |                                                                |
|                                                    |                                                                |

10 . Learning Outcomes ,Teaching ,Learning and Assessment Methode

A-Knowledge and Understanding

A1. The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills.

A2. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.

B. Subject-specific skills

B1. To develop problem solving skills and understanding of strength of material and the application of techniques.

B2. To understand stress and strain in materials.

B3. This course deals with the basic concept of strength of material

Teaching and Learning Methods

- 1- Theoretical and practical lectures.
- 2- Pre and post questions.
- 3- Weekly tests.
- 4- Semester exams.

#### C. Thinking Skills

C1. The student listens attentively to the teacher's explanation.

- C2. To take care of the student calm and class order.
- C3. To familiarize the student with the importance of strength of material.
- C4. Describe the importance of materials practically

Teaching and Learning Methods Lectures Home works Slides and examples

Assessment Methods

Exam and weekly quiz

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D2. Develop sound thinking methods and release potential energy

| Week | Hours | ILOS                                     | Unit/modul or topic<br>title                | Teaching<br>method              | Assessment<br>Method |
|------|-------|------------------------------------------|---------------------------------------------|---------------------------------|----------------------|
| 1    | 4     | The student<br>understands the<br>lesson | Introduction                                | Theoretical<br>and<br>practical | Weekly exam          |
| 2    | 4     | The student<br>understands the<br>lesson | Stress and Strain—Axial<br>Loading          | Theoretical<br>and<br>practical | Weekly exam          |
| 3    | 4     | The student<br>understands the<br>lesson | Torsion                                     | Theoretical<br>and<br>practical | Weekly exam          |
| 4    | 4     | The student<br>understands the<br>lesson | Pure Bending                                | Theoretical<br>and<br>practical | Weekly exam          |
| 5    | 4     | The student<br>understands the<br>lesson | Pure Bending                                | Theoretical<br>and<br>practical | Weekly exam          |
| 6    | 4     | The student<br>understands the<br>lesson | Analysis and Design of Beams<br>for Bending | Theoretical<br>and<br>practical | Weekly exan          |
| 7    | 4     | The student<br>understands the<br>lesson | Analysis and Design of Beams<br>for Bending | Theoretical<br>and<br>practical | Weekly exan          |
| 8    | 4     | The student<br>understands the<br>lesson | Shearing Stresses in Beams                  | Theoretical<br>and<br>practical | Weekly exan          |
| 9    | 4     | The student<br>understands the<br>lesson | Shearing Stresses in Beams                  | Theoretical<br>and<br>practical | Weekly exan          |
| 10   | 4     | The student<br>understands the<br>lesson | Transformations of Stress and<br>Strain     | Theoretical<br>and<br>practical | Weekly exan          |
| 11   | 4     | The student<br>understands the<br>lesson | Transformations of Stress and<br>Strain     | Theoretical<br>and<br>practical | Weekly exan          |
| 12   | 4     | The student<br>understands the<br>lesson | Deflection of Beams                         | Theoretical<br>and<br>practical | Weekly exan          |
| 13   | 4     | The student<br>understands the<br>lesson | Tutorial and solve problems                 | Theoretical and<br>practical    | Weekly exam          |

الصفحة 4

| 13 | 4         | The student<br>understands the<br>lesson | Deflection of Beams                    | Theoretical<br>and<br>practical    | Weekly exams    |
|----|-----------|------------------------------------------|----------------------------------------|------------------------------------|-----------------|
| 14 | 4         | The student<br>understands the<br>lesson | Columns                                | Theoretical<br>and<br>practical    | Weekly exams    |
| 15 | 4         | The student<br>understands the<br>lesson | Columns                                | Theoretical<br>and<br>practical    | Weekly exams    |
| 16 | 4         | The student<br>understands the<br>lesson | Preparatory week before the final Exam | Theoretical<br>and<br>practical    | Weekly exams    |
|    |           |                                          |                                        | -                                  | 12.Infrastructu |
|    | . CORE TI | l reading:<br>EXTS<br>E MATERIALS        |                                        | Semina                             | r session       |
|    | -         | ps ,periodicals,I                        | T SOILWARE                             | MECHANICS OF<br>(Ferdinand P. Beer |                 |
|    | example   | -                                        | ities (include for<br>studies)         |                                    |                 |
|    | 13. Admi  | ssions                                   |                                        |                                    |                 |
|    | Pre-requ  | isites                                   |                                        |                                    |                 |

Maximum number of students Maximum number of students

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course.

| 1-Teaching institution                             | Northern Technical University - Engineering Technical<br>College / Kirkuk                                              |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| 2- University Department /centre                   | Mechanics Power Tech. Eng. Dep.                                                                                        |  |
| 3-Course title                                     | Engineering Materials                                                                                                  |  |
| 4-Title of final Award                             | Bachelor of Engineering Mechanics Power Technologies                                                                   |  |
| 5-Modes of Attendance offered                      | Annual (Weekly attendance)                                                                                             |  |
| 6-Accreditation                                    | Accreditation Board for Engineering and Technology (ABET)                                                              |  |
| 7-Other external influences                        | <ol> <li>Training courses for students to develop students'<br/>professional skills.</li> <li>Field visits.</li> </ol> |  |
| 8- Data of production / revision 1/9/2023          |                                                                                                                        |  |
| of this specification                              |                                                                                                                        |  |
| 9-Amis of the Course .1                            |                                                                                                                        |  |
| 1. Introduce engineering materials and established | olish its relative in mechanical Engineering.                                                                          |  |
| 2. Develop the fundamental principles about        | t engineering materials.                                                                                               |  |
| 3. Demonstrate how these are used in mech          |                                                                                                                        |  |
| 4. Describe basic concepts of engineering ma       |                                                                                                                        |  |
| 5. Learn the concepts of the engineering mat       | terials classes.                                                                                                       |  |
| 6. Recognize the crystallographic defects.         |                                                                                                                        |  |
| 7. Recognize the casting defects.                  |                                                                                                                        |  |
| 8. Ability to describe and evaluate the mecha      |                                                                                                                        |  |
| 9. Recognize the different types of binary all     | loys.                                                                                                                  |  |
|                                                    |                                                                                                                        |  |

10. Learning Outcomes , Teaching, Learning and Assessment Method

A-Knowledge and Understanding

A1. The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills about engineering materials.

A2. The module will be achieved through classes, interactive tutorials and by considering types of simple examples involving some sampling activities that are interesting to the students that are related to the engineering materials.

B. Subject-specific skills

B1. Development problem solving skills and understanding of engineering materials concepts.

B2. The use of the engineering materials related documents that are provided to compatible the degree requirements.

B3. Analyzing the some engineering subjects according to the study results.

**Teaching and Learning Methods** 

- 1- Theoretical lectures.
- 2- Pre and post questions.
- 3- Weekly tests.
- 4- Formative assessments.
- 5- Semester exams.

#### C. Thinking Skills

C1. The student listens attentively to the teacher's explanation.

C2. To take care of the student calm and class order.

C3. To familiarize the student with the importance of engineering materials concepts properties and tests.

C4. Implementation of mathematical exercises and problems.

Teaching and Learning Methods Lectures Home works Slides and examples

#### Assessment Methods

Quizzes Assignments Reports Examines

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D2. Develop sound thinking methods and release potential energy.

| Week      | Hours    | ILOS                                     | Unit/module<br>or topic title                              | Teaching<br>method | Assessmen<br>Method |
|-----------|----------|------------------------------------------|------------------------------------------------------------|--------------------|---------------------|
| 1         | 2        | The student<br>understands the<br>lesson | Crystalline<br>structure for<br>engineering<br>materials.  | Theoretical        | Weekly exam         |
| 2         | 2        | The student<br>understands the<br>lesson | Atomic packing<br>factor and its<br>calculation.           | Theoretical        | Weekly exam         |
| 3         | 2        | The student<br>understands the<br>lesson | Crystallographic defects.                                  | Theoretical        | Weekly exam         |
| 4         | 2        | The student<br>understands the<br>lesson | Solidification of ingots and casting defects.              | Theoretical        | Weekly exam         |
| 5         | 2        | The student<br>understands the<br>lesson | Hardness methods measurements.                             | Theoretical        | Weekly exam         |
| 6         | 2        | The student<br>understands the<br>lesson | Tensile properties.                                        | Theoretical        | Weekly exam         |
| 7         | 2        | The student<br>understands the<br>lesson | Stress-Strain curve.                                       | Theoretical        | Weekly exam         |
| 8         | 2        | The student<br>understands the<br>lesson | Impact strength<br>measurement<br>measurements<br>methods. | Theoretical        | Weekly exam         |
| 9         | 2        | The student<br>understands the<br>lesson | Binary alloys<br>systems-<br>Isomorphous<br>system.        | Theoretical        | Weekly exam         |
| 10        | 2        | The student<br>understands the<br>lesson | Eutectic system-<br>type one.                              | Theoretical        | Weekly exam         |
| 11        | 2        | The student<br>understands the<br>lesson | Eutectic system-<br>type two.                              | Theoretical        | Weekly exam         |
| 12        | 2        | The student<br>understands the<br>lesson | Iron-carbide phase diagram.                                | Theoretical        | Weekly exam         |
| 13        | 2        | The student<br>understands the<br>lesson | Carbon and alloy steels.                                   | Theoretical        | Weekly exam         |
| 14        | 2        | The student<br>understands the<br>lesson | Aluminum and its alloys.                                   | Theoretical        | Weekly exam         |
| 15        | 2        | The student<br>understands the<br>lesson | Copper and its alloys.                                     | Theoretical        | Weekly exam         |
| 12.Infras | tructure |                                          |                                                            |                    |                     |

| . COURSE MATERIALS                                                                           |  |
|----------------------------------------------------------------------------------------------|--|
| . OTHER                                                                                      |  |
| "Engineering Materials Technology" by W. Bolton                                              |  |
| "Essentials of Materials Science and Engineering" by<br>Donald R. Askeland, Pradeep P. Fulay |  |

## 13. Admissions

## Pre-requisites

## Maximum number of students

50

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course.

| Northern Technical University - Engineering Technical<br>College / Kirkuk                                             |
|-----------------------------------------------------------------------------------------------------------------------|
| Mechanics Power Tech. Eng. Dep.                                                                                       |
| Quality Control                                                                                                       |
| Bachelor of Engineering Mechanics Power Technologies                                                                  |
| Annual (Weekly attendance)                                                                                            |
| Accreditation Board for Engineering and Technology (ABET)                                                             |
| <ol> <li>Training courses for students to develop students'<br/>professional skills.</li> <li>Field visits</li> </ol> |
| 1 / 9 / 2023                                                                                                          |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
| · · · 1·, , 1                                                                                                         |
| eir using in quality control.                                                                                         |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |

10. Learning Outcomes , Teaching , Learning and Assessment Method

A-Knowledge and Understanding

A1. The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills about quality control.

A2. The module will be achieved through classes, interactive tutorials and by considering types of simple examples involving some sampling activities that are interesting to the students that are related to the quality control management.

B. Subject-specific skills

B1. Development of problem solving skills and understanding of quality control concepts.

B2. The use of the quality standard and procedures documents that is provided to employees in accordance with the organization policy.

B3. Analyzing the quality control study results.

B4. Introduce the consults to the related managers.

#### Teaching and Learning Methods

1- Theoretical lectures.

2- Pre and post questions.

3- Weekly tests.

4- Formative assessments.

5- Semester exams.

#### C. Thinking Skills

C1. The student listens attentively to the teacher's explanation.

C2. To take care of the student calm and class order.

C3. To familiarize the student with the importance of quality control concepts and managements.

C4. Implementation of mathematical exercises and problems.

Teaching and Learning Methods

Lectures

Home works

Slides and examples

Assessment Methods

#### Quizzes

Assignments

#### Reports Examines

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D2. Develop sound thinking methods and release potential energy.

| Week      | Hours     | ILOS                                     | Unit/mod                                              |                      | Teaching                         | Assessment                    |
|-----------|-----------|------------------------------------------|-------------------------------------------------------|----------------------|----------------------------------|-------------------------------|
|           |           |                                          | topic ti                                              | tie                  | method                           | Method                        |
| 1         | 2         | The student<br>understands the<br>lesson | Introduction and definition of que control.           |                      | Theoretical                      | Weekly exams                  |
| 2         | 2         | The student<br>understands the<br>lesson | Introduction and definition of que control.           |                      | Theoretical                      | Weekly exams                  |
| 3         | 2         | The student<br>understands the<br>lesson | Function and t<br>of quality cont                     |                      | Theoretical                      | Weekly exams                  |
| 4         | 2         | The student<br>understands the<br>lesson | Function and t<br>of quality cont                     |                      | Theoretical                      | Weekly exams                  |
| 5         | 2         | The student<br>understands the<br>lesson | Quality contro                                        | l costs.             | Theoretical                      | Weekly exams                  |
| 6         | 2         | The student<br>understands the<br>lesson | Definition and<br>introduction to<br>principles of st | the                  | Theoretical                      | Weekly exams                  |
| 7         | 2         | The student<br>understands the<br>lesson | Statistic parameters<br>and methods.                  |                      | Theoretical                      | Weekly exams                  |
| 8         | 2         | The student<br>understands the<br>lesson | Definition an<br>introduction to<br>quality control   |                      | Theoretical                      | Weekly exams                  |
| 9         | 2         | The student<br>understands the<br>lesson | Quality contro<br>types.                              |                      | Theoretical                      | Weekly exams                  |
| 10        | 2         | The student<br>understands the<br>lesson | Probability the<br>and quality con                    |                      | Theoretical                      | Weekly exams                  |
| 11        | 2         | The student<br>understands the<br>lesson | Probability the<br>and quality con                    |                      | Theoretical                      | Weekly exams                  |
| 12        | 2         | The student<br>understands the<br>lesson | Probability<br>distribution.                          |                      | Theoretical                      | Weekly exams                  |
| 13        | 2         | The student<br>understands the<br>lesson | Probability distribution.                             |                      | Theoretical                      | Weekly exams                  |
| 14        | 2         | The student<br>understands the<br>lesson | Introduction to<br>sampling plans                     |                      | Theoretical                      | Weekly exams                  |
| 15        | 2         | The student<br>understands the<br>lesson | Methods of sam<br>plans.                              | mpling               | Theoretical                      | Weekly exams                  |
| 12.Infras | tructure  |                                          |                                                       |                      |                                  |                               |
| Required  | reading:  |                                          |                                                       | "Introdu<br>Control, | ction to Stati<br>Sixth Edition. | stical Quality<br>Montgomery, |
|           | E MATERIA | LS                                       |                                                       | Douglas,             |                                  | C //                          |

| 1. Control Charts, Edward S. Smith                             |  |
|----------------------------------------------------------------|--|
| 2. Tools of Total Quality, P. Lyonnet                          |  |
| Engineering Statistic s and Quality Control, Irving W.<br>Burr |  |
|                                                                |  |

## 13. Admissions

## Pre-requisites

## Maximum number of students

50

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                                   | Northern Technical University - Engineering<br>Technical College / Kirkuk                                            |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2- University Department<br>/centre                      | Mechanical Power Tech. Eng. Dep.                                                                                     |
| 3-Course title                                           | Fluid Mechanics-1 MPE 207                                                                                            |
| 4-title of final Award                                   | Bachelor of Engineering Mechanical Power<br>Technologies                                                             |
| 5-Modes of Attendance offered                            | Simister (Weekly attendance )                                                                                        |
| 6-Accreditation                                          | Accreditation Board for Engineering and<br>Technology (ABET)                                                         |
| 7-Other external influences                              | <ol> <li>Training courses for students to<br/>develop students' professional skills</li> <li>Field visits</li> </ol> |
| 8- Data of production<br>/revision of this specification | 2024/09/01                                                                                                           |
| 9-Amis of the Course .1                                  |                                                                                                                      |

1 - Helping the student understand the nature of fluids and their behavior at rest and in motion (flow).

2 - Helping the student understand the physical properties of fluids (gases and liquids).

3-Helping the student understand the types of pressures that arise from these fluids in the state of rest and in the state of flow.

4-Helping the student understand the effect of the forces exerted by fluids on gates and dams.

5. Helping the student understand the buoyant force resulting from the effect of fluids on floating and sinking -5 .objects

10 . Learning Outcomes ,Teaching ,Learning and Assessment Methode

- الصفحة 1

A-Knowledge and Understanding

- A- 1 For the student to mention, for example, the physical properties of fluids.
- A2- The student should know the difference between types of fluid flow.
- A3- To distinguish between flow equations and their applications.

B.Subject-specific skills

- B1 An in-depth understanding of the properties of fluids and the effects of increasing pressures and temperatures on the behavior of fluids.
- B2 Understanding the practical applications in technology for fluid flow.

Teaching and Learning Methods

- 1. Theoretical and practical lectures.
- 2. Pre and post questions.
- 3. Weekly tests.
- 4. Semester exams

## C. Thinking Skills

C1- The student's attendance at the lecture from the beginning.

C2- The student listens to the lecture and pays attention to what information is mentioned in it.

C3- The student must remain calm and interact with the lecture by paying attention and answering the teacher's questions.

C4- That the student believes in the importance of studying the subject of fluid mechanics and its great impact on his specialty.

Teaching and Learning Methods

1- Theoretical lectures

2- Training students in the laboratory

Assessment Methods

- 1- Semester and final exams.
- 2- Brief exams (Quiz).

D. General and Transferable Skills (other skills relevant to employability and personal development)

The student acquires important information about fluid mechanics.

D2- The student's knowledge of the relationship of the topics of this subject with other subjects.

D3- The student's knowledge of the applied aspects of the subject's topics.

D4- The student acquires knowledge of using different sources for subject topics.

| week | Hours                                                  | ILOS                                     | Unit/modul or<br>topic title               | • Teaching<br>method         | Assessment<br>Method           |
|------|--------------------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------|--------------------------------|
| 1    | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Fluid characteristics                      | Theroritical and practical   | Quiz                           |
| 2    | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Types of fluids                            | Theroritical and practical   | Quiz                           |
| 3    | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Static fluid and types<br>of pressures     | Theroritical and practical   | Quiz                           |
| 4    | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Pressure measuremen<br>and gauges          | t Theroritical and practical | Quiz                           |
| 5    | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Pressure forces                            | Theroritical and practical   | Quiz                           |
| 6    | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Gates and dams                             | Theroritical and practical   | Quiz                           |
| 7    | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Buoyant force<br>(Archimedes<br>principle) | Theroritical and practical   | Quiz                           |
| 8    | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Fluid movement                             | Theroritical and practical   | Quiz                           |
| 9    | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Continuity equation                        | Theroritical and practical   | Quiz                           |
| 10   | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Bernoulli equation                         | Theroritical and practical   | Quiz                           |
| 11   | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Energy equation                            | Theroritical and practical   | Quiz                           |
| 12   | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Energy equation<br>applications            | Theroritical and practical   | Quiz                           |
| 13   | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Representing energy<br>change graphically  | Theroritical and practical   | Quiz                           |
| 14   | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Measurement of fluid<br>flow               | Theroritical and practical   | Quiz                           |
| 15   | 3 theoretical<br>2 practical                           | The student<br>understands the<br>lesson | Momentum equation                          | Theroritical and practical   | Quiz                           |
| 1    | 2.Infrastructure                                       | 2                                        |                                            |                              |                                |
| . (  | equired reading<br>CORE TEXTS<br>COURSE MATEF<br>OTHER |                                          | H                                          |                              | ics /by Street<br>uid mechanic |

| Special requirements (include for example workshops ,periodicals,IT software |  |
|------------------------------------------------------------------------------|--|
| ,Websites)                                                                   |  |
| Community –based facilities (include for                                     |  |
| example ,guest                                                               |  |
| Lectures, intership, field, studies)                                         |  |

13. Admissions

Pre-requisites

Maximum number of students Maximum number of students

# **Course Description (Third Level)**

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                                   | Northern Technical University - Engineering<br>Technical College / Kirkuk            |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| 2- University Department /centre                         | Mechanics Power Tech. Eng. Dep.                                                      |  |  |  |
| 3-Course title                                           | Heat transfer/2                                                                      |  |  |  |
| 4-title of final Award                                   | Bachelor of Engineering Mechanics Power<br>Technologies                              |  |  |  |
| 5-Modes of Attendance offered                            | Semester                                                                             |  |  |  |
| 6-Accreditation                                          | Accreditation Board for Engineering and<br>Technology (ABET)                         |  |  |  |
| 7-Other external influences                              | 1-Training courses for students to develop their professional skills 2. Field visits |  |  |  |
| 8- Data of production /revision<br>of this specification | 25/3/2024                                                                            |  |  |  |
|                                                          |                                                                                      |  |  |  |

9-Amis of the Course  $\ .1$ 

Introducing the student to the general foundations of heat transfer and their theoretical and practical applications in power mechanical engineering techniques in power stations, renewable energy, and heat exchangers of all types and fields of use.

10 . Learning Outcomes ,Teaching ,Learning and Assessment Methode

A-Knowledge and Understanding

A1: The student will be familiar with the principles of heat transfer by convection

A2: The student will be familiar with the use of experimental equations to obtain a transition temperature

A3: To become familiar with non-dimensional quantities in this field

A4: To become familiar with the types of heat exchangers

A5: Learn to design of heat exchangers

B.Subject-specific skills

B1- The student develops the ability to conduct practical tests on the devices

B2- The student learns to use measuring devices in scientific .investigations

B3- The student learns to express results using diagrams to link the relationship between variables

Teaching and Learning Methods

- 1. Theoretical and practical lectures
- 2. Weekly tests / written + practical
- 3. Submit reports
- 4. Asking questions during lectures

C. Thinking Skills

C1- The student to listen carefully to the professor's explanation

C2- The student to maintain calm and order in the classroom

C3- The student should recognize the importance of heat transfer

C4- To teach the student to design thermal systems that carry convection

Evaluation methods

1. Discussion and dialogue with the student

2. Attendance

3. Weekly tests: oral + written + practical

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1- The student must be able to design thermal systems such as heat .exchangers and solar energy systems

D2- The student will have the ability to conduct practical tests on devices related to refractories

D3- Use specialized software in the field of heat transfer

| week                      | Hours<br>Theoretical +<br>Practical | ILOS                                     | Unit/modul or<br>topic title                                                                       | Teaching<br>method                         | Assessmen<br>Method                 |
|---------------------------|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|
| First                     | 3+2                                 | The student<br>understands the<br>lesson | Principles of convection<br>heat transfer                                                          | Theoretical<br>lecture +<br>practical test | Weekly exams +<br>report submission |
| Second                    | 3+2                                 | The student<br>understands the<br>lesson | Forced convection heat<br>transfer equations under<br>steady-state conditions<br>and one dimension | Theoretical<br>lecture +<br>practical test | Weekly exams -<br>report submissio  |
| Third-<br>Fourth          | 3+2                                 | The student<br>understands the<br>lesson | Analytical solution for<br>laminar and turbulent<br>forced convection heat<br>transfer             | Theoretical<br>lecture +<br>practical test | Weekly exams -<br>report submissio  |
| Fifth                     | 3+2                                 | The student<br>understands the<br>lesson | Bulk temperature and non-<br>dimensional quantities                                                | Theoretical<br>lecture +<br>practical test | Weekly exams -<br>report submissio  |
| Sixth –<br>seventh        | 3+2                                 | The student<br>understands the<br>lesson | Empirical relations for<br>laminar and turbulent<br>forced convection heat<br>transfer             | Theoretical<br>lecture +<br>practical test | Weekly exams -<br>report submissio  |
| Eight                     | 3+2                                 | The student<br>understands the<br>lesson | Natural convection heat<br>transfer                                                                | Theoretical<br>lecture +<br>practical test | Weekly exams -<br>report submissio  |
| Ninth -<br>Tenth          | 3+2                                 | The student<br>understands the<br>lesson | Empirical relations for<br>natural convection                                                      | Theoretical<br>lecture +<br>practical test | Weekly exams -<br>report submissio  |
| Eleventh                  | 3+2                                 | The student<br>understands the<br>lesson | Introduction to heat<br>exchangers, their types<br>and features                                    | Theoretical<br>lecture +<br>practical test | Weekly exams -<br>report submissio  |
| Twelfth                   | 3+2                                 | The student<br>understands the<br>lesson | Overall heat transfer<br>coefficient and fouling<br>factor                                         | Theoretical<br>lecture +<br>practical test | Weekly exams -<br>report submissio  |
| thirteenth                | 3+2                                 | The student<br>understands the<br>lesson | Log mean temperature<br>difference (LMTD) method                                                   | Theoretical<br>lecture +<br>practical test | Weekly exams -<br>report submissio  |
| Fourteenth<br>- fifteenth | 3+2                                 | The student<br>understands the<br>lesson | Effectiveness – NTU<br>method                                                                      | Theoretical<br>lecture +<br>practical test | Weekly exams<br>report submissio    |

| Required reading:                         | Heat Transfer text books |
|-------------------------------------------|--------------------------|
| . CORE TEXTS                              | Seminars                 |
| . COURSE MATERIALS                        |                          |
| . OTHER                                   |                          |
| Special requirements (include for example | Practical tests          |
| workshops ,periodicals,IT software        |                          |
| ,Websites)                                |                          |
| Community –based facilities (include for  | https://www.smore.com/n  |
| example ,guest                            | /ybz4f-convection-       |
| Lectures, intership, field, studies)      | conduction-radiation     |
|                                           |                          |

## 13. Admissions

Pre-requisites

Maximum number of students

Maximum number of students

## **Course description**

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program

| ; .description                             |                                |
|--------------------------------------------|--------------------------------|
| technical College                          | 1 Educational institution.     |
| Engineering / Kirkuk                       |                                |
| Mechanical Technology                      | 2 / Scientific department.     |
| Engineering Department                     | center                         |
| Powers                                     |                                |
| Engineering analysis and numerical methods | 3 Course name/code .           |
| /MPE 0302                                  |                                |
| (theoretical)                              | 4 Available attendance forms . |
| annual                                     | 5 Semester/year.               |
| 90 theoretical                             | 6 Number of study.             |
|                                            | hours ( total)                 |
| 2024/26/3                                  | 7 Date this description was .  |
|                                            | prepared                       |

8 Course objectives .

The course aims to teach the student solutions to ordinary and partial differential equations

,their applicationsFourier series, and transformationsLaplace and matrices, as well as

numerical methods, linear interpolation, numerical integration, solutions of nonlinear equations, and finally

Finite Element Method Finite element method

| 11. Cou                    | rse structure     |                                                                                                                                   |                                                                                                      |       | . 10        |
|----------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------|-------------|
| Evaluation<br>method       | road<br>education | Name of the<br>unit/topic                                                                                                         | Required learning outcomes                                                                           | hours | the<br>week |
| <b>Daily</b><br>evaluation | Class<br>lectures | Ordinary differential<br>equations - first order                                                                                  | Teaching the<br>student solutions<br>to ordinary<br>differential<br>equations                        | 5     | 1           |
| Daily<br>evaluation        | Class<br>lectures | Ordinary difference<br>equations - first order                                                                                    | Teaching the<br>student solutions<br>to ordinary<br>differential<br>equations                        | 5     | 2           |
| Daily<br>evaluation        | Class<br>lectures | Applications of first<br>order differential<br>equations:<br>orthogonal trajectories<br>& series circuits                         | Teaching the<br>student solutions to<br>ordinary differential<br>equations and their<br>applications | 5     | 3           |
| Daily<br>evaluation        | Class<br>lectures | Applications of first<br>order differential<br>equations: salt<br>concentration in tanks<br>&<br>Newton's law of cooling<br>+quiz | Teaching the<br>student solutions to<br>ordinary differential<br>equations and their<br>applications | 5     | 4           |
| Daily<br>evaluation        | Class<br>lectures | Ordinary differential<br>equations - second order                                                                                 | Teaching the<br>student solutions<br>to ordinary<br>differential<br>equations                        | 5     | 5           |
| Daily<br>evaluation        | Class<br>lectures | Applications of second<br>order differential<br>equations: simple<br>harmonic motion of<br>spring                                 | Teaching the<br>student solutions to<br>ordinary differential                                        | 5     | 6           |

الصفحة

|                            |                   |                                                                                                      | equations and their applications                                                                        |   |    |
|----------------------------|-------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---|----|
| <b>Daily</b><br>evaluation | Class<br>lectures | Applications of second<br>order differential<br>equations: Damped<br>Motion                          | Teaching the<br>student solutions to<br>ordinary differential                                           | 5 | 7  |
|                            |                   |                                                                                                      | equations and their applications                                                                        |   |    |
| Daily<br>evaluation        | Class<br>lectures | Fourier series: periodic<br>functions+quiz                                                           | Teaching students<br>solutions toFourier<br>series equations                                            | 5 | 8  |
| Daily<br>evaluation        | Class<br>lectures | Even, Odd functions<br>and Half range<br>expansion                                                   | Teaching the<br>student solutions to<br>equations<br>Even, Odd functions<br>and Half range<br>expansion | 5 | 9  |
| Daily<br>evaluation        | Class<br>lectures | Partial differential<br>equations                                                                    | Teaching the<br>student solutions<br>to partial<br>differential<br>equations                            | 5 | 10 |
| Daily<br>evaluation        | Class<br>lectures | Applications of partial<br>differential equations:<br>heat conduction<br>equation & wave<br>equation | Teaching the<br>student solutions<br>to partial<br>differential<br>equations and their<br>applications  | 5 | 11 |
| <b>Daily</b><br>evaluation | Class<br>lectures | Laplace transformation<br>+quiz                                                                      | Teaching<br>students<br>solutions to<br>transformations<br>Laplace                                      | 5 | 12 |

| Daily        | Class    | Matrices: Gauss<br>elimination method,    | Empowering the   |   | 5 | 13 |
|--------------|----------|-------------------------------------------|------------------|---|---|----|
| evaluation   | lectures | Gauss-Siedel method                       | student to solve |   |   |    |
|              |          | and                                       | Matrices:        |   |   |    |
|              |          | Cholesky's method                         | Equations        |   |   |    |
|              |          |                                           | Gauss eliminatio |   |   |    |
|              |          |                                           | method,          | 1 |   |    |
|              |          |                                           | GaussSiedel      | - |   |    |
|              |          |                                           | method an        | d |   |    |
|              |          |                                           | Cholesky's       | d |   |    |
|              |          |                                           | method           |   |   |    |
| Daily        | Class    | Matrices: Gauss                           | Empowering the   |   | 5 | 14 |
| evaluation   | lectures | elimination method,                       | student to solve |   |   |    |
|              |          | Gauss-Siedel method and                   | Matrices:        |   |   |    |
|              |          | Cholesky's method+quiz                    | Equations        |   |   |    |
|              |          |                                           | Gauss eliminatio |   |   |    |
|              |          |                                           | method,          |   |   |    |
|              |          |                                           | CaugaSiadal      | _ |   |    |
|              |          |                                           | method an        | 1 |   |    |
|              |          |                                           |                  | d |   |    |
|              |          |                                           |                  |   |   |    |
|              |          |                                           | methou           | d |   |    |
| Mid-year ex  | am       |                                           |                  |   |   |    |
| Daily        | Class    | Introduction to numerical                 | Give an          | 5 |   | 1  |
| evaluation   | lectures | methods : Difference table                | introduction to  | 5 |   | 1  |
| c v uruution |          |                                           | numerical        |   |   |    |
|              |          |                                           | methods          |   |   |    |
| Daily        | Class    | Linear interpolation:                     | Enabling the     | 5 |   | 2  |
| evaluation   | lectures | Newton-Gregory &                          | student to solve |   |   |    |
|              |          | Lagrange interpolating                    | : equations      |   |   |    |
|              |          | polynomial                                | Linear           |   |   |    |
|              |          |                                           | interpolation:   |   |   |    |
|              |          |                                           | Newton-Gregory & |   |   |    |
|              |          |                                           | Lagrange         |   |   |    |
|              |          |                                           | interpolating    |   |   |    |
|              |          |                                           | polynomial       |   |   |    |
| Daily        | Class    | Numerical integration:                    | Teaching the     | 5 |   | 3  |
| evaluation   | lectures | Trapezoidal and Simpson's                 | student to solve | 1 |   |    |
|              |          | rules                                     | numerical        | 1 |   |    |
|              |          |                                           | integration      | 1 |   |    |
|              |          |                                           | equations        |   |   |    |
| Daily        | Class    | Numerical integration:                    | Teaching the     | 5 |   | 4  |
| evaluation   | lectures | Trapezoidal and Simpson's rules+quiz      | student to solve | 1 |   |    |
|              |          | r aits ' Yuiz                             | numerical        | 1 |   |    |
|              |          |                                           | integration      | 1 |   |    |
| וי <b>ת</b>  |          | Solution of more linear                   | equations        | - |   |    |
| Daily        | Class    | Solution of non-linear equations: Newton- | Enabling the     | 5 |   | 5  |
| evaluation   | lectures | Raphson method                            | student to solve |   |   |    |
|              |          |                                           | nonlinear        | 1 |   |    |
|              |          |                                           | equations        | 1 |   |    |

| Daily<br>evaluation | Class<br>lectures | Numerical solution of<br>ODE: Taylor series | The student<br>knows how to<br>solve<br>Equations<br>Numerical solution<br>of ODE: Taylor<br>series | 5 | 6 |
|---------------------|-------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------|---|---|
| Daily<br>evaluation | Class<br>lectures | Euler method & Modified<br>Euler method     | Empowering<br>the student to<br>solve<br>Equations<br>Euler method &<br>Modified Euler<br>method    | 5 | 7 |
| Daily<br>evaluation | Class<br>lectures | Runge- Kutta method+quiz                    | Empowering<br>the student to<br>solve<br>Equations<br>Runge- Kutta<br>method +quiz                  | 5 | 8 |
| Daily<br>evaluation | Class<br>lectures | Finite Element Method                       | Enable the<br>student to solve<br>finite element<br>method<br>equations<br>Element Method           | 5 | 9 |

| ِا تقييم يومي<br>بة                                                             | محاضر<br>ت صفي  | Finite Element Method                                                             | اصر          | تمكين الطالب على د<br>معادلات طريقة العد<br>المحددة Finite<br>lement Method | 5                                | 10              |
|---------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------|----------------------------------|-----------------|
|                                                                                 | محاضر<br>ت صفي  | Review about second term subjects                                                 |              |                                                                             | 5                                | 11              |
|                                                                                 |                 |                                                                                   |              | ä                                                                           | البنية التحتي                    | .12             |
|                                                                                 | •               | ring Mathematics, E. Krey<br>matics for Engineers, W. I                           | -            |                                                                             | ررة المطلوبة                     | 1- الكتب المق   |
| Snider, 8 <sup>th</sup> Edition<br>2. Numerical Met<br>6 <sup>th</sup> Edition. | is.<br>thods of | ential Equations, Nagle. S<br>Engineers, Chapra & Ca<br>alysis, Gerald & Wheatley | nale,        | ادر )                                                                       | رئيسية (المصد                    | 2- المراجع ال   |
|                                                                                 |                 | وات                                                                               | <b>مح</b> اض |                                                                             | اجع التي يوص<br>يية , التقارير , |                 |
| للبة                                                                            | على الط         | رات معدة مسبقا توزع                                                               | محاض         | اقع الانترنيت                                                               | الالكترونية, مو                  | ب ـ المراجع<br> |

| خطة تطوير المقرر الدراسي                                                               | .13               |
|----------------------------------------------------------------------------------------|-------------------|
|                                                                                        |                   |
| مفردات المحاضرة المقررة والاستعانة بمصادر علمية اخرى بهدف توضيح وتبسيط المادة الدراسية | استخدام<br>للطلية |
|                                                                                        | تنظيبة.           |

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                          | Northern Technical University - Engineering Technical     |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------|--|--|--|
|                                                 | College / Kirkuk                                          |  |  |  |
|                                                 |                                                           |  |  |  |
| 2- University Department /centre                | Mechanics Power Tech. Eng. Dep.                           |  |  |  |
| 3-Course title                                  | Mechanical Design                                         |  |  |  |
|                                                 |                                                           |  |  |  |
| 4-title of final Award                          | Bachelor of Engineering Mechanics Power Technologies      |  |  |  |
| 5-Modes of Attendance offered                   | courses(Weekly attendance)                                |  |  |  |
| 5-Modes of Attendance offered                   |                                                           |  |  |  |
| 6-Accreditation                                 | Accreditation Board for Engineering and Technology (ABET) |  |  |  |
| 7 Others anternal in flag as a c                | 1. Training courses for students to develop students'     |  |  |  |
| 7-Other external influences                     | professional skills 2. Field visits                       |  |  |  |
| 8- Data of production /revision                 | 25 /3 / 2024                                              |  |  |  |
| of this specification                           |                                                           |  |  |  |
| 9-Amis of the Course .1                         |                                                           |  |  |  |
|                                                 |                                                           |  |  |  |
| ** 0                                            | standing of design of standard mechanical parts.          |  |  |  |
| 2. To understand simple stress, combined stress | · · · · · · · · · · · · · · · · · · ·                     |  |  |  |
| 3. To understand how to select suitable materia | *                                                         |  |  |  |
| 4. To understand how to deals with standard pa  | rts and tables.                                           |  |  |  |
|                                                 |                                                           |  |  |  |
|                                                 |                                                           |  |  |  |
|                                                 |                                                           |  |  |  |
|                                                 |                                                           |  |  |  |
|                                                 |                                                           |  |  |  |
|                                                 |                                                           |  |  |  |

10 . Learning Outcomes , Teaching , Learning and Assessment Methode

A-Knowledge and Understanding

A1. The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills.

A2. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.

B. Subject-specific skills

B1. To develop problem solving skills and understanding of machine parts design and the application of techniques.

B2. To understand simple stress and combined stress in machine parts.B3. This course deals with the standard parts and tables.

Teaching and Learning Methods

- 1- Theoretical and practical lectures.
- 2- Pre and post questions.
- 3- Weekly tests.
- 4- Semester exams.

#### C. Thinking Skills

C1. The student listens attentively to the teacher's explanation.

- C2. To take care of the student calm and class order.
- C3. To familiarize the student with the importance of strength of material.
- C4. Describe the importance of materials practically

Teaching and Learning Methods Lectures Home works Slides and examples

Assessment Methods

Exam and weekly quiz

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D2. Develop sound thinking methods and release potential energy

| First Cou   | rse   |                                          |                                        |                                 |                      |
|-------------|-------|------------------------------------------|----------------------------------------|---------------------------------|----------------------|
| Week        | Hours | ILOS                                     | Unit/modul or<br>topic title           | Teaching<br>method              | Assessment<br>Method |
| 1-2         | 8     | The student<br>understands the<br>lesson | Introduction                           | Theoretical<br>and<br>practical | Weekly exame         |
| 3-4         | 8     | The student<br>understands the<br>lesson | Simple stress in machine parts         | Theoretical<br>and<br>practical | Weekly exame         |
| 5-6         | 8     | The student<br>understands the<br>lesson | Combined stress in machine parts       | Theoretical<br>and<br>practical | Weekly exams         |
| 7-10        | 16    | The student<br>understands the<br>lesson | Variable stress in machine parts       | Theoretical<br>and<br>practical | Weekly exame         |
| 11-12       | 8     | The student<br>understands the<br>lesson | Design of riveted<br>joints            | Theoretical<br>and<br>practical | Weekly exame         |
| 13-15       | 12    | The student<br>understands the<br>lesson | Design of screwed<br>joints            | Theoretical<br>and<br>practical | Weekly exams         |
| Second cour | se    |                                          |                                        | 1                               |                      |
| 1-4         | 16    | The student<br>understands the<br>lesson | Design of power<br>transmission shafts | Theoretical<br>and<br>practical | Weekly exams         |
| 5-6         | 8     | The student<br>understands the<br>lesson | Design of shaft keys                   | Theoretical<br>and<br>practical | Weekly exame         |
| 7-9         | 12    | The student<br>understands the<br>lesson | Design of flange<br>coupling           | Theoretical<br>and<br>practical | Weekly exame         |
| 10-12       | 12    | The student<br>understands the<br>lesson | Design of pressure<br>vessels          | Theoretical<br>and<br>practical | Weekly exam          |
| 13-15       | 12    | The student<br>understands the<br>lesson | Design of power<br>screws              | Theoretical<br>and<br>practical | Weekly exam          |

الصفحة 4

| 13       4       The student<br>understands the<br>lesson       Deflection of Beams       Theoretical<br>and<br>practical       Weekly exams         14       4       The student<br>understands the<br>lesson       Columns       Theoretical<br>and<br>practical       Weekly exams         15       4       The student<br>understands the<br>lesson       Columns       Theoretical<br>and<br>practical       Weekly exams         16       4       The student<br>understands the<br>lesson       Preparatory week before the<br>final Exam       Theoretical<br>and<br>practical       Weekly exams         16       4       The student<br>understands the<br>lesson       Preparatory week before the<br>final Exam       Theoretical<br>and<br>practical       Weekly exams         12.Infrastructure       Required reading:<br>. CORE TEXTS<br>. COURSE MATERIALS<br>. OTHER       Seminar session       Seminar session         Special requirements (include for example<br>workshops ,periodicals, IT software<br>,Websites)       MECHANICS OF MATERIALS<br>(Ferdinand P. Beer)       MECHANICS OF MATERIALS<br>(Ferdinand P. Beer)         13. Admissions       13. Admissions       13. Admissions       Intervention of the studies |    |                                     |                                    |                     | . Cours | se Structure11 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------|------------------------------------|---------------------|---------|----------------|--|
| 11       1       understands the lesson       and practical         15       4       The student understands the lesson       Columns       Theoretical and practical         16       4       The student understands the lesson       Preparatory week before the final Exam       Theoretical and practical         16       4       The student understands the lesson       Preparatory week before the final Exam       Theoretical and practical         16       4       The student understands the lesson       Preparatory week before the final Exam       Theoretical and practical         16       4       The student understands the lesson       Preparatory week before the final Exam       Theoretical and practical         16       5       CORE TEXTS       Seminar session       Seminar session         10       CORE TEXTS       COURSE MATERIALS       Seminar session         0       OTHER       Special requirements (include for example workshops ,periodicals, IT software ,Websites)       MECHANICS OF MATERIALS (Ferdinand P. Beer)         Community -based facilities (include for example ,guest Lectures,intership,field,studies)       Lectures,intership,field,studies)                                    | 13 | 4                                   | understands the                    | Deflection of Beams | and     | Weekly exams   |  |
| 13       4       understands the lesson       and practical         16       4       The student understands the lesson       Preparatory week before the final Exam       Theoretical and practical         16       4       The student understands the lesson       Preparatory week before the final Exam       Theoretical and practical         16       4       The student understands the lesson       Preparatory week before the final Exam       Theoretical and practical         16       4       The student understands the lesson       Preparatory week before the final Exam       Theoretical and practical         16       12.Infrastructure       Required reading:       Seminar session         . CORE TEXTS       . COURSE MATERIALS       Seminar session         . OTHER       Special requirements (include for example workshops ,periodicals, IT software ,Websites)       MECHANICS OF MATERIALS (Ferdinand P. Beer)         Community -based facilities (include for example ,guest Lectures,intership,field,studies)       Lectures,intership,field,studies)                                                                                                                                                        | 14 | 4                                   | understands the                    | Columns             | and     | Weekly exams   |  |
| 10       4       understands the lesson       final Exam       and practical         12.Infrastructure       Required reading:<br>. CORE TEXTS<br>. COURSE MATERIALS<br>. OTHER       Seminar session         Special requirements (include for example workshops ,periodicals, IT software ,Websites)       MECHANICS OF MATERIALS<br>(Ferdinand P. Beer)         Community –based facilities (include for example ,guest Lectures, intership, field, studies)       Lectures, intership, field, studies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 | 4                                   | understands the                    | Columns             | and     | Weekly exams   |  |
| Required reading:<br>. CORE TEXTS<br>. COURSE MATERIALS<br>. OTHERSeminar sessionSpecial requirements (include for example<br>workshops ,periodicals, IT software<br>,Websites)MECHANICS OF MATERIALS<br>(Ferdinand P. Beer)Community -based facilities (include for<br>example ,guest<br>Lectures,intership,field,studies)Image: Community -based facilities (include for<br>example ,guest<br>Lectures, intership, field, studies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16 | 4                                   | understands the                    |                     | and     | Weekly exams   |  |
| . CORE TEXTS<br>. COURSE MATERIALS<br>. OTHER. MECHANICS OF MATERIALS<br>(Ferdinand P. Beer)Special requirements (include for example<br>workshops ,periodicals, IT software<br>,Websites)MECHANICS OF MATERIALS<br>(Ferdinand P. Beer)Community -based facilities (include for<br>example ,guest<br>Lectures,intership,field,studies)Lectures<br>(Include for<br>example ,guest<br>Lectures, intership,field, studies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 12.Infrastructure                   |                                    |                     |         |                |  |
| workshops ,periodicals, IT software<br>,Websites)MECHANICS OF MATERIALS<br>(Ferdinand P. Beer)Community –based facilities (include for<br>example ,guest<br>Lectures,intership,field,studies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | . CORE<br>. COUR                    | . CORE TEXTS<br>. COURSE MATERIALS |                     |         | ar session     |  |
| example ,guest<br>Lectures,intership,field,studies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | workshops ,periodicals, IT software |                                    |                     |         |                |  |
| 13. Admissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | examp                               | example ,guest                     |                     |         |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 13. Admissions                      |                                    |                     |         |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 10.1101                             |                                    |                     |         |                |  |

Maximum number of students Maximum number of students

### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                                                                                                                                                                                                                                                                  | Northern Technical University - Engineering<br>Technical College / Kirkuk                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2- University Department /centre                                                                                                                                                                                                                                                        | Mechanics Power Tech. Eng. Dep.                                                                                      |
| 3-Course title                                                                                                                                                                                                                                                                          | mpe311 /Gas dynamics                                                                                                 |
| 4-title of final Award                                                                                                                                                                                                                                                                  | Bachelor of Engineering Mechanics Power<br>Technologies                                                              |
| 5-Modes of Attendance offered                                                                                                                                                                                                                                                           | Simister (Weekly attendance)                                                                                         |
| 6-Accreditation                                                                                                                                                                                                                                                                         | Accreditation Board for Engineering and<br>Technology (ABET)                                                         |
| 7-Other external influences                                                                                                                                                                                                                                                             | <ol> <li>Training courses for students to develop<br/>students' professional skills</li> <li>Field visits</li> </ol> |
| 8- Data of production /revision<br>of this specification                                                                                                                                                                                                                                | 2023/9/1                                                                                                             |
| 9-Amis of the Course                                                                                                                                                                                                                                                                    |                                                                                                                      |
| <ul> <li>9a- Introduce the student to invasive proceed</li> <li>9b- Introducing the student to the use of gate</li> <li>9c- Steady-flow analysis of the compression</li> <li>9d- Helping the student to understand the text</li> <li>the state laminar flow, turbulent flow.</li> </ul> | s tables and charts                                                                                                  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                      |

| 10. Learning Outcomes, Teaching, Learning and Assessment MethodA-Knowledge and Understanding                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A-Knowledge and Understanding                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                    |
| A-1 The student should mention, for example, the physical properties of fluids<br>A-2 The student knows the difference between types of fluid flow<br>A-3 For the student to compare the types of fluids                                           |
| P. Subject exception altille                                                                                                                                                                                                                       |
| B. Subject-specific skills                                                                                                                                                                                                                         |
| <ul> <li>B1 - An in-depth understanding of the properties of fluids and the effects of increasing pressures and temperatures on the behavior of fluids.</li> <li>B2 - Understanding the practical applications in fluid flow technology</li> </ul> |
| Teaching and Learning Methods                                                                                                                                                                                                                      |
| <ol> <li>1 -Lectures</li> <li>2- Use Data Show</li> <li>3- Using other means of explanation (laboratory experiments)</li> </ol>                                                                                                                    |
| Assessment Methods                                                                                                                                                                                                                                 |
| <ol> <li>Summary exams (Quiz)</li> <li>Monthly and semester examinations.</li> <li>Weekly contributions.</li> </ol>                                                                                                                                |
| C- Emotional and Values-based goals                                                                                                                                                                                                                |
| <ul> <li>C-1 Working as a team.</li> <li>C-2 Adheres to the ethics of the university institution.</li> <li>C-3 Receives and accepts knowledge.</li> <li>C-4 The student feels the responsibility placed on him.</li> </ul>                         |
| Assessment Methods                                                                                                                                                                                                                                 |
| 1- Semester and final exams.                                                                                                                                                                                                                       |
| 2- Brief exams (Quiz).                                                                                                                                                                                                                             |

D - General and qualifying transferable skills (other skills related to employability and personal development)

D-1 - Developing the student's ability to work inside gas and steam power plants

D-2 - Developing the student's ability to handle combustion engines

D-3- The student acquires the skill of thermodynamic analysis of various systems

D-4 - Knowing the real behavior of steam and gases for the purpose of dealing with their practical applications

## 11-Course Structure

| week        | Hours                        | ILOS                                     | Unit/modul or<br>topic title                          | Teaching<br>method         | Assessment<br>Method |
|-------------|------------------------------|------------------------------------------|-------------------------------------------------------|----------------------------|----------------------|
| 1           | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Introduction to<br>Compressible Flow                  | Theroritical and practical | Quiz                 |
| 2           | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Types of fluids and their characteristics             | Theroritical and practical | Quiz                 |
| 3           | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Conservation of mass                                  | Theroritical and practical | Quiz                 |
| 4           | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Conservation of energy                                | Theroritical and practical | Quiz                 |
| 5           | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Conservation of<br>Momentum                           | Theroritical and practical | Quiz                 |
| 6           | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Thermodynamics<br>Relations                           | Theroritical and practical | Quiz                 |
| 7           | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Thermodynamics<br>Relations + exam                    | Theroritical and practical | Quiz                 |
| 8           | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Isentropic Flow of<br>Perfect Gas                     | Theroritical and practical | Quiz                 |
| 9           | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Isentropic Flow in a<br>Converging Nozzle             | Theroritical and practical | Quiz                 |
| 10          | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Isentropic Flow in<br>Converging-<br>Diverging Nozzle | Theroritical and practical | Quiz                 |
| 11          | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Thrust force of a rocket engine                       | Theroritical and practical | Quiz                 |
| 12          | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Normal shock<br>wave                                  | Theroritical and practical | Quiz                 |
| 13          | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Normal Shock<br>Wave + exam                           | Theroritical and practical | Quiz                 |
| 14          | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Fanno flow part 1                                     | Theroritical and practical | Quiz                 |
| 15          | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Fanno flow part 2                                     | Theroritical and practical | Quiz                 |
| 12.Infrastr | ucture                       |                                          |                                                       |                            |                      |

| Required reading:  | James John & Thie Keith,              |
|--------------------|---------------------------------------|
| . CORE TEXTS       | Gas dynamics, 3td edition,            |
| . COURSE MATERIALS | Pearson prentice hall, Upper          |
| . OTHER            | .Saddle, New Jersey, 2006             |
|                    | Robert D. Zucker & Oscar              |
|                    | Biblarz, Fundamental of Gas           |
|                    | Dynamics, John Wily &                 |
|                    | Sons, New York, 2002                  |
|                    | منذر اسماعيل الدروبي، مبادئ           |
|                    | ديناميك الغازات، بغداد، وزارة التعليم |
|                    | العالي و البحث العلمي،                |

## 13. Curriculum Development Plan

Г

1- Scientific trips to gas and steam power stations

2- Encouraging the student to familiarize himself with what science has reached in the field of thermodynamic applications

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| Mechanics Power Tech. Eng. Dep.                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                  |
| Internal Combustion Engines                                                                                                                                                                                                                      |
| Bachelor of Engineering Mechanics Power<br>Technologies                                                                                                                                                                                          |
| Simister (Weekly attendance )                                                                                                                                                                                                                    |
| Accreditation Board for Engineering and<br>Technology (ABET)                                                                                                                                                                                     |
| <ol> <li>Training courses for students to<br/>develop students' professional skills</li> <li>Field visits</li> </ol>                                                                                                                             |
| 2023/09/01                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                  |
| equipment<br>hanics Engineering build strong foundations through their<br>re of stations, their designs, and their future prospects, as well<br>earning about the foundations of their work.<br>a process<br>ernal combustion process of engines |
|                                                                                                                                                                                                                                                  |

| 10 . Learning Outcomes, Teaching, Learning and Assessment Method                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A-Knowledge and Understanding</li> <li>A-1 The student learns internal and external combustion engines</li> <li>A-2 The student learns engines and their applications</li> <li>A-3 The student can compare diesel engines and gasoline engines</li> <li>A-4 The student will be able to rearrange the engines in order to increase the efficiency of the engines</li> </ul>                                    |
| Subject-specific skills<br>B1 - Helping the student to acquire analytical ability regarding internal<br>combustion engines<br>B2 - Helping the student on the theoretical side of commercial transactions<br>B3 - Help the student identify the applications of both coastal bio engines and<br>two-stroke vehicle engines<br>B-4 Helping the student to become familiar with the laws of fuel and mixtures<br>of gases |
| Teaching and Learning Methods                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>Theoretical and practical lectures.</li> <li>Pre and post questions.</li> <li>Weekly tests.</li> <li>Semester exams</li> </ol>                                                                                                                                                                                                                                                                                 |
| C. Thinking Skills<br>C1 Work in a team spirit.<br>C2 He adheres to the ethics of the university institution.<br>C3 Receives and accepts knowledge.<br>C4 The student feels the responsibility placed on him<br>Teaching and Learning Methods                                                                                                                                                                           |
| <ol> <li>Theoretical lectures</li> <li>Training students in the laboratory</li> </ol>                                                                                                                                                                                                                                                                                                                                   |
| Assessment Methods                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1- Semester and final exams.                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |

الصفحة 2

2- Brief exams (Quiz).

D. General and Transferable Skills (other skills relevant to employability and personal development)

D-1 Equipping students to operate in steam and gas power plants

D-2 Enhancing the learner's proficiency with internal combustion engines

D-3 The learner will gain proficiency in thermodynamic system analysis.

D–4. Understanding the true nature of gases and vapors in order to handle their practical applications

| week | Hours                        | ILOS                                     | Unit/modul or<br>topic title                                                                    | Teaching<br>method            | Assessment<br>Method |
|------|------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|----------------------|
| 1    | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | On road and off-road<br>equipment<br>classification and<br>components                           | Theroritical and practical    | Quiz                 |
| 2    | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Basic Engines<br>& cycles(CI, Ci<br>Duel cycles)                                                | Theroritical and practical    | Quiz                 |
| 3    | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Operations caracaras<br>of Engine<br>Parameters (Work,<br>mean<br>effective pressure,<br>Torque | Theroritical<br>and practical | Quiz                 |
| 4    | 2theoretical<br>2 practical  | The student<br>understands the<br>lesson | Power, thermal &<br>Volumetric<br>efficiency, Specific<br>Fuel<br>Consumptions)                 | Theroritical and practical    | Quiz                 |
| 5    | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Ideal engine cycle                                                                              | Theroritical and practical    | Quiz                 |
| 6    | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | real engine cycle                                                                               | Theroritical and practical    | Quiz                 |
| 7    | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Compressions<br>Injection Engine-1                                                              | Theroritical and practical    | Quiz                 |
| 8    | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Compressions<br>Injection Engine-2                                                              | Theroritical and practical    | Quiz                 |
| 9    | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Compressions<br>Injection Engine-3                                                              | Theroritical and practical    | Quiz                 |
| 10   | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Spark injections-1                                                                              | Theroritical and practical    | Quiz                 |
| 11   | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Spark injections-2                                                                              | Theroritical and practical    | Quiz                 |
| 12   | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Spark injections-3                                                                              | Theroritical and practical    | Quiz                 |
| 13   | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Rotary Engines-1                                                                                | Theroritical and practical    | Quiz                 |
| 14   | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Rotary Engines-2                                                                                | Theroritical and practical    | Quiz                 |
| 15   | 2 theoretical<br>2 practical | The student<br>understands the<br>lesson | Rotary Engines-3                                                                                | Theroritical and practical    | Quiz                 |

الصفحة 4

| Required reading:                           | -A Textbook Internal         |
|---------------------------------------------|------------------------------|
| . CORE TEXTS                                | Combustion Engines (By R K   |
| . COURSE MATERIALS                          | Rajput)                      |
| . OTHER                                     | -Fundamentals of Internal    |
|                                             | Combustion Engines, 2006 (By |
|                                             | H.N. Gupta)                  |
|                                             |                              |
| Special requirements (include for example   |                              |
| workshops, periodicals, IT software,        |                              |
| Websites)                                   |                              |
| Community –based facilities (include for    |                              |
| example, guest Lectures, internship, field, |                              |
| studies)                                    |                              |
| -                                           |                              |
|                                             |                              |
| 13. Admissions                              |                              |
|                                             |                              |
| Pre-requisites                              |                              |

Maximum number of students

Maximum number of students

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| Mechanics Power Tech. Eng. Dep.                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                  |
| Internal Combustion Engines                                                                                                                                                                                                                      |
| Bachelor of Engineering Mechanics Power<br>Technologies                                                                                                                                                                                          |
| Simister (Weekly attendance )                                                                                                                                                                                                                    |
| Accreditation Board for Engineering and<br>Technology (ABET)                                                                                                                                                                                     |
| <ol> <li>Training courses for students to<br/>develop students' professional skills</li> <li>Field visits</li> </ol>                                                                                                                             |
| 2023/09/01                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                  |
| equipment<br>hanics Engineering build strong foundations through their<br>re of stations, their designs, and their future prospects, as well<br>earning about the foundations of their work.<br>a process<br>ernal combustion process of engines |
|                                                                                                                                                                                                                                                  |

| 10 . Learning Outcomes, Teaching, Learning and Assessment Method                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A-Knowledge and Understanding</li> <li>A-1 The student learns internal and external combustion engines</li> <li>A-2 The student learns engines and their applications</li> <li>A-3 The student can compare diesel engines and gasoline engines</li> <li>A-4 The student will be able to rearrange the engines in order to increase the efficiency of the engines</li> </ul>                                    |
| Subject-specific skills<br>B1 - Helping the student to acquire analytical ability regarding internal<br>combustion engines<br>B2 - Helping the student on the theoretical side of commercial transactions<br>B3 - Help the student identify the applications of both coastal bio engines and<br>two-stroke vehicle engines<br>B-4 Helping the student to become familiar with the laws of fuel and mixtures<br>of gases |
| Teaching and Learning Methods                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>Theoretical and practical lectures.</li> <li>Pre and post questions.</li> <li>Weekly tests.</li> <li>Semester exams</li> </ol>                                                                                                                                                                                                                                                                                 |
| C. Thinking Skills<br>C1 Work in a team spirit.<br>C2 He adheres to the ethics of the university institution.<br>C3 Receives and accepts knowledge.<br>C4 The student feels the responsibility placed on him<br>Teaching and Learning Methods                                                                                                                                                                           |
| <ol> <li>Theoretical lectures</li> <li>Training students in the laboratory</li> </ol>                                                                                                                                                                                                                                                                                                                                   |
| Assessment Methods                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1- Semester and final exams.                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |

الصفحة 2

2- Brief exams (Quiz).

D. General and Transferable Skills (other skills relevant to employability and personal development)

D-1 Equipping students to operate in steam and gas power plants

D-2 Enhancing the learner's proficiency with internal combustion engines

D-3 The learner will gain proficiency in thermodynamic system analysis.

D–4. Understanding the true nature of gases and vapors in order to handle their practical applications

| week | Hours                                                   | ILOS                                     | Unit/modul or<br>topic title | Teaching<br>method                       | Assessment<br>Method    |
|------|---------------------------------------------------------|------------------------------------------|------------------------------|------------------------------------------|-------------------------|
| 1    | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Fuels & combustions-<br>1    | Theroritical and practical               | Quiz                    |
| 2    | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Fuels & combustions-<br>2    | - Theroritical and practical             | Quiz                    |
| 3    | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Fuels & combustions-<br>3    | - Theroritical and practical             | Quiz                    |
| 4    | 2theoretical<br>2 practical                             | The student<br>understands the<br>lesson | Fuels & combustions-<br>4    | Theroritical and practical               | Quiz                    |
| 5    | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Burners and Furnaces         | - Theroritical and practical             | Quiz                    |
| 6    | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Burners and Furnaces 2       | - Theroritical and practical             | Quiz                    |
| 7    | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Burners and Furnaces 3       | - Theroritical and practical             | Quiz                    |
| 8    | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Burners and Furnaces<br>4    | - Theroritical and practical             | Quiz                    |
| 9    | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Heating equipments-1         | Theroritical and practical               | Quiz                    |
| 10   | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Heating equipments-2         | Theroritical and practical               | Quiz                    |
| 11   | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Heating equipments-3         | Theroritical and practical               | Quiz                    |
| 12   | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Air pollution -1             | Theroritical and practical               | Quiz                    |
| 13   | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Air pollution -2             | Theroritical and practical               | Quiz                    |
| 14   | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Air pollution -3             | Theroritical and practical               | Quiz                    |
| 15   | 2 theoretical<br>2 practical                            | The student<br>understands the<br>lesson | Air pollution -4             | Theroritical and practical               | Quiz                    |
| -    | 12.Infrastructure                                       | 2                                        |                              |                                          |                         |
|      | Required reading<br>CORE TEXTS<br>COURSE MATEF<br>OTHER | -                                        | 0                            | A Textbook In<br>Combustion E<br>Rajput) | nternal<br>ngines (By R |

|                                                                                                     | -Fundamentals of Internal<br>Combustion Engines, 2006 (By<br>H.N. Gupta) |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Special requirements (include for example<br>workshops, periodicals, IT software,<br>Websites)      |                                                                          |
| Community –based facilities (include for<br>example, guest Lectures, internship, field,<br>studies) |                                                                          |

## 13. Admissions

Pre-requisites

Maximum number of students Maximum number of students

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                                   | Northern Technical University - Engineering<br>Technical College / Kirkuk                                            |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2- University Department<br>/centre                      | Mechanics Power Tech. Eng. Dep.                                                                                      |
| 3-Course title                                           | MPE 020                                                                                                              |
| 4-title of final Award                                   | Bachelor of Engineering Mechanics Power<br>Technologies                                                              |
| 5-Modes of Attendance offered                            | Simister (Weekly attendance )                                                                                        |
| 6-Accreditation                                          | Accreditation Board for Engineering and<br>Technology (ABET)                                                         |
| 7-Other external influences                              | <ol> <li>Training courses for students to<br/>develop students' professional skills</li> <li>Field visits</li> </ol> |
| 8- Data of production<br>/revision of this specification | 2024/09/01                                                                                                           |

9-Amis of the Course .1

• It aims to introduce students to the types of renewable energy resources (five types) by engaging in various activities to help them understand the transformation of energy (solar, water, and wind) into electricity.

• Students explore the different roles engineers who work in renewable energy fields have in creating a sustainable environment that contributes to excellent health, happiness, and safety

## 10 . Learning Outcomes ,Teaching ,Learning and Assessment Methode

#### A-Knowledge and Understanding

A- Describe sources and uses of energy.

A1. Define renewable and non-renewable energy.

A2. The most common types of renewable and non-renewable energy resources.

A3. Define and describe the solar energy source, solar time calculation (equation of time and longitude correction), and solar angles (declination, hour angle, solar elevation angle, solar azimuth angle, sunrise and sunset times, day length, incidence angle).

A4.Understand and explain the solar radiation in space, terrestrial radiation, and total radiation on horizontal and inclined surfaces.

A5. Understand and explain the solar Energy Collectors (concentrating and non-concentrating

#### B.Subject-specific skills

B1 A renewable energy sources means energy that is sustainable - something that can't run out, or is endless, like the sun. When you hear the term (alternative energy) it's usually referring to renewable energy sources too. It means sources of energy that are alternative to the most used non-sustainable sources - like coal.

B2. The most popular renewable energy sources currently are solar energy, wind energy, hydro energy, tidal energy, and geothermal energy.

B3. Solar radiation is light – also known as electromagnetic radiation – that is emitted by the sun. Solar energy is the cleanest and most abundant renewable energy source available. Solar technologies can harness this energy for a variety of uses, including generating electricity, providing light or a comfortable interior environment, and heating water for domestic, commercial, or industrial use.

#### **Teaching and Learning Methods**

- 1. Theoretical and practical lectures.
- 2. Pre and post questions.
- 3. Weekly tests.
- 4. Semester exams

#### C. Thinking Skills

C1 Work in a team spirit.

C2 He adheres to the ethics of the university institution.

C3 Receives and accepts knowledge.

C4 The student feels the responsibility placed on him

Teaching and Learning Methods

1- Theoretical lectures

2- Training students in the laboratory

Assessment Methods

1- Semester and final exams.

2- Brief exams (Quiz).

D. General and Transferable Skills (other skills relevant to employability and personal development)

D-1 Equipping students to operate in steam and gas power plants

D-2 Enhancing the learner's proficiency with internal combustion engines

D-3 The learner will gain proficiency in thermodynamic system analysis.

D–4. Understanding the true nature of gases and vapors in order to handle their practical applications

| week | Hours                        | ILOS                                     | Unit/modul or<br>topic title                                                                                                                                        | Teaching<br>method            | Assessment<br>Method |
|------|------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|
| 1    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | General introduction<br>to renewable energy -<br>renewable energy<br>sources and<br>applications -                                                                  | Theroritical<br>and practical | Quiz                 |
| 2    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | renewable energy and<br>environmental<br>problems (acid rain,<br>ozone layer depletion,<br>climate change,<br>nuclear risks).                                       | Theroritical and practical    | Quiz                 |
| 3    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Sun - solar radiation<br>in space, terrestrial<br>radiation                                                                                                         | Theroritical and practical    | Quiz                 |
| 4    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | total radiation on<br>horizontal and<br>inclined surfaces, and<br>direct beam and<br>diffuse solar radiation.                                                       | Theroritical<br>and practical | Quiz                 |
| 5    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Solar energy source,<br>solar time calculation<br>(equation of time and<br>longitude correction)                                                                    | Theroritical and practical    | Quiz                 |
| 6    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | and solar angles<br>(declination, hour<br>angle, solar elevation<br>angle, solar azimuth<br>angle, sunrise and<br>sunset times, day<br>length, incidence<br>angle). | Theroritical<br>and practical | Quiz                 |
| 7    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Solar energy<br>applications such as<br>solar water collectors<br>(non-concentrating<br>and concentrating                                                           | Theroritical and practical    | Quiz                 |
| 8    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Solar tracking<br>collectors (tubular<br>parabolic collectors,<br>Fresnel collectors,<br>trough parabolic<br>collectors, mirror<br>fields collectors).              | Theroritical<br>and practical | Quiz                 |
| 9    | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Flat plate solar water<br>collector calculations<br>(temperature<br>distribution between<br>tubes and the collector<br>efficiency factor.                           | Theroritical<br>and practical | Quiz                 |
| 10   | 3 theoretical<br>2 practical | The student<br>understands the<br>lesson | Solar water heating<br>systems – Passive<br>systems<br>(thermosiphon<br>system, and integrated<br>collector) and Active                                             | Theroritical and practical    | Quiz                 |

الصفحة 4

|                                   |                                                                      |                                          | systems (direct<br>circulation system<br>indirect water heat<br>systems, air system<br>heat pump system<br>and pool heating<br>systems). | ns,<br>ting<br>ms,<br>ns,                      |               |
|-----------------------------------|----------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|
| .1                                | 3 theoretical<br>2 practical                                         | The student<br>understands the<br>lesson | Heat storage syste<br>(air system therm<br>storage, liquid syst<br>thermal storage)                                                      | nalTheroriticaltemand practical                | Quiz          |
| 2                                 | 3 theoretical<br>2 practical                                         | The student<br>understands the<br>lesson | Module and arra<br>design of solar<br>collectors                                                                                         | Theroritical and practical                     | Quiz          |
| .3                                | 3 theoretical<br>2 practical                                         | The student<br>understands the<br>lesson | Photovoltaic (PV<br>system, the main<br>types of solar pane<br>and solar PV syste<br>design.                                             | n Theroritical                                 | Quiz          |
| .4                                | 3 theoretical<br>2 practical                                         | The student<br>understands the<br>lesson | Wind energy: How<br>calculate wind ene<br>and wind turbin<br>energy.                                                                     | ergy Theroritical<br>e and practical           | Quiz          |
| .5                                | 3 theoretical<br>2 practical                                         | The student<br>understands the<br>lesson | Hydropower, or<br>hydroelectric pow<br>the common form<br>for calculating<br>hydroelectric pow                                           | ver: Theroritical<br>ula and practical         | Quiz          |
| 1                                 | 2.Infrastructure                                                     |                                          |                                                                                                                                          |                                                |               |
| . (                               | Required reading<br>CORE TEXTS<br>COURSE MATEN<br>OTHER              | -                                        |                                                                                                                                          | Engineering th<br>Fundamentals<br>thermodynami | of engineerin |
| S                                 | pecial requirem                                                      | ents (include fo<br>odicals,IT softwa    |                                                                                                                                          |                                                |               |
|                                   |                                                                      |                                          |                                                                                                                                          |                                                |               |
| ,V<br>C<br>e:                     | ,                                                                    | ed facilities (inc<br>p,field,studies)   | elude for                                                                                                                                |                                                |               |
| ,V<br>C<br>E<br>L                 | ommunity –bas<br>xample ,guest                                       | -                                        | elude for                                                                                                                                |                                                |               |
| ,V<br>C<br>L<br>1                 | community –bas<br>xample ,guest<br>.ectures,intershi                 | -                                        | elude for                                                                                                                                |                                                |               |
| ,V<br>C<br>e:<br>L<br>1<br>P<br>M | Community –bas<br>xample ,guest<br>ectures,intershi<br>3. Admissions | er of students                           | elude for                                                                                                                                |                                                |               |

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution             |                                                                                                                        |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                    | Northern Technical University                                                                                          |
| 2- University Department /centre   | Technical College Eng. of Kirkuk                                                                                       |
| 5 1 7                              | Mechanics Power Tech. Eng. Dep                                                                                         |
| 3-Course title                     | Electrical and electronic machines                                                                                     |
| 4-title of final Award             | Bachelor's degree in power engineering                                                                                 |
| 5-Modes of Attendance offered      | Class lectures                                                                                                         |
| 6-Accreditation                    | The student must be qualified to work in the fields of                                                                 |
|                                    | refractories and be graduated from the department after                                                                |
|                                    | completing four years of study in which he is eligible to obtain<br>a Bachelor's degree in Power Mechanical Technology |
|                                    | Engineering                                                                                                            |
| 7-Other external influences        | The student will be able to maintain and repair cooling devices                                                        |
| 8- Data of production /revision    | 3/24/2024                                                                                                              |
| of this specification              |                                                                                                                        |
| 9-aims of the Course .1            |                                                                                                                        |
| Providing the student with a c     | comprehensive, thorough, and up-to-date                                                                                |
| treatment of engineering mathem    |                                                                                                                        |
|                                    | nic machines equations to get the unknown                                                                              |
| variables, using matrices          |                                                                                                                        |
| Giving an idea about limits and th | ere engineering applications                                                                                           |
|                                    |                                                                                                                        |
| 6                                  | ntroduction to Electrical and electronic                                                                               |
|                                    | with the methods of solving simultaneous                                                                               |
| equation                           |                                                                                                                        |
|                                    | uction to use the math in problem                                                                                      |

Methods learning outcomes teaching, Learning and Assessment

#### A-Knowledge and Understanding

. - Concept and applications of Mathematics I

- 1. To provide students with a foundation in basic mathematical concepts, this foundation is essential for further studies in advanced mathematics and its applications.
- 2. To develop a foundation in mathematical concepts, principles, and problem-solving techniques.
- 3. To enhance logical reasoning, critical thinking, and analytical skills.
- 4. To promote mathematical literacy and numeracy among students.
- 5. To develop students' ability to analyze problems and apply mathematical principles to solve complex problems in various contexts.

Mathematics is essential for developing numerical literacy, which involves understanding and working with numbers, data, measurements, and calculations

**Teaching and Learning Methods** 

Explanation on the board, showing educational videos, comparing examples . with what suits our daily lives

C. Thinking Skills

C1. able to interpret scientific facts

C2-Solving problems related to Electrical and electronic

C3- Urging students to work together by solving class assignments in groups C4- The student should be able to understand Electrical and electronic

.terms

Teaching and Learning Methods:

Explanation on the board, showing educational videos, comparing examples with what is consistent with our daily lives

Assessment Methods:

.Daily exams, monthly exams, homework, and in-class assignments

D. General and Transferable Skills (other skills relevant to employability and personal development)

Practical training: Practical exercises and assignments are an important .1 part of learning the connected Opportunities should be provided to .practice solving questions. Act wisely and reinforce concepts Tutorials: Small group science lessons can provide additional support .2 and guidance for hobbyists. We can offer these sessions on problem solving and debugging techniques. They provide an interactive audience to ask questions to personal assistance. Peer collaboration: Encouraging peer collaboration can be beneficial in Electrical and electronic Students can work together on projects, share knowledge and exchange ideas. Collaborative activities promote teamwork, communication, and deeper .understanding of Electrical and electronic concepts Assessments: Regular assessments, such as quizzes, quizzes, or .4 programming

| week | Hours | ILOS                                                               | Unit/modul or<br>topic title                                              | Teaching<br>method       | Assessmen<br>Method                         |
|------|-------|--------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|---------------------------------------------|
| 1    | 3     | DC To know the motors                                              | DC motors acquired,<br>installed and types                                | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 2    | 3     | To know the effect of forces                                       | Electromotive force equalization velocity                                 | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 3    | 3     | To know the control                                                | speed control                                                             | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 4    | 3     | To know the torque                                                 | DC motor torque                                                           | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 5    | 3     | What are the laws of<br>Torque and speed                           | Torque and speed                                                          | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 6    | 3     | What are the types of DC motors                                    | characteristics of all types of DC motors                                 | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 7    | 3     | What are the single<br>motors 1?                                   | single motors                                                             | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 8    | 3     | What are the three<br>?motors 1                                    | Three-phase starter                                                       | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 9    | 3     | Explain diode and zener<br>diode in forward bias<br>and back biase | Conventional diode<br>and zener diode in<br>forward bias and back<br>bias | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 10   | 3     | Connect two types                                                  | star and a triangle                                                       | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 11   | 3     | compare different type                                             | types of DC motors                                                        | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 12   | 3     | When we use transister                                             | transistor                                                                | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 13   | 3     | What is Electromotive force                                        | Electromotive force<br>equalization velocity                              | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 14   | 3     | How can speed control                                              | speed control                                                             | Theoretical presentation | Questions,<br>explanation and<br>discussion |
| 15   | 3     | Draw full wave uniform                                             | full wave uniform                                                         | Theoretical presentation | Questions,<br>explanation and<br>discussion |

#### 12.Infrastructure

Required reading: . CORE TEXTS

. COURSE MATERIALS

. OTHER

| Special requirements (include for example<br>workshops ,periodicals,IT software<br>,Websites)   | periodicals |
|-------------------------------------------------------------------------------------------------|-------------|
| Community –based facilities (include for<br>example ,guest<br>Lectures,intership,field,studies) |             |

## 13. Admissions

## Pre-requisites

Maximum number of students Maximum number of students

# **Course Description (Fourth Level)**

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course.

| 1-Teaching institution                           | Northern Technical University - Engineering Technical<br>College / Kirkuk                                             |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 2- University Department /centre                 | Mechanics Power Tech. Eng. Dep.                                                                                       |
| 3-Course title                                   | Engineering Projects Management                                                                                       |
| 4-Title of final Award                           | Bachelor of Engineering Mechanics Power Technologies                                                                  |
| 5-Modes of Attendance offered                    | Annual (Weekly attendance)                                                                                            |
| 6-Accreditation                                  | Accreditation Board for Engineering and Technology (ABET)                                                             |
| 7-Other external influences                      | <ol> <li>Training courses for students to develop students'<br/>professional skills.</li> <li>Field visits</li> </ol> |
| 8- Data of production /revision                  | 1 / 9 / 2023                                                                                                          |
| of this specification                            |                                                                                                                       |
| 9-Amis of the Course .1                          |                                                                                                                       |
|                                                  |                                                                                                                       |
| 1. To develop problem solving skills and unders  | standing of engineering projects management.                                                                          |
| 2. Understand the information about industrial p | projects and units' management for engineers.                                                                         |
| 3. Evaluate the optimum solutions using known    | methods in operations research.                                                                                       |
| 4. Acquainting the principle of statistic.       |                                                                                                                       |
|                                                  |                                                                                                                       |

10. Learning Outcomes , Teaching , Learning and Assessment Method

A-Knowledge and Understanding

A1. The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills.

A2. The module will be achieved through classes, interactive tutorials and by considering types of simple examples involving some sampling activities that are interesting to the students.

B. Subject-specific skills

B1. To develop problem solving skills and understanding of engineering projects management concepts.

B2. To understand principles of plant location and its selection.

B3. This course deals with the Work study, Feasibility study, operation research study and Introduction to maintenance and replacement and types.

Teaching and Learning Methods

1- Theoretical lectures.

2- Pre and post questions.

3- Weekly tests.

4- Formative assessments.

5- Semester exams.

#### C. Thinking Skills

C1. The student listens attentively to the teacher's explanation.

C2. To take care of the student calm and class order.

C3. To familiarize the student with the importance of engineering projects management.

C4. Implementation of mathematical exercises and problems.

Teaching and Learning Methods Lectures Home works Slides and examples Assessment Methods

Quizzes Assignments Reports Examines

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D2. Develop sound thinking methods and release potential energy.

| Week      | Hours                           | ILOS                                     | Unit/module<br>or topic title                                                   | Teaching<br>method | Assessment<br>Method |
|-----------|---------------------------------|------------------------------------------|---------------------------------------------------------------------------------|--------------------|----------------------|
| 1         | 2                               | The student<br>understands the<br>lesson | Introduction and<br>general definition of<br>engineering project<br>management. | Theoretical        | Weekly exam          |
| 2         | 2                               | The student<br>understands the<br>lesson | Plant Location definition and types.                                            | Theoretical        | Weekly exam          |
| 3         | 2                               | The student<br>understands the<br>lesson | Plant Location selection.                                                       | Theoretical        | Weekly exam          |
| 4         | 2                               | The student<br>understands the<br>lesson | Project Planning<br>(Plant Layout).                                             | Theoretical        | Weekly exam          |
| 5         | 2                               | The student<br>understands the<br>lesson | Project Planning<br>(Plant Layout).                                             | Theoretical        | Weekly exam          |
| 6         | 2                               | The student<br>understands the<br>lesson | Work Study.                                                                     | Theoretical        | Weekly exam          |
| 7         | 2                               | The student<br>understands the<br>lesson | Work Study.                                                                     | Theoretical        | Weekly exam          |
| 8         | 2                               | The student<br>understands the<br>lesson | Introduction to feasibility Study.                                              | Theoretical        | Weekly exam          |
| 9         | 2                               | The student<br>understands the<br>lesson | Feasibility Study<br>methods and<br>applications.                               | Theoretical        | Weekly exam          |
| 10        | 2                               | The student<br>understands the<br>lesson | Introduction to operation researches.                                           | Theoretical        | Weekly exam          |
| 11        | 2                               | The student<br>understands the<br>lesson | Operation researches<br>methods and<br>applications.                            | Theoretical        | Weekly exam          |
| 12        | 2                               | The student<br>understands the<br>lesson | Introduction and<br>definition of<br>maintenance and<br>replacement.            | Theoretical        | Weekly exam          |
| 13        | 2                               | The student<br>understands the<br>lesson | Maintenance and<br>replacement methods                                          | Theoretical        | Weekly exam          |
| 14        | 2                               | The student<br>understands the<br>lesson | Introduction to<br>material<br>Management.                                      | Theoretical        | Weekly exam          |
| 15        | 2                               | The student<br>understands the<br>lesson | Material management<br>importance and<br>methods.                               | Theoretical        | Weekly exam          |
| 12.Infras | tructure                        | -                                        |                                                                                 | -                  | -                    |
| . CORE T  | l reading:<br>EXTS<br>E MATERIA | LS                                       | FOR                                                                             |                    |                      |

| Handbook of Maintenance Management and    |  |
|-------------------------------------------|--|
| Engineering, Mohamed Ben-Daya • Salih O.  |  |
| Duffuaa Abdul Raouf • Jezdimir Knezevic • |  |
| Daoud Ait-Kadi Editors                    |  |
| "ESSENTIALS OF PROJECT AND SYSTEMS        |  |
| ENGINEERING MANAGEMENT " by               |  |
| HOWARD EISNER                             |  |
|                                           |  |

## 13. Admissions

Pre-requisites

Maximum number of students

50

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                       | Northern Technical University - Engineering<br>Technical College / Kirkuk |
|----------------------------------------------|---------------------------------------------------------------------------|
| 2- University Department<br>/centre          | Mechanics Power Tech. Eng. Dep.                                           |
| 3-Course title                               | English                                                                   |
| 4-title of final Award                       | Bachelor of Engineering Mechanics Power<br>Technologies                   |
| 5-Modes of Attendance offered                | Simister (Weekly attendance )                                             |
| 6-Accreditation                              | Accreditation Board for Engineering and Technology (ABET)                 |
| 7-Other external influences                  | Training courses for students to develop students' professional skills    |
| 8- Data of production                        | 2024/09/01                                                                |
| /revision of this specification              |                                                                           |
| 9-Amis of the Course .1                      |                                                                           |
| 8A- Introducing the student to the important |                                                                           |
| 8B- Introducing the student to types of voc  |                                                                           |
| 8C- Introducing the student the engineering  |                                                                           |
| 8D- Helping the students to use English hi   |                                                                           |
| 8E- Helping the students to use English to   |                                                                           |
|                                              |                                                                           |
|                                              |                                                                           |
|                                              |                                                                           |

10. Learning Outcomes, Teaching, Learning and Assessment Methode A-Knowledge and Understanding A-1 The student knows to use the right word and its synonym in the right place. A-2 The student learns to use English grammar. A-3 The student learns to use define all what it related to his/her specialization. B. Subject-specific skills B1 – Writing research paper in English. B2 – Learn to how to use English in seminars. B3 – Learn how to do seminars in English. **Teaching and Learning Methods** 1. Theoretical and practical lectures. 2. Data Show using. 3. Weekly tests. C. Thinking Skills C1 Work in a team spirit. C2 He adheres to the ethics of the university institution. C3 Receives and accepts knowledge. C4 The student feels the responsibility placed on him **Teaching and Learning Methods** Theoretical lectures Assessment Methods

- 1- Semester and final exams.
- 2- Brief exams (Quiz).

D. General and Transferable Skills (other skills relevant to employability and personal development)

- D-1 Developing the student's self-trust while speaking English.
- D-2 The students acquire skills and information in different types in Engineering vocabulary.

D-3 The student acquires the knowledge of practical sides of the subject.

D-4 The student acquires the knowledge of using different for the subject.

| week | Hours                                         | ILOS                                     | Unit/modul or<br>topic title                  | Teaching<br>method       | Assessment<br>Method |
|------|-----------------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------|----------------------|
| 1    | 1 theoretical                                 | The student<br>understands the<br>lesson | Introduction to the subject                   | Theoretical              | Quiz                 |
| 2    | 1 theoretical                                 | The student<br>understands the<br>lesson | General Grammer-1                             | Theoretical              | Quiz                 |
| 3    | 1 theoretical                                 | The student<br>understands the<br>lesson | General Grammer-2                             | Theoretical              | Quiz                 |
| 4    | 1 theoretical                                 | The student<br>understands the<br>lesson | Features of Academic<br>English.              | Theoretical              | Quiz                 |
| 5    | 1 theoretical                                 | The student<br>understands the<br>lesson | Mathematical<br>Concepts and<br>Operations -1 | Theoretical              | Quiz                 |
| 6    | 1 theoretical                                 | The student<br>understands the<br>lesson | Mathematical<br>Concepts and<br>Operations -2 | Theoretical              | Quiz                 |
| 7    | 1 theoretical                                 | The student<br>understands the<br>lesson | Material Technology                           | Theoretical              | Quiz                 |
| 8    | 1 theoretical                                 | The student<br>understands the<br>lesson | Technology in use                             | Theoretical              | Quiz                 |
| 9    | 1 theoretical                                 | The student<br>understands the<br>lesson | Shapes Features                               | Theoretical              | Quiz                 |
| 10   | 1 theoretical                                 | The student<br>understands the<br>lesson | Manufacturing,<br>Joining and Fixing          | Theoretical              | Quiz                 |
| 11   | 1 theoretical                                 | The student<br>understands the<br>lesson | Design                                        | Theoretical              | Quiz                 |
| 12   | 1 theoretical                                 | The student<br>understands the<br>lesson | Bridges                                       | Theoretical              | Quiz                 |
| 13   | 1 theoretical                                 | The student<br>understands the<br>lesson | Technical Problems                            | Theoretical              | Quiz                 |
| 14   | 1 theoretical                                 | The student<br>understands the<br>lesson | Writing Research<br>Papers-1                  | Theoretical              | Quiz                 |
| 15   | 1 theoretical                                 | The student<br>understands the<br>lesson | Writing Research<br>Papers-2                  | Theoretical              | Quiz                 |
| 12   | 2.Infrastructure                              |                                          |                                               |                          | <u> </u>             |
|      |                                               |                                          |                                               |                          | - 1.                 |
| . 0  | equired reading<br>CORE TEXTS<br>COURSE MATEF | -                                        |                                               | eadway Upp<br>th Edition | oer Intermedia       |

| . OTHER                                   | Cambridge English for |
|-------------------------------------------|-----------------------|
|                                           | Engineering - Book    |
| Special requirements (include for example |                       |
| workshops ,periodicals,IT software        |                       |
| ,Websites)                                |                       |
| Community –based facilities (include for  |                       |
| example ,guest                            |                       |
| Lectures, intership, field, studies)      |                       |
|                                           |                       |
|                                           |                       |

# 13. Admissions

1- Encourage students to do seminars in English.

2- Encouraging the student to write articles in English.

Maximum number of students Maximum number of students

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                                | Northern Technical University - Engineering Technical<br>College / Kirkuk                 |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 2- University Department /centre                      | Mechanics Power Tech. Eng. Dep.                                                           |
| 3-Course title                                        | Turbomachine                                                                              |
| 4-title of final Award                                | Bachelor of Engineering Mechanics Power Technologies                                      |
| 5-Modes of Attendance offered                         | Annual (Weekly attendance)                                                                |
| 6-Accreditation                                       | Accreditation Board for Engineering and Technology (ABET)                                 |
| 7-Other external influences                           | 1. Training courses for students to develop students' professional skills 2. Field visits |
| 8- Data of production /revision of this specification | 25 / 3 / 2024                                                                             |
| 0 Amia of the Course 1                                |                                                                                           |

9-Amis of the Course .1

The program aims to graduate students with a specialty in power mechanical technology engineering who are qualified to work in the fields of mechanics. He will be graduated by the department after completing four years of study in which he will be eligible to obtain a bachelor's degree in power mechanical technology engineering.

10 . Learning Outcomes ,Teaching ,Learning and Assessment Methode

A-Knowledge and Understanding

.Understand the mechanism of fluid circulation

.Study the similarity of turbomachinery .2

Provide knowledge of basic principles, governing equations and .3 .applications of turbomachinery

Provide students with opportunities to apply basic thermofluid .4 dynamics flow equations to turbomachinery

B. Subject-specific skills

B1. To develop problem solving skills and understanding of power plant systems the application of techniques.

B2. To understand feed water, reheated and regenerator.

B3. This course deals with the basic concept of power plant.

Teaching and Learning Methods

- 1- Theoretical and practical lectures.
- 2- Pre and post questions.
- 3- Weekly tests.
- 4- Semester exams.

## C. Thinking Skills

- C1. The student listens attentively to the teacher's explanation.
- C2. To take care of the student calm and class order.
- C3. To familiarize the student with the importance of turbomachine system.
- C4. Describe the importance of installing mechanical parts

Teaching and Learning Methods Lectures Home works Slides and examples

Assessment Methods

Exam and weekly quiz

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D2. Develop sound thinking methods and release potential energy

| Week | Hours | ILOS                                     | Unit/modul or<br>topic title                                                                                                    | Teaching<br>method              | Assessment<br>Method |
|------|-------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 1    | 4     | The student<br>understands the<br>lesson | Introduction                                                                                                                    | Theoretical<br>and<br>practical | Weekly exams         |
| 2    | 4     | The student<br>understands the<br>lesson | The momentum<br>equation and its<br>applications:<br>momentum and<br>dynamic force,<br>applications of the<br>momentum equation | Theoretical<br>and<br>practical | Weekly exam          |
| 3    | 4     | The student<br>understands the<br>lesson | Tutorial and solve<br>problems                                                                                                  | Theoretical<br>and<br>practical | Weekly exam          |
| 4    | 4     | The student<br>understands the<br>lesson | velocity diagram,<br>Bernoulli's law of<br>relative motion.                                                                     | Theoretical<br>and<br>practical | Weekly exam          |
| 5    | 4     | The student<br>understands the<br>lesson | Hydraulic<br>machines:<br>introduction,<br>hydraulic turbines,<br>pumps, hydraulic<br>power plants,                             | Theoretical<br>and<br>practical | Weekly exam          |
| 6    | 4     | The student<br>understands the<br>lesson | Hydraulic<br>machines:<br>introduction,<br>hydraulic turbines,<br>pumps, hydraulic<br>power plants,                             | Theoretical<br>and<br>practical | Weekly exam          |
| 7    | 4     | The student<br>understands the<br>lesson | Hydraulic<br>machines:<br>introduction,<br>hydraulic turbines,<br>pumps, hydraulic<br>power plants,                             | Theoretical<br>and<br>practical | Weekly exam          |
| 8    | 4     | The student<br>understands the<br>lesson | • Impulse turbines                                                                                                              | Theoretical<br>and<br>practical | Weekly exam          |
| 9    | 4     | The student<br>understands the<br>lesson | : Turbine parts,<br>Pelton turbine theory,<br>speed regulation<br>mechanics, drag and<br>propulsion system.                     | Theoretical<br>and<br>practical | Weekly exam          |
| 10   | 4     | The student<br>understands the<br>lesson | Impulse turbines                                                                                                                | Theoretical<br>and<br>practical | Weekly exam          |
| 11   | 4     | The student<br>understands the<br>lesson | Tutorial and solve problems                                                                                                     | Theoretical                     | Weekly exam          |

| nctical             | pr                 |                                              |                                |   |    |
|---------------------|--------------------|----------------------------------------------|--------------------------------|---|----|
| retical Weekly exam | <sup>on</sup> Theo | Turbo reaction                               | The student                    | 4 | 12 |
| and                 |                    |                                              | understands the lesson         |   |    |
| nctical             | pr                 |                                              | 1035011                        |   |    |
| retical Weekly exam |                    | Types, construction                          | The student                    | 4 | 13 |
| and                 | of                 | of turbines, theory of                       | understands the                | - | 10 |
| actical             |                    | return turbines,<br>necessary, flow rate     | lesson                         |   |    |
|                     |                    | through the turbine,                         |                                |   |    |
|                     |                    | high rate of rise,                           |                                |   |    |
|                     |                    | dryness, net, working characteristics, power |                                |   |    |
|                     |                    | regulator mechanics,                         |                                |   |    |
|                     |                    | push and pull systems                        |                                |   |    |
| retical Weekly exam | <sup>on</sup> Theo | Turbo reaction                               | The student understands the    | 4 | 14 |
| and                 |                    |                                              | lesson                         |   |    |
| octical             | pra                |                                              |                                |   |    |
| retical Weekly exam |                    | Pumps: centrifugal                           | The student                    | 4 | 15 |
| and                 |                    | pumps and their classification, theory       | understands the lesson         |   |    |
| actical             |                    | of centrifugal pumps,                        | 1655011                        |   |    |
|                     | ty P-              | power and capacity                           |                                |   |    |
|                     |                    | analysis, efficiency.                        |                                |   |    |
|                     |                    | Pump selection and performance curv          |                                |   |    |
| retical Weekly exam |                    | Pumps: centrifugal                           | The student                    | 4 | 16 |
| and                 | r                  | pumps and their                              | understands the                | - | 20 |
| actical             |                    | classification, theory of centrifugal pumps, | lesson                         |   |    |
|                     |                    | power and capacity                           |                                |   |    |
|                     |                    | analysis, efficiency.                        |                                |   |    |
|                     |                    | Pump selection and performance curv          |                                |   |    |
| retical Weekly exam |                    | Pumps: centrifugal                           | The student                    | 4 | 17 |
| and                 | eir                | pumps and their                              | understands the                | - |    |
| actical             |                    | classification, theory of centrifugal pumps, | lesson                         |   |    |
|                     | ty pro             | power and capacity                           |                                |   |    |
|                     |                    | analysis, efficiency.                        |                                |   |    |
|                     |                    | Pump selection and performance curv          |                                |   |    |
| retical Weekly exam |                    | Tutorial and solve                           | The student                    | 4 | 18 |
| and                 | 11100              | problems                                     | understands the                | - | 10 |
| actical             | nr                 |                                              | lesson                         |   |    |
| retical Weekly exam | · ·                | gas power plant                              | The student                    | 4 | 19 |
| i cucui             | Theo               | description                                  | understands the                | 4 | 19 |
| and                 |                    |                                              | lesson                         |   |    |
| actical Weakly arom |                    | In an a sin                                  | The student                    |   |    |
| retical Weekly exam | Theo               | Increasing efficiency<br>of power plant      | The student<br>understands the | 4 | 20 |
| and                 |                    | r Prunt                                      | lesson                         |   |    |
| nctical             | pra                |                                              |                                |   |    |
| retical Weekly exam | Theo               | Tutorial and solve                           | The student                    | 4 | 21 |
| and                 |                    | problems                                     | understands the lesson         |   |    |
| nctical             | pr                 |                                              |                                |   |    |

| 22                                 | 4                  | The student<br>understands the | Tutorial and problems          | solve                            | Theoretical              | Weekly exams |
|------------------------------------|--------------------|--------------------------------|--------------------------------|----------------------------------|--------------------------|--------------|
|                                    |                    | lesson                         | problems                       |                                  | and                      |              |
|                                    |                    |                                |                                |                                  | practical                |              |
| 23                                 | 4                  | The student<br>understands the | • Turbo pum                    | р.                               | Theoretical              | Weekly exame |
|                                    |                    | lesson                         |                                |                                  | and                      |              |
|                                    |                    |                                |                                |                                  | practical                |              |
| 24                                 | 4                  | The student                    | • Turbo pum                    | р.                               | Theoretical              | Weekly exam  |
|                                    |                    | understands the lesson         |                                |                                  | and                      |              |
|                                    |                    |                                |                                |                                  | practical                |              |
| 25                                 | 4                  | The student                    | Tutorial and                   | solve                            | Theoretical              | Weekly exam  |
|                                    |                    | understands the lesson         | problems                       |                                  | and                      |              |
|                                    |                    |                                |                                |                                  | practical                |              |
| 26                                 | 4                  | The student                    | Hydraulic sy                   |                                  | Theoretical              | Weekly exam  |
|                                    |                    | understands the lesson         | types, constr<br>the hydraulic |                                  | and                      |              |
|                                    |                    |                                | pros and con                   | s of the                         | practical                |              |
| 27                                 | 4                  | The student                    | hydraulic sys<br>Hydraulic     |                                  | Theoretical              | Weekly exam  |
| 27                                 | 4                  | understands the                | types, constr                  | ruction of                       |                          |              |
|                                    |                    | lesson                         | the hydrauli<br>pros and co    |                                  | and                      |              |
|                                    |                    |                                | -                              | ic system                        | practical                |              |
| 28                                 | 4                  | The student                    | he Hydraulic systems:          | -                                | Theoretical              | Weekly exam  |
|                                    |                    | understands the lesson         | types, consti<br>the hydrauli  |                                  | and                      |              |
|                                    | pros and cons of t | ons of the                     | practical                      |                                  |                          |              |
| 29                                 | 4                  | The student                    | hydraul<br>Tutorial and        | ic system<br>solve               | Theoretical              | Weekly exam  |
| 29                                 | 4                  | understands the problems       |                                | 50170                            | -                        | Weeking exam |
|                                    |                    | lesson                         |                                |                                  | and                      |              |
| 30                                 | 4                  | The student                    | Tutorial and                   | solve                            | practical<br>Theoretical | Weekly exam  |
| 50                                 | 4                  | understands the                | problems                       | 501.0                            | _                        |              |
|                                    | lesson             |                                |                                |                                  | and<br>practical         |              |
|                                    |                    |                                |                                |                                  | 1                        | rastructure  |
|                                    |                    |                                |                                |                                  | 12.1111                  | astructure   |
| Required reading:                  |                    |                                |                                |                                  | Seminar sess             | ion          |
| . CORE TEXTS                       |                    |                                |                                |                                  |                          |              |
| . COURSE MA                        | TERIAL             | 'S                             |                                |                                  |                          |              |
| . OTHER                            |                    |                                |                                |                                  |                          |              |
| • •                                |                    | s (include for e               | •                              | Standar                          | d handhook of nor        | vornlant     |
| workshops ,periodicals,IT software |                    |                                | enginee                        | <u>d handbook of pov</u><br>ring | weipialli                |              |
| ,Websites)                         |                    |                                |                                |                                  | <u></u>                  |              |
| Community -                        | -based f           | acilities (inclue              | de for                         |                                  |                          |              |
|                                    |                    |                                |                                | https://a                        | rchive org/details/stan  | dardhandhook |

example ,guest Lectures,intership,field,studies)

13. Admissions

https://archive.org/details/standardhandbook

0000unse t0h8/page/n3/mode/2up

Pre-requisites

Maximum number of students Maximum number of students

# HIGHER EDUCATION PERFORMANCE REVIEW: COURSE REVIEW

This program specification provides a concise summary of the main features of the program and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the program.

| 1. Teaching Institution                     | Northern Technical University - Engineering                                                  |  |  |  |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
|                                             | Technical College / Kirkuk                                                                   |  |  |  |  |
| 2. University                               | Mechanics Power Tech. Eng. Dep.                                                              |  |  |  |  |
| Department/Centre                           |                                                                                              |  |  |  |  |
| 3. Courser Title                            | Computer Application                                                                         |  |  |  |  |
| 4. Title of Final Award                     | Bachelor of Engineering Mechanics Power                                                      |  |  |  |  |
|                                             | Technologies                                                                                 |  |  |  |  |
| 5. Modes of Attendance                      | Annual (Weekly attendance)                                                                   |  |  |  |  |
| offered                                     |                                                                                              |  |  |  |  |
| 6. Accreditation                            | Accreditation Board for Engineering and                                                      |  |  |  |  |
|                                             | Technology (ABET)                                                                            |  |  |  |  |
| 7. Other external                           | 1. Training courses for students to develop                                                  |  |  |  |  |
| influences                                  | students' professional skills                                                                |  |  |  |  |
|                                             | 2. Field visits                                                                              |  |  |  |  |
| 8. Date of                                  | 1/9/2023                                                                                     |  |  |  |  |
| production/revision of                      |                                                                                              |  |  |  |  |
| this specification                          |                                                                                              |  |  |  |  |
|                                             |                                                                                              |  |  |  |  |
| 9. Aims of the Program                      |                                                                                              |  |  |  |  |
| 1- Introducing the stude                    | <ol> <li>Introducing the student to the importance of engineering drawing and its</li> </ol> |  |  |  |  |
| relationship to other engineering subjects. |                                                                                              |  |  |  |  |
|                                             |                                                                                              |  |  |  |  |

| <ul> <li>2- Develop the student's mental abilities in drawing simple and complex shapes.</li> <li>3- Expanding the horizons of the student's imagination of geometric shapes and identifying their components, parts, mechanics and their working principle</li> <li>10.Learning Outcomes, Teaching, Learning and Assessment Methods</li> </ul> |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 3- Expanding the horizons of the student's imagination of geometric shapes<br>and identifying their components, parts, mechanics and their working<br>principle                                                                                                                                                                                 |  |  |  |  |  |
| and identifying their components, parts, mechanics and their working principle                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| principle                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| principle                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 10.Learning Outcomes, Teaching, Learning and Assessment Methods                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 10.Learning Outcomes, Teaching, Learning and Assessment Methods                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| A. Knowledge and Understanding                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| <ul><li>A1. To familiarize the student with the importance of engineering drawing</li><li>A2. To teach the student how to imagine geometric shapes</li></ul>                                                                                                                                                                                    |  |  |  |  |  |
| A3. To distinguish the mechanical components and parts and their working principle                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| B. Subject-specific skills                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| B1. To develop the student's mental ability to draw simple and complex shapes                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| B2. The student learns how to develop a strategy and sequence for drawing and assembling and                                                                                                                                                                                                                                                    |  |  |  |  |  |
| deconstructing geometric shapes<br>B3. The student learns to draw geometrical projections and set geometric dimensions                                                                                                                                                                                                                          |  |  |  |  |  |
| Teaching and Learning Methods                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 1- Theoretical and practical lectures.                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 2- Pre and post questions.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 3- Weekly tests.                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 4- Semester exams.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 5- Using the computer in engineering drawing.                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Assessment methods                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 1- Discussion and dialogue with students.                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 2- Attendance.                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 3- Oral + written + practical exams.                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 4- Using the computer in drawing engineering drawings.                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| C. Thinking Skills                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| C1. The student listens attentively to the teacher's explanation.                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| C2. To take care of the student calm and class order.                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| C3. To familiarize the student with the importance of engineering drawing and                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| its relationship with other engineering subjects                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| C4. Describe the importance of installing mechanical parts                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Using AutoCAD to draw complex shapes in various fields of work.

D2. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D3. Develop sound thinking methods and release potential energy

| week  | Hours           | ILOS        | Unit/module or             | Teaching      | Assessmen   |
|-------|-----------------|-------------|----------------------------|---------------|-------------|
|       |                 |             | topic title                | method        | Method      |
| 1     | (3 hours)       | The student | Workspaces                 | theoretical + | Weekly exam |
|       | 1 theoretical + | understands | • Visual Styles.           | practical     | _           |
|       | 2 practical     | the lesson  | • 3D View.                 |               |             |
|       |                 |             | • Viewport                 |               |             |
| 2-3   | (3 hours)       | The student | coordinate system          | theoretical + | Weekly exam |
|       | 1 theoretical + | understands | • The world                | practical     |             |
|       | 2 practical     | the lesson  | coordinate                 |               |             |
|       |                 |             | system                     |               |             |
|       |                 |             | (WCS) and                  |               |             |
|       |                 |             | The User                   |               |             |
|       |                 |             | Coordinate                 |               |             |
|       |                 |             | System                     |               |             |
|       |                 |             | (UCS).                     |               |             |
|       |                 |             | • Enter 3D<br>Coordinates. |               |             |
|       |                 |             |                            |               |             |
|       |                 |             | • Apply the Right-Hand     |               |             |
|       |                 |             | Rule.                      |               |             |
|       |                 |             | Absolute &                 |               |             |
|       |                 |             | Relative Coordinate        |               |             |
| 4-9   | (3 hours)       | The student | 3D Solid Primitive         | theoretical + | Weekly exam |
|       | 1 theoretical + | understands | • Box.                     | practical     | 5           |
|       | 2 practical     | the lesson  | • Wedge.                   | •             |             |
|       | -               |             | • Cylinder.                |               |             |
|       |                 |             | • Cone.                    |               |             |
|       |                 |             | • Sphere.                  |               |             |
|       |                 |             | • Pyramid.                 |               |             |
|       |                 |             | • Torus.                   |               |             |
| 10-15 | (3 hours)       | The student | UCS User                   | theoretical + | Weekly exam |
| 10 15 | 1 theoretical + | understands | Coordinate                 | practical     |             |
|       | 2 practical     | the lesson  | System                     |               |             |
|       | •               |             | • Object                   |               |             |
|       |                 |             | • Face                     |               |             |
|       |                 |             | • Origin                   |               |             |
|       |                 |             | • View                     |               |             |
|       |                 |             | • World                    |               |             |
|       |                 |             | • X, Y, Z                  |               |             |
|       |                 |             | • Z Axis                   |               |             |
|       |                 |             | • 3-point                  |               |             |
| 16-18 | (3 hours)       | The student | Advanced 3D                | theoretical + | Weekly exam |
| 10 10 | 1 theoretical + | understands | Commands                   | practical     |             |
|       | 2 practical     | the lesson  | • Extrude.                 | 1             |             |
|       |                 |             |                            |               |             |

الصفحة 4

|       |                 |                           | • Revolve .                                        |               |              |
|-------|-----------------|---------------------------|----------------------------------------------------|---------------|--------------|
|       |                 |                           | • Sweep.                                           |               |              |
|       |                 |                           | Press/Pull.     Section plane                      |               |              |
| 19-20 | (3 hours)       | The student               | Section plane.     Basic Solid                     | theoretical + | Weekly exams |
| 19-20 | 1 theoretical + | understands               | Editing                                            | practical     |              |
|       | 2 practical     | the lesson                | • Union.                                           | practical     |              |
|       | X               |                           | • Subtraction.                                     |               |              |
|       |                 |                           | <ul> <li>Intersection</li> </ul>                   |               |              |
|       |                 |                           | • Fillets .                                        |               |              |
|       | _               |                           | • Chamfer.                                         |               |              |
| 21-23 | (3 hours)       | The student               | <b>3D Operations •</b> 3D                          | theoretical + | Weekly exams |
|       | 1 theoretical + | understands<br>the lesson | Move.                                              | practical     |              |
|       | 2 practical     | the lesson                | • 3D Rotate.                                       |               |              |
|       |                 |                           | <ul><li> 3-3D Align.</li><li> 3D Mirror.</li></ul> |               |              |
|       |                 |                           | • 3D Millor.<br>• 3D Array.                        |               |              |
|       |                 |                           | • Slice.                                           |               |              |
| 24-28 | (3 hours)       | The student               | Advanced Solid                                     | theoretical + | Weekly exams |
|       | 1 theoretical + | understands               | Editing                                            | practical     | j j          |
|       | 2 practical     | the lesson                | Face                                               | _             |              |
|       |                 |                           | • Extrude                                          |               |              |
|       |                 |                           | • Move                                             |               |              |
|       |                 |                           | • Rotate                                           |               |              |
|       |                 |                           | • Offset                                           |               |              |
|       |                 |                           | <ul><li>Taper</li><li>Delete</li></ul>             |               |              |
|       |                 |                           | • Copy                                             |               |              |
|       |                 |                           | • Color                                            |               |              |
|       |                 |                           | Edge                                               |               |              |
|       |                 |                           | • Copy                                             |               |              |
|       |                 |                           | • Color                                            |               |              |
|       |                 |                           | Body                                               |               |              |
|       |                 |                           | • Imprint                                          |               |              |
|       |                 |                           | • Separate Solids                                  |               |              |
|       |                 |                           | • Shell                                            |               |              |
| 29-30 | (3 hours)       | The student               | Surfaces                                           | theoretical + | Weekly exams |
|       | 1 theoretical + | understands               | • Box.                                             | practical     |              |
|       | 2 practical     | the lesson                | • Cone.                                            |               |              |
|       |                 |                           | • Dish.                                            |               |              |
|       |                 |                           | • Dome.                                            |               |              |
|       |                 |                           | • Mesh<br>Pyramid.                                 |               |              |
|       |                 |                           | • Sphere.                                          |               |              |
|       |                 |                           | • Torus.                                           |               |              |
|       |                 |                           | • Wedge                                            |               |              |

الصفحة 5

| 12.Infrastructure                                                                            |                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required reading:<br>. CORE TEXTS<br>. COURSE MATERIALS<br>. OTHER                           | 1-Computer lab equipped with<br>modern display equipment<br>2-Computer lab equipped with<br>modern computers necessary for<br>practical application.                                                                                                                          |
| Special requirements (include for example<br>workshops ,periodicals,IT software ,Websites)   | 1-Steve Heather - AutoCAD 3D<br>Modeling _ Exercise Workbook-<br>Industrial Press, Inc (2017).<br>2- Terence M. Shumaker ,David<br>A. Madsen ,AutoCAD and its<br>applications advanced, AutoCAD<br>, 2001<br>3-Bernd S. Palm and Alf Yarwood<br>,Introduction to AutoCAD 2016 |
| Community –based facilities (include for<br>example ,guest Lectures,intership,field,studies) | Basic Mechanical Drawing<br>website tutorials                                                                                                                                                                                                                                 |

| 13. Admissions             |
|----------------------------|
| Pre-requisites             |
| Maximum number of students |
| 50                         |

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                                | Northern Technical University - Engineering Technical<br>College / Kirkuk                 |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 2- University Department /centre                      | Mechanics Power Tech. Eng. Dep.                                                           |
| 3-Course title                                        | Store and recover energy                                                                  |
| 4-title of final Award                                | Bachelor of Engineering Mechanics Power Technologies                                      |
| 5-Modes of Attendance offered                         | Annual (Weekly attendance)                                                                |
| 6-Accreditation                                       | Accreditation Board for Engineering and Technology (ABET)                                 |
| 7-Other external influences                           | 1. Training courses for students to develop students' professional skills 2. Field visits |
| 8- Data of production /revision of this specification | 25 / 3 / 2024                                                                             |
| 0 Amia of the Course 1                                |                                                                                           |

9-Amis of the Course .1

The program aims to graduate students with a specialty in power mechanical engineering technology who will be qualified to work in the fields of mechanical engineering and renewable energy. He will be graduated by the department after completing four years of study in which he will be eligible to obtain a bachelor's degree in power mechanical engineering technology

10 . Learning Outcomes , Teaching , Learning and Assessment Methode

A-Knowledge and Understanding

-1- Energy storage systems have tremendous potential to facilitate the more efficient use of thermal equipment and large-scale economic energy alternatives.

-2Energy storage allows electricity to be available for a later time and wherever it is needed most

-3Energy storage can reduce operating costs related to grid capacity

B. Subject-specific skills

B1. To develop problem solving skills and understanding of power plant systems the application of techniques.

B2. To understand feed water, reheated and regenerator.

B3. This course deals with the basic concept of power plant.

Teaching and Learning Methods

- 1- Theoretical and practical lectures.
- 2- Pre and post questions.
- 3- Weekly tests.
- 4- Semester exams.

## C. Thinking Skills

- C1. The student listens attentively to the teacher's explanation.
- C2. To take care of the student calm and class order.
- C3. To familiarize the student with the importance of power plant system.
- C4. Describe the importance of installing mechanical parts

Teaching and Learning Methods Lectures Home works Slides and examples

Assessment Methods

Exam and weekly quiz

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D2. Develop sound thinking methods and release potential energy

| Week | Hours | ILOS                                      | Unit/modul or<br>topic title                | Teaching<br>method              | Assessment<br>Method |
|------|-------|-------------------------------------------|---------------------------------------------|---------------------------------|----------------------|
| 1    | 4     | The student<br>understands the<br>lesson  | Introduction                                | Theoretical<br>and<br>practical | Weekly exam          |
| 2    | 4     | The student<br>understands the<br>lesson  | Fundamental<br>Properties and<br>Quantities | Theoretical<br>and<br>practical | Weekly exam          |
| 3    | 4     | The student<br>understands the<br>lesson  | Mechanical Energy<br>Storage                | Theoretical<br>and<br>practical | Weekly exan          |
| 4    | 4     | The student<br>understands the<br>lesson  | Chemical Energy<br>Storage                  | Theoretical<br>and<br>practical | Weekly exan          |
| 5    | 4     | The student<br>understands the<br>lesson  | Increasing efficiency<br>of power plant     | Theoretical<br>and<br>practical | Weekly exan          |
| 6    | 4     | The student<br>understands the<br>lesson  | Tutorial and solve<br>problems              | Theoretical<br>and<br>practical | Weekly exan          |
| 7    | 4     | The student<br>understands the<br>lesson  | Biological Storage,<br>Magnetic Storage     | Theoretical<br>and<br>practical | Weekly exan          |
| 8    | 4     | The student<br>understands the<br>lesson  | Tutorial and solve<br>problems              | Theoretical<br>and<br>practical | Weekly exan          |
| 9    | 4     | The student<br>understands the<br>lesson  | Tutorial and solve<br>problems              | Theoretical<br>and<br>practical | Weekly exan          |
| 10   | 4     | The student<br>understands the<br>lesson  | Feed water heater                           | Theoretical<br>and<br>practical | Weekly exan          |
| 11   | 4     | 4 The student Tutorial and solve problems |                                             | Theoretical<br>and<br>practical | Weekly exan          |
| 12   | 4     | The student<br>understands the<br>lesson  | Hydrogen for Energy<br>Storage              | Theoretical<br>and<br>practical | Weekly exan          |
| 13   | 4     | The student<br>understands the<br>lesson  | Thermal energy storage method               | Theoretical<br>and              | Weekly exam          |

|    |   |                                |                                             | practical                |                                               |
|----|---|--------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------|
| 14 | 4 | The student                    | Criteria for Thermal                        | Theoretical              | Weekly exams                                  |
|    |   | understands the lesson         | energy storage                              | and                      |                                               |
|    |   |                                | Evaluation                                  | practical                |                                               |
| 15 | 4 | The student                    | Tutorial and solve                          | Theoretical              | Weekly exams                                  |
|    |   | understands the lesson         | problems                                    | and                      |                                               |
|    |   |                                |                                             | practical                |                                               |
| 16 | 4 | The student                    | Thermal energy                              | Theoretical              | Weekly exams                                  |
|    |   | understands the lesson         | storage Heating and                         | and                      |                                               |
|    |   |                                | Cooling Applications                        | practical                |                                               |
| 17 | 4 | The student                    | Thermal energy                              | Theoretical              | Weekly exams                                  |
|    |   | understands the lesson         | storage Heating and<br>Cooling Applications | and                      |                                               |
|    |   |                                | Cooling Applications                        | practical                |                                               |
| 18 | 4 | The student<br>understands the | Thermal energy                              | Theoretical              | Weekly exams                                  |
|    |   | lesson                         | storage Heating and<br>Cooling Applications | and                      |                                               |
|    |   |                                |                                             | practical                |                                               |
| 19 | 4 | The student<br>understands the | Types and Features<br>of Various Stratified | Theoretical              | Weekly exams                                  |
|    |   | lesson                         | Thermal energy                              | and                      |                                               |
|    |   |                                | storage Tanks                               | practical                |                                               |
| 20 | 4 | The student understands the    | Phase Change<br>Materials (PCMs)            | Theoretical              | Weekly exams                                  |
|    |   | lesson                         | Wateriais (1 CIVIS)                         | and                      |                                               |
|    |   |                                |                                             | practical                |                                               |
| 21 | 4 | The student<br>understands the | Cold Thermal Energy<br>Storage              | Theoretical              | Weekly exams                                  |
|    |   | lesson                         | Storage                                     | and                      |                                               |
|    |   |                                |                                             | practical                |                                               |
| 22 | 4 | The student<br>understands the | Environmental<br>Impact and Thermal         | Theoretical              | Weekly exams                                  |
|    |   | lesson                         | energy storage                              | and                      |                                               |
|    |   |                                | Systems and                                 | practical                |                                               |
| 23 | 4 | The student                    | Applications<br>Thermal energy              | Theoretical              | Weekly exams                                  |
| 23 | 4 | understands the                | storage and Energy                          | Theoretical<br>and       | conf chums                                    |
|    |   | lesson                         | Savings                                     |                          |                                               |
| 24 | 4 | The student                    | Energy Savings by                           | practical<br>Theoretical | Weekly exams                                  |
| 24 | 4 | understands the                | Cold TES                                    | and                      | , , , , , , , , , , , , , , , , , , ,         |
|    |   | lesson                         |                                             |                          |                                               |
| 25 | 4 | The student                    | Tutorial and solve                          | practical<br>Theoretical | Weekly exams                                  |
| 23 | ч | understands the                | problems                                    | and                      | , <u>, , , , , , , , , , , , , , , , , , </u> |
|    |   | lesson                         |                                             | practical                |                                               |
| 26 | 4 | The student                    | WASTE energy                                | Theoretical              | Weekly exams                                  |
| 20 | т | understands the                | RECOVERY                                    | and                      | -                                             |
|    |   | lesson                         |                                             | practical                |                                               |
| 27 | 4 | The student                    | Tutorial and solve                          | Theoretical              | Weekly exams                                  |
|    | т | understands the                | problems                                    | and                      | 2                                             |
|    |   | lesson                         |                                             | anu                      |                                               |

|    |                                               |                        |                             | practical   |              |
|----|-----------------------------------------------|------------------------|-----------------------------|-------------|--------------|
| 28 | 4                                             | The student            | Energy & exergy             | Theoretical | Weekly exams |
|    |                                               | understands the lesson | analysis                    | and         |              |
|    |                                               |                        |                             | practical   |              |
| 29 | 29 4 The student<br>understands the<br>lesson |                        | Tutorial and solve problems | Theoretical | Weekly exams |
|    |                                               |                        |                             | and         |              |
|    |                                               |                        |                             | practical   |              |
| 30 | 30 4 The student<br>understands the<br>lesson |                        | Tutorial and solve          | Theoretical | Weekly exams |
|    |                                               |                        | problems                    | and         |              |
|    |                                               |                        |                             | practical   |              |

12.Infrastructure

| Required reading:                                                                               | Seminar session                                                                                                  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| . CORE TEXTS                                                                                    |                                                                                                                  |
| . COURSE MATERIALS                                                                              |                                                                                                                  |
| . OTHER                                                                                         |                                                                                                                  |
| Special requirements (include for example<br>workshops ,periodicals,IT software<br>,Websites)   | ibrahim D. M. A.Rosen, <i>thermal energy</i><br>storage and application, Second. united<br>kingdum: Wiley, 2011. |
| Community –based facilities (include for<br>example ,guest<br>Lectures,intership,field,studies) | https://archive.org/details/standardhandbook<br>0000unse_t0h8/page/n3/mode/2up                                   |
|                                                                                                 |                                                                                                                  |

## 13. Admissions

# Pre-requisites

## Maximum number of students Maximum number of students

Republic of Iraq Ministry of Higher Education & Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation

# Academic Program Specification Form for the Academic

University:

College:

Department:

**Date of Form Completion**:

Dean's Name

**Date**: / /

Signature

/

Dean's Assistant for Scientific Affairs Date: / /

Signature

Head of Department

**Date**: / /

Signature

**Quality Assurance and University Performance Manager** 

Date: /

Signature

## HIGHER EDUCATION PERFORMANCE REVIEW: COURSE REVIEW

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the Course.

| 1. | Teaching Institution     | Technical College of Engineering / Kirkuk                  |
|----|--------------------------|------------------------------------------------------------|
| 2. | University               | Department of Power Mechanics Technology                   |
|    | ,<br>Department/Centre   | Engineering                                                |
|    |                          |                                                            |
| 3. | Course Title             | control circuits MPE 0406                                  |
| 1  | Title of Final Award     | Pachalar of Dowar Machanical Engineering                   |
| 4. | THE OFFINALAWARD         | Bachelor of Power Mechanical Engineering<br>Technology     |
| 5  | Modes of Attendance      | reemology                                                  |
| 5. | offered                  |                                                            |
|    | oncrea                   |                                                            |
| 6. | Accreditation            |                                                            |
|    |                          |                                                            |
| 7. | Other external           |                                                            |
|    | influences               |                                                            |
| 8. | Date of                  | 25/03/2024                                                 |
|    | production/revision of   | -,, -                                                      |
|    | this specification       |                                                            |
|    |                          |                                                            |
| 9. | Aims of the Course :- Th | e program aims to graduate students with a specialty in    |
|    | power mechanical techr   | nology engineering who will be qualified to work in the    |
|    | fields of mechanics and  | device control systems. He will be graduated by the        |
|    | department after compl   | eting four years of study in which he will be qualified to |
| 1  | · ·                      |                                                            |

obtain a bachelor's degree in power mechanical technology

### 10.Learning Outcomes, Teaching, Learning and Assessment Methods

A. Knowledge and Understanding

- A1. It aims to know mechanical control systems
- . A2. It aims to know the operation of mechanical machines and work with them
- A3. It aims to know how to use a computer and how to program
- . A4. It aims to know how to organize and make machine outputs stable A5. It aims to learn mathematics and engineering analyses A6.

B. Subject-specific skills

- . B1. It aims to learn the skill of computer operation and organized work
- . B2. It aims to learn the skill of simulation
- B3. It aims to learn the skill of designing and constructing laboratories

Teaching and Learning Methods

Delivering theoretical and practical lectures, running laboratories, workshops, .and summer training during the summer vacation period

Assessment methods

Daily tests, quarterly exams (theoretical + practical), discussing periodic reports, .discussing research projects

C. Thinking Skills

C1. Preparing educational cadres that can be relied upon in state institutions .within the specialty

C2. Developing solutions to the problems encountered by institutions and .mechanical systems

C3. Work to prepare the requirements of the labor market and raise economic capacity

Teaching and Learning Methods

.Development courses, periodic seminars, seminars

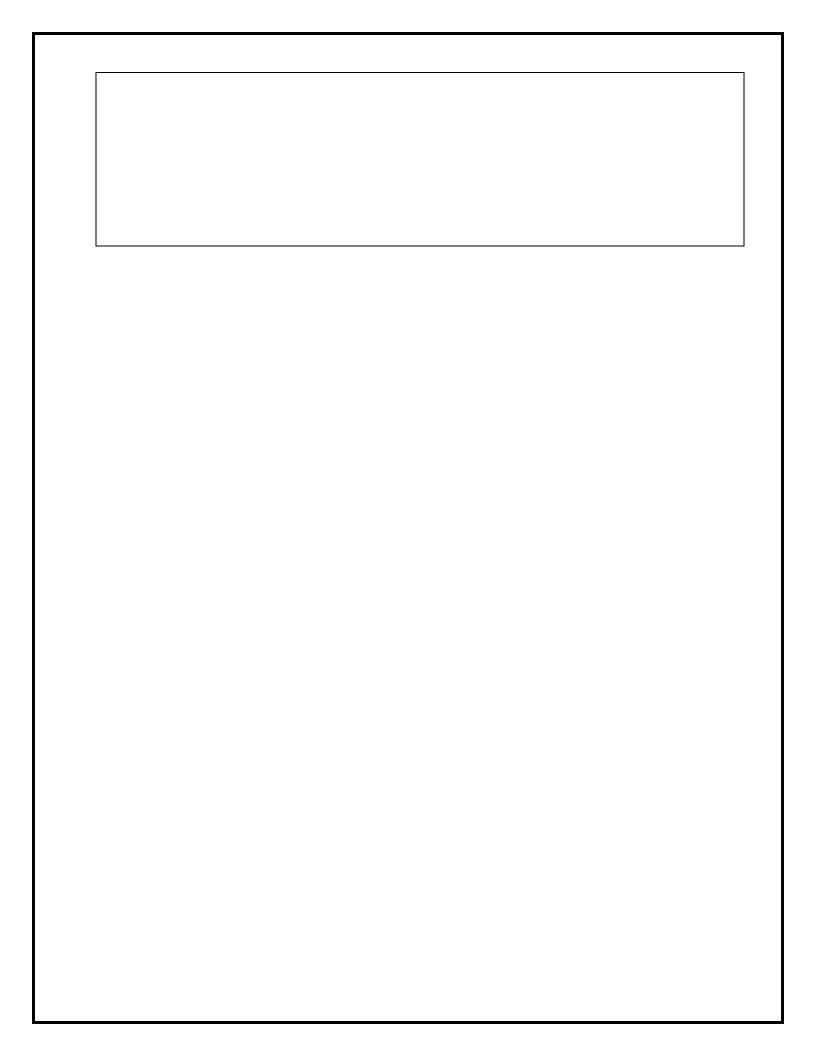
Assessment methods

## .Periodic tests .Feed B evaluation methods -

|                                                                            | nd Transferable<br>development ) | e Skills ( other skill    | s relevant       | to employability and   |  |  |  |  |  |
|----------------------------------------------------------------------------|----------------------------------|---------------------------|------------------|------------------------|--|--|--|--|--|
| D1. communication and conversation skills such as English and presentation |                                  |                           |                  |                        |  |  |  |  |  |
| .skills                                                                    |                                  |                           |                  |                        |  |  |  |  |  |
|                                                                            | work skills                      |                           |                  |                        |  |  |  |  |  |
|                                                                            | -                                | d taking responsibi       | lity             |                        |  |  |  |  |  |
|                                                                            |                                  | self-reliance skills      |                  |                        |  |  |  |  |  |
| Teachin                                                                    | g and Learning                   | Methods                   |                  |                        |  |  |  |  |  |
|                                                                            |                                  |                           |                  |                        |  |  |  |  |  |
|                                                                            |                                  |                           |                  |                        |  |  |  |  |  |
|                                                                            |                                  |                           |                  |                        |  |  |  |  |  |
|                                                                            |                                  |                           |                  |                        |  |  |  |  |  |
| <b>A</b>                                                                   |                                  |                           |                  |                        |  |  |  |  |  |
| Assessn                                                                    | nent Methods                     |                           |                  |                        |  |  |  |  |  |
| .Lectures, lab                                                             | poratories and w                 | vorkshops, summer         | training, g      | graduation projects    |  |  |  |  |  |
| 11. Programe                                                               | e Structure                      |                           |                  |                        |  |  |  |  |  |
| Level/Year                                                                 | Course or<br>Module Code         | Course or Module<br>Title | Credit<br>Rating | 12. Awards and Credits |  |  |  |  |  |
| Level/Teal                                                                 | Module Code                      |                           | Katilig          |                        |  |  |  |  |  |
|                                                                            |                                  |                           |                  | Bachelor Degree        |  |  |  |  |  |
|                                                                            |                                  |                           |                  | Requires (x) credits   |  |  |  |  |  |
|                                                                            |                                  |                           |                  |                        |  |  |  |  |  |
|                                                                            |                                  |                           |                  |                        |  |  |  |  |  |
|                                                                            |                                  |                           |                  |                        |  |  |  |  |  |

13. Personal Development Planning

.Methodological books
(K. Ogata, Modern Control Engineering, 3rd K. Warwick, An Introduction to Control System (Helping resources (secondary books The Internet, self-education websites, reputable international university websites, and Iraqi university websites


14. Admission criteria .

Classrooms for theoretical lectures equipped with modern presentation supplies Laboratory hall equipped with the necessary laboratory equipment to conduct practical experiments on different types of systems

Scientific section the average -

15. Key sources of information about the Course

Updating the course vocabulary continuously and periodically as a result of -1 the rapid development in the field of renewable energy 2 - Writing an electronic training package for the Control Circuits course based on the course vocabulary



|             | Please t    | ick relevant box | Curriculu<br>es where individua |                                |    | -  | ning | Outc | ome | s are      | bein      | ig ass | sesse | ed    |                                                                                                                           |    |    |    |   |
|-------------|-------------|------------------|---------------------------------|--------------------------------|----|----|------|------|-----|------------|-----------|--------|-------|-------|---------------------------------------------------------------------------------------------------------------------------|----|----|----|---|
|             | Course Lea  | rning Outcomes   |                                 |                                |    |    |      |      |     |            |           |        |       |       |                                                                                                                           |    |    |    |   |
| Year/ Level | Course code | Course title     | Core (c) title or<br>option (O) | Knowledge and<br>understanding |    |    |      |      |     |            | cific     | Thi    | inkir | tills | General and<br>Transferable<br>Skills (or)<br>Other Skills<br>relevant to<br>employability<br>and personal<br>development |    |    |    |   |
|             |             |                  |                                 | A1                             | A2 | A3 | A4   | B1   | B2  | <b>B</b> 3 | <b>B4</b> | C1     | C2    | C3    | <b>C4</b>                                                                                                                 | D1 | D2 | D3 | D |
|             |             |                  |                                 |                                |    |    |      |      |     |            |           |        |       |       |                                                                                                                           |    |    |    | ┢ |
|             |             |                  |                                 |                                |    |    |      |      |     |            |           |        |       |       |                                                                                                                           |    |    |    | - |
|             |             |                  |                                 |                                |    |    |      |      |     |            |           |        |       |       |                                                                                                                           |    |    |    |   |
|             |             |                  |                                 |                                |    |    |      |      |     |            |           |        |       |       |                                                                                                                           |    |    |    | - |

| Γ | <br>] | [] |  |  |  |  |      |      |  |  |  |
|---|-------|----|--|--|--|--|------|------|--|--|--|
|   | <br>  |    |  |  |  |  | <br> | <br> |  |  |  |

الصفحة 9

#### HIGHER EDUCATION PERFORMANCE REVIEW: COURSE REVIEW

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the Course.

| 1. Teaching Institution                              | Technical College of Engineering / Kirkuk               |
|------------------------------------------------------|---------------------------------------------------------|
| 2. University Department/Centre                      | Department of Power Mechanics Technology<br>Engineering |
| 3. Course Title                                      | Maintenance and Operation of Power Plants               |
| 4. Title of Final Award                              | Bachelor of Power Mechanical Engineering<br>Technology  |
| 5. Modes of Attendance offered                       |                                                         |
| 6. Accreditation                                     |                                                         |
| 7. Other external influences                         |                                                         |
| 8. Date of production/revision of this specification | 25/03/2024                                              |

#### 9. Amis of the Course

The aim of the Maintenance and Operation of Power Plants Course is to provide students with the knowledge, skills, and competencies required for the maintenance, operation, and management of power plants. The program aims to equip students with a solid foundation in the principles of power plant technology, including electrical systems, mechanical systems, instrumentation, and control systems. By combining theoretical study with practical training and industry engagement, the program aims to prepare students for careers in power generation, energy management, and related fields.

#### 10.Learning Outcomes, Teaching, Learning and Assessment Methods

#### A. Knowledge and Understanding

A1. Understand fundamental concepts in power plant technology, including electrical systems, mechanical systems, and control systems.

A2. Explain principles of maintenance and operation of power plants, including safety procedures and regulatory requirements.

A3. Describe the various types of power plants, their components, and their functions.

A4. Analyze and interpret technical documentation, schematics, and diagrams related to power plant equipment and systems.

A5. Discuss the environmental and sustainability aspects of power plant operations.

A6. Evaluate the economic factors and business considerations influencing power plant maintenance and operation.

#### **B.** Subject-specific skills

B1. Demonstrate practical skills in the maintenance and operation of power plant equipment and systems.

B2. Use diagnostic tools and techniques to troubleshoot power plant problems and perform repairs.

B3. Apply safety protocols and procedures in the operation and maintenance of power plants. **Teaching and Learning Methods** 

Practical Training, Simulation Exercises, Internships, Workshops.

#### Assessment methods

Assessment Methods: Examinations, Practical Assessments, Project Reports, Presentations

#### C. Thinking Skills

C1. Apply critical thinking and problem-solving skills to resolve complex issues in power plant maintenance and operation.

C2. Evaluate the performance of power plant systems and propose improvements or optimizations.

C3. Analyze risks and uncertainties associated with power plant operations and develop mitigation strategies.

C4. Synthesize information from multiple sources to make informed decisions in power plant management.

#### **Teaching and Learning Methods**

periodic seminars, Problem-Based Learning, Group Discussions, Research Projects.

#### Assessment methods

Examinations, Practical Assessments, Project Reports, Presentations

# **D.** General and Transferable Skills ( other skills relevant to employability and personal development )

D1. Communicate effectively, both orally and in writing, in technical and non-technical contexts.

D2. Work collaboratively in teams to achieve common goals and objectives.

D3. Manage time and resources efficiently in the completion of tasks and projects.

D4. Adapt to new technologies and changing work environments in the field of power plant maintenance and operation.

#### **Teaching and Learning Methods**

Communication Skills Workshops, Team Projects, Time Management Exercises, Professional Development Seminars.

#### Assessment Methods

.Lectures, laboratories and workshops, summer training, graduation projects

#### **11. Course Structure**

|            | •                        | •                         |                  |                                           |
|------------|--------------------------|---------------------------|------------------|-------------------------------------------|
| Level/Year | Course or<br>Module Code | Course or Module<br>Title | Credit<br>Rating | 12. Awards and Credits                    |
|            |                          |                           |                  | Bachelor's degree Requires<br>(x) credits |
|            |                          |                           |                  |                                           |
|            |                          |                           |                  |                                           |
|            |                          |                           |                  |                                           |
|            |                          |                           |                  |                                           |
|            |                          |                           |                  |                                           |

#### 12.Infrastructure

Required reading:

. Steam Plant Operation Everett B. Woodruff Herbert B. Lammers Thomas F. Lammers . A course in power system by j.b Gupta

-Operation and control in power system by b.s.mupty

Special requirements (include for example workshops ,periodicals,IT software ,Websites)

Community –based facilities (include for example ,guest Lectures,intership,field,studies)

13. Admissions

Pre-requisites

Maximum number of students Maximum number of students

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **COURSE SPECIFICATION**

This Course specification provides a concise summary of the main features of the Course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. it is supported by a specification for each course that contributes to the Course

| 1-Teaching institution                                | Northern Technical University - Engineering Technical<br>College / Kirkuk                 |  |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2- University Department /centre                      | Mechanics Power Tech. Eng. Dep.                                                           |  |  |  |  |  |
| 3-Course title                                        | Power Plant Systems                                                                       |  |  |  |  |  |
| 4-title of final Award                                | Bachelor of Engineering Mechanics Power Technologies                                      |  |  |  |  |  |
| 5-Modes of Attendance offered                         | Annual (Weekly attendance)                                                                |  |  |  |  |  |
| 6-Accreditation                                       | Accreditation Board for Engineering and Technology (ABET)                                 |  |  |  |  |  |
| 7-Other external influences                           | 1. Training courses for students to develop students' professional skills 2. Field visits |  |  |  |  |  |
| 8- Data of production /revision of this specification | 1 / 9 / 2023                                                                              |  |  |  |  |  |
| 9-Amis of the Course .1                               |                                                                                           |  |  |  |  |  |
| 1. To develop problem solving skills and unders       | standing of power plant systems the application of techniques.                            |  |  |  |  |  |
| 2. To understand feed water, reheated and regen       |                                                                                           |  |  |  |  |  |
| 3. This course deals with the basic concept of pe     | ower plant.                                                                               |  |  |  |  |  |
| 4. This is the basic subject for all power plant sy   | vstems.                                                                                   |  |  |  |  |  |
| 5. To understand steam turbine and gas turbine        | problems.                                                                                 |  |  |  |  |  |
|                                                       |                                                                                           |  |  |  |  |  |
|                                                       |                                                                                           |  |  |  |  |  |
|                                                       |                                                                                           |  |  |  |  |  |
|                                                       |                                                                                           |  |  |  |  |  |
|                                                       |                                                                                           |  |  |  |  |  |

10 . Learning Outcomes ,Teaching ,Learning and Assessment Methode

A-Knowledge and Understanding

A1. The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills.

A2. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.

B. Subject-specific skills

B1. To develop problem solving skills and understanding of power plant systems the application of techniques.

B2. To understand feed water, reheated and regenerator.

B3. This course deals with the basic concept of power plant.

Teaching and Learning Methods

- 1- Theoretical and practical lectures.
- 2- Pre and post questions.
- 3- Weekly tests.
- 4- Semester exams.

## C. Thinking Skills

C1. The student listens attentively to the teacher's explanation.

- C2. To take care of the student calm and class order.
- C3. To familiarize the student with the importance of power plant system.
- C4. Describe the importance of installing mechanical parts

Teaching and Learning Methods Lectures Home works Slides and examples

Assessment Methods

Exam and weekly quiz

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Developing mental skills that enable the graduate to benefit from the information he learns and the skills he acquires, and employing them in serving his requirements as an individual and in serving the goals of society in terms of social and economic development.

D2. Develop sound thinking methods and release potential energy

| Week | Hours                                     | ILOS                                     | Unit/modul or<br>topic title            | Teaching<br>method              | Assessment<br>Method |
|------|-------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------|----------------------|
| 1    | 4                                         | The student<br>understands the<br>lesson | Introduction                            | Theoretical<br>and<br>practical | Weekly exam          |
| 2    | 4                                         | The student<br>understands the<br>lesson | steam cycles                            | Theoretical<br>and<br>practical | Weekly exam          |
| 3    | 4                                         | The student<br>understands the<br>lesson | Tutorial and solve<br>problems          | Theoretical<br>and<br>practical | Weekly exam          |
| 4    | 4                                         | The student<br>understands the<br>lesson | Steam power plant description           | Theoretical<br>and<br>practical | Weekly exam          |
| 5    | 4                                         | The student<br>understands the<br>lesson | Increasing efficiency<br>of power plant | Theoretical<br>and<br>practical | Weekly exam          |
| 6    | 4                                         | The student<br>understands the<br>lesson | Tutorial and solve<br>problems          | Theoretical<br>and<br>practical | Weekly exam          |
| 7    | 4                                         | The student<br>understands the<br>lesson | Reheat cycles                           | Theoretical<br>and<br>practical | Weekly exam          |
| 8    | 4                                         | The student<br>understands the<br>lesson | Regenerative cycles                     | Theoretical<br>and<br>practical | Weekly exam          |
| 9    | 4                                         | The student<br>understands the<br>lesson | Tutorial and solve<br>problems          | Theoretical<br>and<br>practical | Weekly exam          |
| 10   | 4                                         | The student<br>understands the<br>lesson | Feed water heater                       | Theoretical<br>and<br>practical | Weekly exam          |
| 11   | 11 4 The student<br>understands<br>lesson |                                          | Tutorial and solve<br>problems          | Theoretical<br>and<br>practical | Weekly exam          |
| 12   | 4                                         | The student<br>understands the<br>lesson | Combined power<br>plant                 | Theoretical<br>and<br>practical | Weekly exam          |

الصفحة 4

| 10 |   | The student                    | Tutorial and solve          |             | Weekly exams |
|----|---|--------------------------------|-----------------------------|-------------|--------------|
| 13 | 4 | understands the                | problems                    | Theoretical | weekiy exams |
|    |   | lesson                         | •                           | and         |              |
|    |   | The states                     | Cture to 1 in               | practical   | XX71.1       |
| 14 | 4 | The student<br>understands the | Steam turbine               | Theoretical | Weekly exams |
|    |   | lesson                         |                             | and         |              |
|    |   |                                |                             | practical   |              |
| 15 | 4 | The student<br>understands the | Tutorial and solve problems | Theoretical | Weekly exams |
|    |   | lesson                         | problems                    | and         |              |
|    |   |                                |                             | practical   |              |
| 16 | 4 | The student<br>understands the | Introduction                | Theoretical | Weekly exams |
|    |   | lesson                         |                             | and         |              |
|    |   |                                |                             | practical   |              |
| 17 | 4 | The student<br>understands the | gas cycles                  | Theoretical | Weekly exams |
|    |   | lesson                         |                             | and         |              |
|    |   |                                |                             | practical   |              |
| 18 | 4 | The student<br>understands the | Tutorial and solve          | Theoretical | Weekly exams |
|    |   | lesson                         | problems                    | and         |              |
|    |   |                                |                             | practical   |              |
| 19 | 4 | The student                    | gas power plant             | Theoretical | Weekly exams |
|    |   | understands the lesson         | description                 | and         |              |
|    |   |                                |                             | practical   |              |
| 20 | 4 | The student                    | Increasing efficiency       | Theoretical | Weekly exams |
|    |   | understands the lesson         | of power plant              | and         |              |
|    |   |                                |                             | practical   |              |
| 21 | 4 | The student                    | Tutorial and solve          | Theoretical | Weekly exams |
|    |   | understands the lesson         | problems                    | and         |              |
|    |   |                                |                             | practical   |              |
| 22 | 4 | The student                    | Combined cycles             | Theoretical | Weekly exams |
|    |   | understands the lesson         |                             | and         |              |
|    |   |                                |                             | practical   |              |
| 23 | 4 | The student                    | Regenerative cycles         | Theoretical | Weekly exams |
|    |   | understands the lesson         |                             | and         |              |
|    |   | lesson                         |                             | practical   |              |
| 24 | 4 | The student                    | Tutorial and solve          | Theoretical | Weekly exams |
|    |   | understands the lesson         | problems                    | and         |              |
|    |   | 1055011                        |                             | practical   |              |
| 25 | 4 | The student                    | Feed water heater           | Theoretical | Weekly exams |
|    |   | understands the lesson         |                             | and         |              |
|    |   | 1055011                        |                             | practical   |              |
| 26 | 4 | The student                    | Tutorial and solve          | Theoretical | Weekly exams |
|    | _ | understands the lesson         | problems                    | and         |              |
|    |   | 1055011                        |                             | practical   |              |

الصفحة 5

| Weekly exams | Theoretical<br>and<br>practical | Combined power<br>plant        | The student<br>understands the<br>lesson | 4 | 27 |  |
|--------------|---------------------------------|--------------------------------|------------------------------------------|---|----|--|
| Weekly exams | Theoretical<br>and<br>practical | Tutorial and solve<br>problems | The student<br>understands the<br>lesson | 4 | 28 |  |
| Weekly exams | Theoretical<br>and<br>practical | Boiler                         | The student<br>understands the<br>lesson | 4 | 29 |  |
| Weekly exams | Theoretical<br>and<br>practical | Tutorial and solve<br>problems | The student<br>understands the<br>lesson | 4 | 30 |  |

|                                                                                                 | 12.1111 4311 40141 0                                                           |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Required reading:                                                                               | Seminar session                                                                |
| . CORE TEXTS                                                                                    |                                                                                |
| . COURSE MATERIALS                                                                              |                                                                                |
| . OTHER                                                                                         |                                                                                |
| Special requirements (include for example<br>workshops ,periodicals,IT software<br>,Websites)   | Standard handbook of powerplant<br>engineering                                 |
| Community –based facilities (include for<br>example ,guest<br>Lectures,intership,field,studies) | https://archive.org/details/standardhandbook<br>0000unse_t0h8/page/n3/mode/2up |
|                                                                                                 |                                                                                |

#### 13. Admissions

Pre-requisites

Maximum number of students

Maximum number of students

Republic of Iraq Ministry of Higher Education & Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation

# Academic Program Specification Form for the Academic

University:

College:

Department:

**Date of Form Completion**:

Dean's Name

**Date**: / /

Signature

/

Dean's Assistant for Scientific Affairs Date: / /

Signature

Head of Department

**Date**: / /

Signature

**Quality Assurance and University Performance Manager** 

Date: /

Signature

### **TEMPLATE FOR COURSE SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: COURSE REVIEW

This Courser specification provides a concise summary of the main features of the Courser and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the Courser.

| 1  | Teaching Institution     | Technical College of Engineering / Kirkuk                |
|----|--------------------------|----------------------------------------------------------|
| ±. |                          |                                                          |
| 2. | University               | Department of Power Mechanics Technology                 |
|    | Department/Centre        | Engineering                                              |
|    |                          |                                                          |
| 3. | Courser Title            | Air conditioning systems                                 |
| 1  | Title of Final Award     | Pachalar of Dower Machanical Engineering                 |
| 4. | THE OFFINALAWARD         | Bachelor of Power Mechanical Engineering<br>Technology   |
| 5  | Modes of Attendance      | rechnology                                               |
| 5. | offered                  |                                                          |
|    | Unered                   |                                                          |
| 6. | Accreditation            |                                                          |
|    |                          |                                                          |
| 7. | Other external           |                                                          |
|    | influences               |                                                          |
| Q  | Date of                  | 27/03/2024                                               |
| 0. |                          | 27/03/2024                                               |
|    | production/revision of   |                                                          |
|    | this specification       |                                                          |
| 9. | Aims of the Program :- T | he program aims to graduate students with a specialty    |
|    | -                        | hnology engineering who are qualified to work in         |
|    | -                        | ive the ability to maintain and install air conditioning |
|    |                          | They will be graduated by the department after           |
|    |                          | they will be Bradaded by the department after            |

completing four years of study in which they will be qualified to obtain a bachelor's degree in power mechanical technology engineering.

Conducting scientific and applied research to develop technologies in air conditioning

Linking the field of air conditioning with the field of information technology to introduce modern technologies in the fields of design, implementation and project management

10.Learning Outcomes, Teaching, Learning and Assessment Methods

A. Knowledge and Understanding

A1. The ability to perform engineering analysis and scientific thinking by applying laws in. Science, mathematics, engineering, and adherence to guidelines and instructions for any event in an organizational and administrative framework for implementing a project or facing an engineering problem, solve, evaluate, and present a proposal or plan.

A2. Preparing the student to continue self-learning and acquire new technologies and skills In the field of mechanical and thermal engineering.

A3. To be able to work in different work environments

B. Subject-specific skills

B1- for discussion and dialogue

B2 - It aims to learn the skill of simulation.

B3 - For cooperative learning by working collectively

B4- The ability to conduct the required tests and collect, compare and analyze the results of the tests

Teaching and Learning Methods

Delivering theoretical and practical lectures, running laboratories, workshops, .and summer training during the summer vacation period

Assessment methods

Daily tests, quarterly exams (theoretical + practical), discussing periodic reports, .discussing research projects

C. Thinking Skills

C1. Preparing educational cadres that can be relied upon in state institutions .within the specialty

C2. Developing solutions to the problems encountered by institutions and .mechanical systems

C3. Work to prepare the requirements of the labor market and raise economic capacity

Teaching and Learning Methods

Development courses, periodic seminars, seminars, Preparing scientific laboratory and theoretical reports

Assessment methods

-Periodic tests

-Feed B evaluation method

-Understanding scientific material and engineering principles

- Diagnosis and problem solving

D. General and Transferable Skills ( other skills relevant to employability and personal development )

D1. communication and conversation skills such as English and presentation .skills

. D2. Teamwork skills

D3. Leadership skills and taking responsibility

D4. Self-education and self-reliance skills

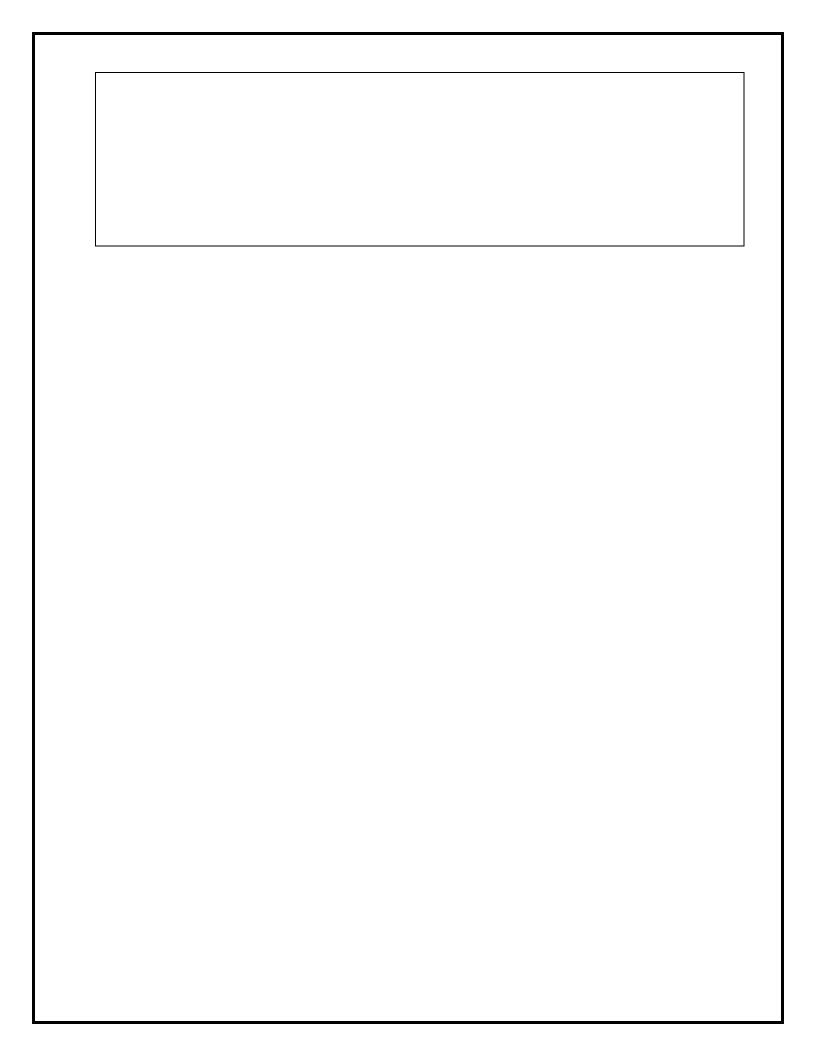
Teaching and Learning Methods

Lectures, laboratories and workshops, summer training, graduation projects.

Assessment Methods

Practical tests Reports, research and laboratory reports-Classroom activities-Practical projects and graduation research-Semester and final exams

## 11. Course Structure


| Week | Hours                                   | ILOS                                     | Unit/modul or<br>topic title           | Teaching<br>method              | Assessment<br>Method |
|------|-----------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|----------------------|
| 1    | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | AIR<br>CONDITIONIN<br>G SYSTEMS        | Theoretical<br>and<br>practical | Weekly exams         |
| 2    | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | All-Air system                         | Theoretical<br>and<br>practical | Weekly exams         |
| 3    | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Applications<br>of all air<br>systems  | Theoretical<br>and<br>practical | Weekly exams         |
| 4    | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | All- water<br>systems                  | Theoretical<br>and<br>practical | Weekly exams         |
| 5    | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Air- water<br>systems                  | Theoretical<br>and<br>practical | Weekly exams         |
| 6    | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Refrigerant<br>based systems           | Theoretical<br>and<br>practical | Weekly exams         |
| 7    | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Systems VRF                            | Theoretical<br>and<br>practical | Weekly exams         |
| 8    | 2<br>Theoretic                          | The student<br>understands the<br>lesson | Design of air<br>conditioning<br>ducts | Theoretical<br>and<br>practical | Weekly exams         |

|    | al and 3<br>practical                   |                                          |                                        |                                 |              |
|----|-----------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|--------------|
| 9  | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Design of air<br>conditioning<br>ducts | Theoretical<br>and<br>practical | Weekly exams |
| 10 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Pressure<br>Losses in<br>Ducts         | Theoretical<br>and<br>practical | Weekly exams |
| 11 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Friction<br>Factor for<br>ducts        | Theoretical<br>and<br>practical | Weekly exams |
| 12 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Duct Design<br>Methods                 | Theoretical<br>and<br>practical | Weekly exams |
| 13 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Duct Design<br>Methods                 | Theoretical<br>and<br>practical | Weekly exams |
| 14 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Fans and its<br>Application            | Theoretical<br>and<br>practical | Weekly exams |
| 15 | •                                       | The student<br>understands the<br>lesson | Fan Similarity<br>Laws                 | Theoretical<br>and<br>practical | Weekly exams |
| 16 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Fan<br>Similarity<br>Laws              | Theoretical<br>and<br>practical | Weekly exams |
| 17 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Fan in parallel                        | Theoretical<br>and<br>practical | Weekly exams |
| 18 | 2<br>Theoretic                          | The student<br>understands the<br>lesson | Air handling<br>unit                   | Theoretical<br>and<br>practical | Weekly exams |

|    | al and 3<br>practical                   |                                          |                                               |                                 |              |
|----|-----------------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------|--------------|
| 19 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Classification<br>of air handling<br>unit     | Theoretical<br>and<br>practical | Weekly exams |
| 20 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Space Air<br>Distribution                     | Theoretical<br>and<br>practical | Weekly exams |
| 21 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Space Air<br>Distribution                     | Theoretical<br>and<br>practical | Weekly exams |
| 22 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Advance<br>psychrometric<br>process           | Theoretical<br>and<br>practical | Weekly exams |
| 23 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Advance<br>psychrometric<br>process           | Theoretical<br>and<br>practical | Weekly exams |
| 24 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Advance<br>psychrometric<br>process           | Theoretical<br>and<br>practical | Weekly exams |
| 25 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Evaporative<br>Cooling                        | Theoretical<br>and<br>practical | Weekly exams |
| 26 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Evaporative<br>Cooling                        | Theoretical<br>and<br>practical | Weekly exams |
| 27 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Types of<br>Evaporative<br>Cooling<br>Systems | Theoretical<br>and<br>practical | Weekly exams |
| 28 | 2<br>Theoretic                          | The student<br>understands the<br>lesson | Types of<br>Evaporative                       | Theoretical<br>and<br>practical | Weekly exams |

|    | al and 3<br>practical                   |                                          | Cooling<br>Systems      |                                 |              |
|----|-----------------------------------------|------------------------------------------|-------------------------|---------------------------------|--------------|
| 29 | *                                       |                                          | Air cleaning<br>devices | Theoretical<br>and<br>practical | Weekly exams |
| 30 | 2<br>Theoretic<br>al and 3<br>practical | The student<br>understands the<br>lesson | Type of air<br>filters  | Theoretical<br>and<br>practical | Weekly exams |

12. Personal Development Planning -Courses within the college. -Courses within institutions of higher education and scientific research. -Individual or joint scientific research (applied or theoretical) - Scientific seminars and seminars .Methodological books -ASHRAE -Helping resources (secondary books) -The Internet, self-education websites, reputable international university websites, and Iraqi university websites 13. Infrastructure Classrooms for theoretical lectures equipped with modern presentation supplies Laboratory hall equipped with the necessary laboratory equipment to conduct practical experiments on different types of systems 14. Admission criteria. -Scientific section -The average 15. Key sources of information about the program Updating the course vocabulary continuously and periodically as a result of -1 the rapid development in the field of renewable energy 2 - Writing an electronic training package for the Air conditioning systems course based on the course vocabulary



|             | Please                   | tick relevant box | Curriculı<br>es where individua |    |    | -  | ning                       | Outc | ome | s are     | bein            | ng ass    | sesse | ed        |                                                                                                            |    |      |       |    |
|-------------|--------------------------|-------------------|---------------------------------|----|----|----|----------------------------|------|-----|-----------|-----------------|-----------|-------|-----------|------------------------------------------------------------------------------------------------------------|----|------|-------|----|
|             | Course Learning Outcomes |                   |                                 |    |    |    |                            |      |     |           |                 |           |       |           |                                                                                                            | G  | ener | al ar | nd |
| Year/ Level | Course code              | Course title      | Core (c) title or<br>option (O) |    |    |    | Subject-specific<br>Skills |      |     |           | Thinking Skills |           |       |           | Transferable<br>Skills (or)<br>Other Skills<br>relevant to<br>employability<br>and personal<br>development |    |      |       |    |
|             |                          |                   |                                 | A1 | A2 | A3 | A4                         | B1   | B2  | <b>B3</b> | <b>B4</b>       | <b>C1</b> | C2    | <b>C3</b> | <b>C4</b>                                                                                                  | D1 | D2   | D3    | D  |
|             |                          |                   |                                 |    |    |    |                            |      |     |           |                 |           |       |           |                                                                                                            |    |      |       |    |
|             |                          |                   |                                 |    |    |    |                            |      |     |           |                 |           |       |           |                                                                                                            |    |      |       |    |
|             |                          |                   |                                 |    |    |    |                            |      |     |           |                 |           |       |           |                                                                                                            |    |      |       |    |
|             |                          |                   |                                 |    |    |    |                            |      |     |           |                 |           |       |           |                                                                                                            |    |      |       | ┢  |

| ſ |  |  |  |  |  |  |  |  |  |  |
|---|--|--|--|--|--|--|--|--|--|--|
| Γ |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |

الصفحة 13 -