
Algorithms:

A step-by-step procedure for solving a problem in a finite amount of time.
Algorithms can be represented using Flow Charts.

CHARACTERISTICS OF AN ALGORITHM:
1. Algorithms always have a definite starting point and an end point. These points are generally marked with the

words like Start, Begin, End, Stop etc.
2. They consist of finite number of steps.
3. They always relate to a specific problem or you can say that they are written for a given problem.
4. They serve as foundation stone for programming .
5. They are written in easy language.

Lecture .4.

Example 1:

.1.Start

Write algorithm to calculate the area of circle.

Algorithm:

2.Read value of radius(R)
3.Compute area of circle (A)=3.14*R*R (Algebraic equation)
4.Print A
5.End

Example 2:Write algorithm to convert the length in feet to centimeter.

1.Start
2.Read value of length in feet (ft)
3.Compute length in centimeter (cm)=ft*30 (Algebraic equation)
4.Print length - in - cm
5.End

Algorithm:

Lecture - 4 -

- 18 -

Example 3:
Write algorithm to computes the sum,average and product of three numbers.

Algorithm:
1. Start
2. Read value of X
3. Read value of Y
4. Read value of Z
5. Compute Sum (S) as X+Y+Z
6. Compute Average(A) sa S/3
7. Compute Product (P) as X*Y*Z
8. Print (Display) the Sum,Average and Product
9. End

Example.4.
Write an algorithm to find the largest of given three numbers.

Algorithm:

1. Start
2. Read three numbers A, B and C
3. Let Big=0
4. IF A>B Then Big=A Else Big=B
5. IF C>Big Then Big=C
6. Print Big
7. End

- 19 -

Write an algorithm for solving a given quadratic equation, ax
2
+bx+c=0. Note that roots

are determined by formula:

Algorithm:
1. Start
2. Read value of a, b and c
3. If a=0 Stop
4. Calculate values of discriminant D=b2-4ac
5. If D=0 then there is one root p= -b/2a
6. If D>0 then there are two real roots

7. If D<0 then there are two complex roots

8. Print p and q

9. Stop

Example 5 :

- 20 -

FLOWCHARTS

consists of special geometric symbols connected by arrows. Within each symbol
 is a phrase presenting the activity at that step. The shape of the symbol indicates the type of
 operation that is to occur. For instance, the parallelogram denotes input or output. The arrows
 connecting the symbols, called flowlines, show the progression in which the steps take place.
Flowcharts should flow from the top of the page to the bottom. Although the symbols used
in flowcharts are standardized, no standards exist for the amount of detail required within each

 symbol. A table of the flowchart symbols adopted by the American National Standards

Institute (ANSI) follows.
The main advantage of using a flowchart to plan a task is that it provides a pictorial rep-
resentation of the task, which makes the logic easier to follow. We can clearly see every step
and how each step is connected to the next. The major disadvantage with flowcharts is that
when a program is very large, the flowcharts may continue for many pages, making them dif-
ficult to follow and modify.

Symbol Name Meaning

Flowline Used to connect symbols and indicate the flow of
logic.

Terminal Used to represent the beginning (Start) or the end
(End) of a task.

Input/Output Used for input and output operations, such as read-
ing and printing. The data to be read or printed are
described inside.

Processing Used for arithmetic and data-manipulation opera-
tions. The instructions are listed inside the symbol.

Decision Used for any logic or comparison operations. Unlike
the input/output and processing symbols, which
have one entry and one exit flowline, the decision
symbol has one entry and two exit paths. The path
chosen depends on whether the answer to a ques-
tion is “yes” or “no.”

Connector Used to join different flowlines.

Offpage Used to indicate that the flowchart continuesto a

Connector second page.

Predefined Used to represent a group of statements that

Process perform one processing task.

Annotation Used to provide additional information about another
flowchart symbol.

Lecture - 5 -

When a step -by- step solution of a given problem is illustrated in the form of graphical chart
that chart is called flowchart.

FLOWCHARTS SYMBOLS
Aflowchart

- 21 -

http://www.pearsoncustom.com/link/visualbasic/flowcharts.html

Draw the flowchart to calculate the area of circle ?

Input

Radius(R)

 =3.14*R Area

Print
Area

Start

End

2

Example (1)

- 22 -

Draw the flowchart to convert the length in feet to centimeter?

Input

Length in feet(ft)

cm = ft*30

Print

Start

End

 length- in- cm

Example (2)

- 23 -

 three numbers.

 Average(A)=S/3
Product (P) = X*Y*Z

 Sum,Average,Product

Draw the flowchart to computes the sum.average and product of
Example (3)

Input

X,Y,Z

Print

Start

End

 Sum (S) = X+Y+Z

- 24 -

Example (4)
Draw a flowchart to find the larger of the three given numbers.

- 25 -

Lecture - 6 -

Example (5)
Draw a flowchart for solving a given quadratic equation ax

2
+bx+c=0.

- 26 -

Start

Input a,b,c

Is
a=0

?

Yes

No

Yes

Yes

No

D= b^2-4ac

Is
D=0
?

Is
D>0

?

Print P

Print Q

End

No

Q=-b/2a

P= -b+ D /2a

Q= -b- D /2a
P= -b+i -D /2a

Q= -b-i -D /2a

START

N = 1
Sum = 0

Sum = Sum + N
N = N + 1

N > 100

End

1

1

YesNO

- 27 -

Example (6)
Draw a flowchart for find the sum of numbers from 1.......100 ?

Print Sum

START

N = 1
Sum = 0

Sum = Sum + N
N = N + 2

N > 100

End

1

1

YesNO

- 28 -

Example (7)
Draw a flowchart for find the sum of odd numbers from 1.......100 ?

Print Sum

START

N = 0
Sum = 0

Sum = Sum + N
N = N + 2

N > 100

End

1

1

YesNO

- 29 -

Example (8)
Draw the flowchart to find the sum of even numbers from 1.......100 ?

Print Sum

START

Counter = 0
Sum = 0

Sum = Sum + Number
Counter = counter + 1

Counter
>= 50 (Sum / 50)

End

1

1

YesNO

Read
Number

- 30 -

Example (9)
Draw the flowchart to read 50 number then find the average ?

Print

Basic Internet

 International Network (Internet)

Lecture 2

- 8 -

http://www/scpl/org

- 9 -

Internet Basics

Getting to the Internet: Browsers

A browser is a software application used to locate and display web pages. The two most

popular browsers are Microsoft Internet Explorer and Firefox. Both of these are

graphical browsers, which means that they can display graphics as well as text. In

addition, most modern browsers can present multimedia information, including sound

and video, though they require plug-ins for some formats.

The Internet: URLs

Every document on the Web has an address which is called the URL (Uniform Resource

Locator). Each URL has several parts: the protocol, the host name and the domain name

The URL to locate GOOGLE is

http:// the first part identifies the document as a Web page. Other parts of the Web

have different identifiers such as FTP (File Transfer Protocol) and IP (Internet Protocol)

www

document on the World Wide Web. Not all Web sites have this as part of their address.

.google host name

.com domain name that identifies category of the page

. Other typical domain names include:

 gov -

Government agencies

 edu - Educational institutions
 org - Organizations
 mil Military

 com - commercial business

 net – Network Organizations;

-

Country Codes

The original top-domain categories were adequate for their original purpose but soon

became inadequate when the Internet became international. The top-level domains
were expanded to include two letter country codes. The following are examples:

.iq Iraq

.ca Canada
.de Germany

A URL may have additional components that identify special features of the page such

as htm l (hypertext markup language)

http://www.google.com

.uk United Kingdom

http://webopedia.internet.com/TERM/D/domain_name.html

- 10 -

Opening Microsoft Internet Explorer

Programs

Internet Explorer

Or double-click on the shortcut icon on the desktop or

pinned to the taskbar.

Internet Explorer Toolbar

File menu: contains selections

such as page setup, print

preview, print and properties.

Edit menu: contains selections

such as copy, paste, and select

all.

View menu: contains selections

such as changing the toolbars

available, changing size of text

on screen, refreshing the current page.

Tools menu: contains popup blocker, phishing filter, internet options, etc.

Help menu: contains selections for seeking help with the program

(Notice that for many actions there is a keyboard shortcut using the Control key and a

letter key. For example, open file Ctrl-O and close file Ctrl-W)

Icon Shortcuts

 Home: returns you to the page that you see when you first open your browser.

Favorites (or Bookmarks) menu: creates a type of “shortcut” to a favorite website.

Tool:

includes internet options, print, safety, and About Internet Explorer

.

http://webopedia.internet.com/TERM/s/search_engine.html
http://www.google.com/

- 11 -

Getting to Know the Toolbars

From the View menu: you can select or deselect different toolbars to appear on your

browser. Various search engine toolbars can also be downloaded.

The address bar contains the website’s URL. The symbols at the end of the address bar

allow you to Search, Select address field, Refresh, or Stop loading a page.

Visiting a Web Page
After you have opened your browser (Internet Explorer, Firefox, etc.), it will load (bring

up) the Home Page which may be set as Google, another search engine, or any webpage

of your choice. Click in the address bar to activate the I-bar which tells the computer you

are about to enter a URL (web address).

Navigating a Page from the Web
Pages will generally contain “links,” which will take you to a different portion of the site,

a file to view, or a different site all together. Links will generally be noted by blue text or

underlined, or will change color if the cursor is placed over it. The arrow cursor will also

change into a . You are, in effect, saying to the computer, “Take me here.”

If a page is larger than the screen, scroll bars appear – usually on the right and/or bottom.

- 12 -

If you want to return to a previously viewed site, click the back OR forward button OR

the down arrow at the right end of the address bar. Another option is to click View

History on the main toolbar to view at least ten previously viewed sites. The Star icon on

the right side of your screen will also bring up your “view favorites, feeds, and history.”

Favorites
In your browsing of the web, you will undoubtedly come across pages that you will wish

to save for later viewing. In web browsing, you do not save web pages; you add the site’s

URL to your Favorites area. To mark a page as a Favorite, browse to the page you wish

to bookmark. Click the Favorites icon and click Add to Favorites. You can create

folders and save similar URL sites in the appropriate folder.

- 13 -

Home Page: Be creative! There is more to life than your Search Engine.

Do you have a favorite sports team page, cooking show page, or perhaps news network? Make

that page your homepage with just a few simple clicks of your mouse!

Open your browser and click on the Tools > Options feature.

In Options > General, enter web address that you would like for your home page. Click OK.

In the event you have the homepage option through the Home icon, you can complete the same

tasks using that dropdown menu.

- 14 -

 Click Bookmarks >Add to Bookmarks.

 You can either click Add OR click New Folder where you will continue to add websites that

reflect your interest in baseball.

Notice the yellow Star. You can select the Bookmark Toolbar as an added convenience feature.

Favorites Make Life Easier!

Your browser toolbar (or shortcut feature) has a tab called Favorites (or Bookmarks if you are

using Firefox). You can save your favorite links in Bookmarks and organize them into folders

that reflect your personal needs. For example, you are a baseball enthusiast. You visit the major

league baseball site frequently.

- 15 -

Search Engines
Search engines are web sites that allow you to type in a few key words and then present

you with a list of possible links that might have the information you want. Although

search engine is really a general class of programs, the term is often used to specifically

describe systems like Google, Alta Vista and Excite that enable users to search for

documents on the World Wide Web.

Basic Searching Methods and Language:-
Searching the Internet can bring the information from around the world into your

home/office or it can be an incredibly frustrating and time consuming disaster. Here are

some strategies that will increase the likelihood of finding relevant information.

Analyze your topic – what are you looking for? Searching for very broad subjects,

such as history of the United States, will produce a huge number of “hits” and be very

confusing. What do we really want to know – a particular period in U.S. history, a list of

democratic presidents, inflation rates during the 20
th

 century

Select keywords for your topic - The keywords you choose may or may not bring you

the results you want. Be prepared to used similar words for your topic

Google http://www.google.com

Bing

http://www.bing.com

Yahoo

http://www.yahoo.com

Searching the Internet

Finding Information
There are basically three ways to locate information on the World Wide Web:

1. Enter the URL

2. Links on a Web page

3. Search engine

Keyword Phrase searching - Some search engines require the use of “ “, +, -.

Quotation marks are used around words you want searched as a phrase. The + in front of

a word (with no space) tells the search engine the word MUST appear in the results. The

– in front of a word (with no space) tells the search engine that the word MUST NOT be

included in the results. Since Google automatically returns pages that include all

keywords, the plus sign (+) and the operator AND are not needed.

Case sensitivity - Most search engines ignore case. Generally, enter your search terms

using lower case. It is quicker and will give you more results. However, if you are

looking for a specific person, place, title, capitalize the first letter of each word.

Lecture 3

http://www.altavista.com/AltaVista

http://webopedia.internet.com/TERM/s/search_engine.html
http://www.good50.com/
http://dir.yahoo.com/Society_and_Culture/Cultures_and_Groups/Seniors
http://go.com/
http://en.wikipedia.org/wiki/List_of_search_engines
http://www.thesearchenginelist.com/
http://www.google.com/
http://www.excite.com/
http://www.altavista.com/
http://bing.com/
http://www.dogpile.com/
http://lycos.com/
http://www.yahoo.com/
http://ask.com/
http://www.webcrawler.com/

Internet E-mail Account
To Set Up a New Account

1. Open your browser. If Google

is not your default home page, enter

www.google.com in the address

bar. Click on Gmail.

2. Click on Create an account.

3. In order to create an account, you

will have to answer a series of

questions, such as Desired Login

Name and Choose a password.

4. You may Stay logged in even if you deselect that feature. Be sure to Sign out if you share

your computer with others.

5. If you do not want Google as your default homepage, be

sure to deselect that option.

6. “Prove you’re not a robot” can be troublesome. Use your

zoom feature to see the two pieces of text you need to enter.

Return zoom to original setting – usually 100% before

clicking Next Step .

7. After you have completed answering all the questions and

reviewed Google policies, terms and conditions, click Next

Step where you have the opportunity to create a profile (not

required) then Continue to Gmail. (At some point you may

be asked to enter a recovery e-mail address. If you do not

have a secondary e-mail address, click Save and Continue.)

*Click Help for information on how to change password and other

questions about your account.

- 16 -

http://www.google.com/

To Send an E-mail

1. Click on Compose Mail.

2. Enter e-mail address of recipient and subject of e-mail. E-mail

etiquette recommends a subject. Many people will delete e-mails

without opening them if there is no subject listed.

3. Click in message box and enter your message. You can change your

font by using the format font toolbar. Click Check Spelling.

4. If you want to add either a Cc address or blind CC address, click on

the Add Cc and/or Add Bcc links.

5. Click Send.

- 17 -

PROGRAMMING

WITH

VISUAL BASIC 6

- 30 -

What is Visual Basic?

• Visual Basic is a tool that allows you to develop Windows (Graphic User

Interface - GUI) applications. The applications have a familiar appearance to the
user.

• Visual Basic is event-driven, meaning code remains idle until called upon to

respond to some event (button pressing, menu selection, ...). Visual Basic is
governed by an event processor. Nothing happens until an event is detected.
Once an event is detected, the code corresponding to that event (event
procedure) is executed. Program control is then returned to the event processor.

 Event
 Procedures

• Some Features of Visual Basic

⇒ Full set of objects - you 'draw' the application
⇒ Lots of icons and pictures for your use
⇒ Response to mouse and keyboard actions
⇒ Clipboard and printer access
⇒ Full array of mathematical, string handling, and graphics functions
⇒ Can handle fixed and dynamic variable and control arrays
⇒ Sequential and random access file support
⇒ Useful debugger and error-handling facilities
⇒ Powerful database access tools
⇒ ActiveX support
⇒ Package & Deployment Wizard makes distributing your applications simple

Event? Event processor

Basic
Code

Basic
Code

Basic
Code

Chapter 1

- 31 -

1.1: Getting Started

This section helps you get Visual Basic loaded and running, and shows you how to control the
development environment elements.

1.1.1: Starting Visual Basic

The first step in using Visual Basic is launching it and opening existing files or creating new ones.

 u to start Visual Basic 6.0

 1. In Windows, click Start, point to Programs, and point to the Microsoft Visual Basic 6.0
folder.

The icons in the folder appear in a list.

 2. Click the Microsoft Visual Basic 6.0 program icon.

The New Project dialog box appears. This dialog box prompts you for the type of
programming project you want to create.

See the picture of New Project window below.

Figure 1 : New Project Window

3. To accept the default new project, click OK.

- 32 -

In the Visual Basic development environment, a new project (a standard, 32-bit Visual Basic
application) and the related windows and tools open.

See the picture below.

Figure 2: Visual Basic Environment

- 33 -

The Visual Basic development environment contains these programming tools and windows, with
which you construct your Visual Basic programs:

® Menu bar

® Toolbars

® Visual Basic toolbox

® Form window

® Properties window

® Project Explorer

® Immediate window

® Form Layout window

The exact size and shape of the windows depends on how your system has been configured. In
Visual Basic 6.0, you can align and attach (dock) the windows to make all the elements of the
programming system visible and accessible. You’ll learn how to customize your development
environment in Moving, Docking, and Resizing Windows.

1.1.2: Loading and Running a Program

Before you can work with a Visual Basic program, you need to load the program into memory,
just as you would load a word processing document in a word processor for editing.

u To load a Visual Basic program into memory and run it

 1. On the File menu, click Open Project.

The Open Project dialog box appears. With this dialog box, you can open any existing Visual
Basic program on your hard disk, attached network drive, CD-ROM, or floppy disk.

 2. If necessary, use the Look In drop-down list box and the Up One Level button to locate
the program you want to load. Then, double-click the program name.

The project file loads the Visual Basic user interface form, properties, and program code.
(Visual Basic project files are distinguished by the .VBP file name extension.)

 3. If the program user interface does not appear, open the Forms folder in the Project window,
select the first form, and then click View Object in the Project window.

This is an optional but useful step, especially if you want to look at the program user interface
in the Form window before you run it.

 4. On the Visual Basic Standard toolbar, click Start to run the program.

The toolbox and several of the other windows disappear, and the Visual Basic program starts
to run.

 5. On the toolbar, click End when you want to exit the program.

- 34 -

1.2: Visual Basic Resources

1.2.1: Programming Tools

The location and purpose of the Visual Basic 6.0 programming tools are described in the
following.

Menu bar Located at the top of the screen, the menu bar provides access to the commands that

control the Visual Basic programming environment. Menus and commands work according to
standard conventions used in all Windows-based programs. You can use these menus and
commands by using keyboard commands or the mouse.

Toolbars Located below the menu bar, toolbars are collections of buttons that serve as
shortcuts for executing commands and controlling the Visual Basic development environment. You
can open special-purpose toolbars by using the View menu Toolbars command.

Windows taskbar This taskbar is located along the bottom of the screen. You can use the
taskbar to switch between Visual Basic forms as your program runs and to activate other Windows-
based programs.

1.2.2: Toolbox Controls

You use special tools, called controls, to add elements of a program user interface to a form. You
can find these resources in the toolbox, which is typically located along the left side of the screen.
(If the toolbox is not open, display it by using the Toolbox command on the View menu.) By using
toolbox controls, you can add these elements to the user interface:

® Artwork

® Labels and text boxes

® Buttons

® List boxes

® Scroll bars

® File system controls

® Timers

® Geometric shapes

® Data and OLE controls.

- 35 -

See below to view an illustration of the standard contents of the toolbox.

Figure 3: Toolbox Controls

Visible and Invisible Controls
When a Visual Basic program runs, most toolbox controls operate like the standard objects in any
Windows -based application — and they will be visible to the user. However, the toolbox also
contains controls that can be used to perform special, behind-the-scenes operations in a Visual
Basic program. The powerful objects you create with these controls do useful work but can be
made invisible to the user when the program runs. These objects can be used for:

® Manipulating database information.

® Working with Windows-based applications.

® tracking the passage of time in your programs.

- 36 -

1.2.3: Form Window

When you start Visual Basic, a default form (Form1) with a standard grid (a window consisting of
regularly spaced dots) appears in a pane called the Form window. You can use the Form window
grid to create the user interface and to line up interface elements.

Figure 4: Form Window

Building Interface Elements
To build the interface elements, you click an interface control in the Visual Basic toolbox, and
then you draw the user interface element on your form by using the mouse. This process is
usually a simple matter of clicking to position one corner of the element and then dragging to
create a rectangle the size you want. After you create the element — say, a text box — you can
refine it by setting properties for the element. In a text box, for example, you can set properties to
make the text boldface, italic, or underlined.

Adjusting Form Size
You can adjust the size of the form by using the mouse — the form can take up part or the entire
screen.

Controlling Form Placement
To control the placement of the form when you run the program, adjust the placement of the form
in the Form Layout window.

- 37 -

1.2.4: Properties Window

With the Properties window, you change the characteristics (property settings) of the user
interface elements on a form. A property setting is a characteristic of a user interface object. For
example, you can change the text displayed by a text box control to a different font, point size, or
alignment. (With Visual Basic, you can display text in any font installed on your system, just as
you can in Microsoft Excel or Microsoft Word.)

Displaying the Properties Window
To display the Properties window, click the Properties Window button on the toolbar. If the
window is currently docked, you can enlarge it by double-clicking the title bar. To redock the
Properties window, double-click its title bar again.

Figure 5: Properties Window

Properties Window Elements
The Properties window contains the following elements:

® A drop-down list box at the top of the window, from which you select the object whose
properties you want to view or set.

® Two tabs, which list the properties either alphabetically or by category.

® A description pane that shows the name of the selected property and a short description of it.

Changing Property Settings
You can change property settings by using the Properties window while you design the user
interface or by using program code to make changes while the program runs.

- 38 -

1.2.5: Project Window

A Visual Basic program consists of several files that are linked together to make the program run.
The Visual Basic 6.0 development environment includes a Project window to help you switch
back and forth between these components as you work on a project.

Figure 6: Project Explorer Window

Project Window Components
The Project window lists all the files used in the programming process and provides access to
them with two special buttons: View Code and View Object.

Displaying the Project Window
To display the Project window, click the Project Explorer button on the Visual Basic toolbar. If
the window is currently docked, you can enlarge it by double-clicking the title bar. To re-dock the
Project window, double-click its title bar again.

Adding and Removing Files
The project file maintains a list of all the supporting files in a Visual Basic programming project.
You can recognize project files by their .vbp file name extension.

You can add individual files to and remove them from a project by using commands on the
Project menu. The changes that you make will be reflected in the Project window.

Note In Visual Basic versions 1 through 3, project files had the .mak file name extension. In
Visual Basic versions 4, 5, and 6.0, project files have the .vbp file name extension.

Adding Projects
If you load additional projects into Visual Basic with the File menu Add Project command,
outlining symbols appear in the Project window to help you organize and switch between
projects.

- 39 -

1.2.6: Code Window

You can create much of your program by using controls and setting properties. However, most
Visual Basic programs require additional program code that acts as the brains behind the user
interface that you create. This computing logic is created using program statements — keywords,
identifiers, and arguments — that clearly spell out what the program should do each step of the
way.

You enter program statements in the Code window, a special text editing window designed
specifically for Visual Basic program code. You can display the Code window in either of two
ways:

® By clicking View Code in the Project window.

® By clicking the View menu Code command.

1.2.7: Form Layout Window

The Form Layout window is a visual design tool. With it, you can control the placement of the
forms in the Windows environment when they are executed. When you have more than one form
in your program, the Form Layout window is especially useful — you can arrange the forms
onscreen exactly the way you want.

To position a form in the Form Layout window, simply drag the miniature form to the desired
location in the window.

Figure 7: Form Layout Window

- 40 -

1.3: Developing Visual Basic Programs

1.3.1: Developing Visual Basic Programs

If you haven’t written a program before, you might wonder just what a program is and how to
create one in Visual Basic. This section provides an overview of the Visual Basic programming
process.

A program is a set of instructions that collectively cause a computer to perform a useful task,
such as processing electronic artwork or managing files on a network. A program can be quite
small — something designed to calculate a home mortgage — or it can be a large application,
such as Microsoft Excel.

A Visual Basic program is a Windows-based application that you create in the Visual Basic
development environment. This section includes the following topics:

® Planning the Program

® Building the Program

® Testing, Compiling, and Distributing the Program

1.3.1.1: Planning the Program
The first step in programming is determining exactly what you want your program to accomplish.
This sounds simple (isn’t it obvious?), but without a mission statement, even the best
programmer can have trouble building an application he or she is happy with.

Planning a program is a little like planning a barbecue. For a barbecue to go off smoothly, you
need to prepare for it ahead of time. You need to organize the menu, invite your friends, buy the
food, and (most likely) clean your house. But a barbecue can be entertaining if friends just
happen to drop by and bring stuff. Programs, though, usually don’t turn out the best if they’re built
with the stone-soup approach.

Identify your Objectives
Long before you sit down in front of your computer, you should spend some time thinking about
the programming problem you are trying to solve. Up-front planning will save you development
time down the road, and you’ll probably be much happier with the result. One part of the planning
process might be creating an ordered list of programming steps, called an algorithm.

Ask Yourself Questions

When you plan Visual Basic programming projects, you might find it useful to ask yourself the
following questions about your program:

® What is the goal (mission) of the program I am writing?

® Who will use the program?

® What will the program look like when it starts?

® What information will the user enter in the program?

® How will the program process the input?

® What information (output) will the program produce?

When you finish this preliminary work, you’ll be ready to start building the program with Visual
Basic.

- 41 -

1.3.1.2: Building the Program

Building a Windows-based application with Visual Basic involves three programming steps:
creating the user interface, setting the properties, and writing the code. And, of course, your
project must be saved.

These steps are described in the following topics:

® Creating the User Interface

® Setting the Properties

® Writing Program Code

® Saving a Project

Creating the User Interface

After you have established a clear goal for your program, it's important to think about how it will
look and how it will process information. The complete set of forms and controls used in a
program is called the program user interface. The user interface includes all the menus, dialog
boxes, buttons, objects, and pictures that users see when they operate the program. In the Visual
Basic development environment, you can create all the components of a Windows-based
application quickly and efficiently.

Setting the Properties

Properties are programmable characteristics associated with forms and their controls. You can
set these properties either as you design your program (at design time) or while you run it (at run
time). You change properties at design time by selecting an object, clicking the Properties
window, and changing one or more of the property settings. To set properties at run time, you
use Visual Basic program code.

Writing the Program Code

You finish building your program by typing program code for one or more user interface
elements. Writing program code gives you more control over how your program works than you
can get by just setting properties of user interface elements at design time. By using program
code, you completely express your thoughts about how your application:

® Processes data

® Tests for conditions

® Changes the order in which Visual Basic carries out instructions.

The Visual Basic Programming Language

The Visual Basic programming language contains several hundred statements, functions, and
special characters. However, most of your programming tasks will be handled by a few dozen,
easy-to-remember keywords.

In this course, you’ll spend a lot of time exploring the subtleties of writing useful program code
that you can adapt to a variety of situations. For now, though, just keep these points in mind:

® Program code follows a particular form (syntax) required by the Visual Basic compiler.

® You enter and edit program code in the Code window, a special text editor designed to track
and correct (debug) program statement errors.

- 42 -

Saving a Project

After you complete a program or find a good stopping point, you should save the project to disk
with the Save Project As command on the File menu.

-43-

Chapter 2

Visual Basic Fundamentals

2.1 NUMERIC CONSTANTS

Numbers are referred to as numeric constants in Visual Basic. Most numeric constants are expressed as inte-

gers (whole numbers that do not contain a decimal point or an exponent), long integers (similar to integers

with an extended range), single-precision real quantities (numbers that include a decimal point, an exponent,

or both), or double-precision real quantities (similar to single-precision real quantities with an extended range

and greater precision). The following rules apply to numeric constants:

1. Commas cannot appear anywhere in a numeric constant.

2. A numeric constant may be preceded by a + or a − sign. The constant is understood to be positive if a sign

does not appear.

3. An integer constant occupies two bytes. It must fall within the range −32,768 to 32,767. It cannot contain

either a decimal point or an exponent.

4. A long integer constant occupies four bytes. It must fall within the range −2,147,483,648 to

2,147,483,647. It cannot contain either a decimal point or an exponent.

5. A single-precision real constant occupies four bytes. It can include a decimal point and as many as seven

significant figures. However, its magnitude cannot exceed approximately 3.4 × 1038.

A single-precision real constant can include an exponent if desired. Exponential notation is similar to

scientific notation, except that the base 10 is replaced by the letter E. Thus, the quantity 1.2 × 10−3 could

be written as 1.2E−3. The exponent itself can be either positive or negative, but it must be a whole num-

ber; i.e., it cannot contain a decimal point.

6. A double-precision real constant occupies eight bytes. It can include a decimal point and as many as fif-

teen significant figures. However, its magnitude cannot exceed approximately 1.8 × 10308.

A double-precision real constant can include an exponent if desired. Double-precision exponential no-

tation is similar to scientific notation, except that the base 10 is replaced by the letter D. Thus, the quantity

1.6667 × 10-3 could be written as 1.6667D−3. The exponent itself can be either positive or negative, but

it must be a whole number; i.e., it cannot contain a decimal point.

EXAMPLE 2.1

Several Visual Basic numeric constants are shown below. Note that each quantity (each row) can be written in several

different ways.

 0 +0 −0

 1 +1 0.1E+1 10E−1

 −5280 −5.28E+3 −.528E4 −52.8E2

 1492 0.1492D+4 1.492D+3 +14.92D2

 −.0000613 −6.13E−5 −613E−7 −0.613E−4

 3000000 3D6 3D+6 0.3D7

2.2 STRING CONSTANTS

A string constant is a sequence of characters (i.e., letters, numbers and certain special characters, such as +, −,

/, *, =, $, ., etc.), enclosed in quotation marks. Blank spaces can be included within a string. A quotation mark

can also be placed within a string, but it must be written as two adjacent quotation marks (see the last line in

the example below).

String constants are used to represent nonnumeric information, such as names, addresses, etc. There is no

practical restriction on the maximum number of characters that can be included within a string constant. Thus,

the maximum length of a string constant can be considered infinite.

EXAMPLE 2.2

Several string constants are shown below.

 "SANTA CLAUS" "Please type a value for C:"

 "$19.95" "Welcome to the 21st Century"

 "X1 = " "3730425"

 "The answer is " "Do you wish to try again?"

2.3 VARIABLES

A variable is a name that represents a numerical quantity, a string, or some other basic data item (e.g., a date,

true/false condition, etc.). The following rules apply to the naming of variables:

1. A variable name must begin with a letter. Additional characters may be letters or digits. Certain other char-

acters may also be included, though the period and special data-typing characters (e.g., %, &, !, #, and $)

are not permitted. In general, it is good programming practice to avoid the use of characters other than

letters and digits.

2. A variable name cannot exceed 255 characters. As a practical matter, however, variable names rarely ap-

proach this size.

3. Visual Basic does not distinguish between uppercase and lowercase letters. Many programmers use upper-

case letters as word separators within a single variable name (e.g., FreezingPoint, TaxRate, etc.)

4. Visual Basic includes a number of reserved words (e.g., Dim, If, Else, Select, Case, Do, etc.). These

reserved words represent commands, function names, etc. They cannot be used as variable names.

-44-

EXAMPLE 2.3

Several variable names are shown below.

 Area Radius X xmax C3

 Counter CustomerName Account_Number UnpaidBalance

2.4 DATA TYPES AND DATA DECLARATIONS

Visual Basic supports all common data types, including Integer, Long (i.e., long integer), Single, Double and

String. The language also supports other data types, such as Boolean, Byte, Currency and Date data, as well as

Variant-type data (see below) and user-defined data types.

The Dim statement is used to associate variables with specific data types. This process, which is common

to all modern programming languages, is known as data declaration, or simply declaration. In general terms,

the Dim statement is written as

 Dim variable name 1 As data type 1, variable name 2 As data type 2, etc.

EXAMPLE 2.4

Several variable declarations are shown below.

 Dim Counter As Integer

 Dim Area As Single

 Dim StudentName As String

 Dim StudentName As String * 30

 Dim TaxRate As Single, Income As Double, Taxes As Double, Dependents As Integer

Variants

Visual Basic allows variables to be undeclared if the programmer so chooses. In such cases, the data type of

the variable is determined implicitly by the value that is assigned to the variable. Such variables are referred to

as Variant-type variables, or simply as variants.

On the surface, the use of variants appears to simplify the program development process. This is a false

perception, however, as the use of variants is computationally inefficient, and it compromises the clarity of a

program. Good programming practice suggests that the use of variants be avoided. Use explicitly declared

variables instead.

Named Constants

It is also possible to define named constants in Visual Basic. Named constants are similar to variables. How-

ever, variables can be reassigned different values within a program, whereas named constants remain un-

changed throughout a program.

-45-

The Const statement is used to declare a named constant. This statement has the general form

 Const constant name As data type = value

EXAMPLE 2.5

Here are some typical named constant declarations:

 Const TaxRate As Single = 0.28

 Const Avogadro As Double = 6.0225D+23

 Const MaxCount As Integer = 100

The first line declares TaxRate to be a single-precision real constant whose value is 0.28. The second line defines

Avogadro’s number as a double-precision real constant whose value is 6.0225 × 1023. The last line declares MaxCount as

an integer constant whose value is 100.

Note that the values assigned to TaxRate, Avogadro and MaxCount will remain unchanged throughout the program.

 Suffixes

Rather than declaring a data type explicitly (using a Dim or Const statement), a variable or named constant can

be associated with a data type by adding a single-character suffix to the end of the variable/constant name. Sev-

eral of the more commonly used suffixes are listed below.

Suffix Data Type

% integer

& long integer

! single

double

$ string

EXAMPLE 2.6

Shown below are several variables whose data types are defined by suffixes.

Variable Data Type

Index% integer

Counter& long integer

TaxRate! single

Ratio# double

CustomerName$ string

-46-

The standard arithmetic operators are

Addition: +

Subtraction: −

Multiplication: *

Division: /

Exponentiation: ^

When arithmetic operators appear within an arithmetic expression, the indicated operations are carried out

on the individual terms within the expression, resulting in a single numerical value. Thus, an arithmetic expres-

sion represents a specific numerical quantity.

EXAMPLE 2.7

Several arithmetic expressions are presented below.

 2 * j + k − 1 2 * (j + k – 1)

 first + second − third (a ^ 2 + b ^ 2) ^ 0.5

 4 * Pi * Radius ^ 3 / 3 (5 / 9) * (F – 32)

 b ^ 2 − (4 * a * c) (2 * x − 3 * y) / (u + v)

Each expression represents a numerical quantity. Thus, if the variables a, b and c represent the quantities 2, 5 and 3, re-

spectively, the expression a + b - c will represent the quantity 4.

Visual Basic also includes two additional arithmetic operators:

Integer division \ (backward slash)

Integer remainder Mod

In integer division, each of the two given numbers is first rounded to an integer; the division is then carried out

on the rounded values and the resulting quotient is truncated to an integer. The integer remainder operation

(Mod) provides the remainder resulting from an integer division.

EXAMPLE 2.8

The results of several ordinary division, integer division and integer remainder operations are shown below.

 13/5 = 2.6 13\5 = 2 13 Mod 5 = 3

 8.6/2.7 = 3.185185 8.6\2.7 = 3 8.6 Mod 2.7 = 0

 8.3/2.7 = 3.074074 8.3\2.7 = 2 8.3 Mod 2.7 = 2

 8.3/2.2 = 3.772727 8.3\2.2 = 4 8.3 Mod 2.2 = 0

-47-

2.5 OPERATORS AND EXPRESSIONS

Special symbols, called arithmetic operators, are used to indicate arithmetic operations such as addition, sub-

traction, multiplication, division and exponentiation. These operators are used to connect numeric constants

and numeric variables, thus forming arithmetic expressions.

2.6 HIERARCHY OF OPERATIONS

Questions in meaning may arise when several operators appear in an expression. For example, does the expres-

sion 2 * x − 3 * y correspond to the algebraic term (2x) − (3y) or to 2 (x − 3y)? Similarly, does the expression

a / b * c correspond to a/(bc) or to (a/b)c? These questions are answered by the hierarchy of operations and

the order of execution within each hierarchical group.

The hierarchy of operations is

1. Exponentiation. All exponentiation operations are performed first.

2. Multiplication and division. These operations are carried out after all exponentiation operations have

been performed. Multiplication does not necessarily precede division.

3. Integer division. Integer division operations are carried out after all multiplication and (ordinary) divi-

sion operations.

4. Integer remainder. Integer remainder operations are carried out after all integer divisions operations.

5. Addition and subtraction. These operations are the last to be carried out. Addition does not necessar-

ily precede subtraction.

Within a given hierarchical group, the operations are carried out from left to right.

EXAMPLE 2.9

The arithmetic expression

 a / b * c

is equivalent to the mathematical expression (a/b) c, since the operations are carried out from left to right.

Similarly, the arithmetic expression

 b ^ 2 − 4 * a * c

is equivalent to the mathematical expression b2 − (4ac). In this case, the quantity b ^ 2 is formed initially, followed by

the product 4 * a * c [first 4 * a, then (4 * a) * c]. The subtraction is performed last, resulting in the final numeri-

cal quantity (b ^ 2) − (4 * a * c).

-48-

 [2(a + b)2 + (3c)2] m / (n+1)

A Visual Basic expression corresponding to this algebraic term is

 (2 * (a + b) ^ 2 + (3 * c) ^ 2) ^ (m / (n + 1))

If there is some uncertainty in the order in which the operations are carried out, we can introduce additional pairs of

parentheses, giving

 ((2 * ((a + b) ^ 2)) + ((3 * c) ^ 2)) ^ (m / (n + 1))

Both expressions are correct. The first expression is preferable, however, since it is less cluttered with parentheses and

therefore easier to read.

EXAMPLE 2.10

Suppose we want to evaluate the algebraic term

2.8 DISPLAYING OUTPUT – THE Print STATEMENT

The Print statement is used to display information within the currently active form, beginning in the upper

left corner. This statement is not used often in Visual Basic projects. However, it is very convenient for dis-

playing the results of very simple programs, and it provides a way to view the results of small program seg-

ments during the development of a large project.

The Print statement consists of the keyword Print, followed by a list of output items. The output items

can be numeric constants, string constants, or expressions. Successive items must be separated either by com-

mas or semicolons. Commas result in wide separation between data items; semicolons result in less separation.

Each new Print statement will begin a new line of output. An empty Print statement will result in a blank

line.

EXAMPLE 2.11

A Visual Basic program contains the following statements.

Dim Student As String, X As Integer, C1 As Single, C2 As Single

.

Student = "Aaron"

X = 39

C1 = 7

C2 = 11

.

Print "Name:", Student, X, (C1 + C2) / 2

The Print statement will generate the following line of output:

Name: Aaron 39 9

If the Print statement had been written with semicolons separating the data items, e.g.,

Print "Name:"; Student; X; (C1 + C2) / 2

then the output data would be spaced more closely together, as shown below.

Name: Aaron 39 9

Now suppose the original Print statement had been replaced by the following three successive Print statements:

Print "Name:"; Student

Print

Print X,, (C1 + C2) / 2

Notice the repeated comma in the last Print statement.

The output would appear as

Name: Aaron

39 9

The empty Print statement would produce the blank line separating the first and second lines of output. Also, the re-

peated comma in the last Print statement would increase the separation between the two data items.

-49-

2.9 LIBRARY FUNCTIONS

Visual Basic contains numerous library functions that provide a quick and easy way to carry out many mathe-

matical operations, manipulate strings, and perform various logical operations. These library functions are

prewritten routines that are included as an integral part of the language. They may be used in place of variables

within an expression or a statement. Table 2.1 presents several commonly used library functions.

A library function is accessed simply by stating its name, followed by whatever information must be sup-

plied to the function, enclosed in parentheses. A numeric quantity or string that is passed to a function in this

manner is called an argument. Once the library function has been accessed, the desired operation will be car-

ried out automatically. The function will then return the desired value.

Table 2.1 Commonly Used Library Functions

Function Application Description

 Abs y = Abs(x) Return the absolute value of x; y = |x|.

 CDbl, CInt, CSng, y = CInt(x) Convert x to the appropriate data type (CDbl converts to

 CStr, CVar, etc. double, CInt to integer, CSng to single, etc.).

 Chr y = Chr(x) Return the character whose numerically encoded

 value is x. For example, in the ASCII character set,
 Chr(65) = "A".

 Cos y = Cos(x) Return the cosine of x (x must be in radians).

 Date y = Date Return the current system date.

 Exp y = Exp(x) Return the value of e to the x power; y = ex.

 Format y = Format(x, “frmt str”) Return the value of x in a format designated by “frmt str”

 (format string). Note that the format string may take on

 several different forms.
 Int y = Int(x) Return the largest integer that algebraically does
 not exceed x. For example, Int(-1.9) = -2.

 Lcase y = Lcase(x) Return the lowercase equivalent of x.

 Left y = Left(x, n) Return the leftmost n characters of the string x.

 Len y = Len(x) Return the length (number of characters) of x.

 Log y = Log(x) Return the natural logarithm of x; y = loge(x), x > 0.

 Mid y = Mid(x, n1, n2) Return the middle n2 characters of the string x,

 beginning with character number n1.

 Right y = Right(x, n) Return the rightmost n characters of the string x.

 Rnd y = Rnd Return a random number, uniformly distributed

 within the interval 0 ≤ y <1.

 Sgn y = Sgn(x) Determine the sign of x; (y = +1 if x is positive, y= 0

 if x = 0, and y = −1 if x is negative).

 Sin y = Sin(x) Return the sine of x (x must be in radians).

 Sqr y = Sqr(x) Return the square root of x; xy = , x > 0.

 Str y = Str(x) Return a string whose characters comprise the value of x.

 For example, Str(-2.50) = "-2.50".

 Tan y = Tan(x) Return the tangent of x (x must be in radians).

 Time y = Time Return the current system time.

 Ucase y = Ucase(x) Return the uppercase equivalent of x.

 Val y = Val(x) Return a numeric value corresponding to the string x,

 providing x has the appearance of a number. For example,
 Val("-2.50") = -2.5.

-50-

EXAMPLE 2.12

Suppose we wanted to calculate the square root of the value represented by the expression Area / 3.141593, using the

library function Sqr. To do so, we could write

 Radius = Sqr(Area / 3.141593)

Notice that the argument of Sqr is the numeric expression (Area / 3.141593).

Of course, we could also have written

 Radius = (Area / 3.141593) ^ 0.5

EXAMPLE 2.13

The Int function can be confusing, particularly with negative arguments. The values resulting from several typical func-

tion calls are shown below.

 Int(2.3) = 2 Int(−2.3) = −3

 Int(2.7) = 2 Int(−2.7) = −3

Remember that Int produces a value whose magnitude is equal to or smaller than its argument if the argument is

positive, and equal to or larger (in magnitude) than its argument if the argument is negative.

Some functions, such as Log and Sqr, require positive arguments. If a negative argument is supplied, an

error message will be generated when an attempt is made to evaluate the function.

EXAMPLE 2.14

A Visual Basic program contains the statements

 x = −2.7

 y = Sqr(x) (Notice the negative value assigned to x.)

When the program is executed, the following error message will be displayed:

 Run-time error '5':

 Invalid procedure call or argument

The execution will then cease.

Similarly, the statement

 y Log(x)

will produce the same error message when the program is executed.

-51-

EXAMPLE 2.15

The Format function allows a data item to be displayed in many different forms. Several possibilities are shown below.

Many other variations are possible.

Expression Result

Print Format(17.66698, “##.##”) 17.67

Print Format(7.66698, “##.##”) 7.67 (note the leading blank space)

Print Format(0.66667, “##.###”) .667 (note the leading blank spaces)

Print Format(0.66667, “#0.###”) 0.667 (note the leading blank space)

Print Format(12345, “##,###”) 12,345

Print Format(12345, “##,###.00”) 12,345.00

Print Format(“Basic”, “&&&&&&&&”) Basic

Print Format(“Basic”, “@@@@@@@@”) Basic (note the leading blank spaces)

Print Format(Now, “mm-dd-yyyy”) 1-20-2001

Print Format(Now, “mm/dd/yy”) 1/20/01

Print Format(Now, “hh:mm:ss am/pm”) 04:47:51 pm

Note that Now is a predefined Visual Basic variable that represents the current date and time, as determined by the

computer’s real-time clock.

2.10 PROGRAM COMMENTS

Comments provide a convenient means to document a program (i.e., to provide a program heading, to identify

important variables, to distinguish between major logical segments of a program, to explain complicated logic,

etc.). A comment consists of a single apostrophe ('), followed by a textual message. Comments can be inserted

anywhere in a Visual Basic program. They have no effect on the program execution.

EXAMPLE 2.16

A Visual Basic program includes the following statements:

 'Program to Calculate the Roots of a Quadratic Equation

 X1 = (−b + root) / (2 * a) 'calculate the first root
 X2 = (−b − root) / (2 * a) 'calculate the second root

 Print X1, X2

The entire first line is a comment, which serves as a program heading. On the other hand, the last two lines each have

a comment attached at the end of an executable statement. Note that each comment begins with a single apostrophe.

-52-

Chapter 3

Branching and Looping

3.1 COMPARISON OPERATORS

In order to carry out branching operations in Visual Basic, we must be able to express conditions of equality

and inequality. To do so, we make use of the following comparison operators:

Equal: =

Not equal: <>

Less than: <

Less than or equal to: <=

Greater than: >

Greater than or equal to: >=

- 53 -

3.2 LOGICAL OPERATORS

In addition to the relational operators, Visual Basic contains several logical operators. They are

(exclusive or)

And will result in a condition that is true if both expression are true

Or will result in a condition that is true if either expression is true,or if they are both true

Xor will result in a condition that is true only if one of the expressions is true and
the other is false.

Not is used to reverse the value of a logical expression (e.g., from true to false, or false to true).

3.3 BRANCHING WITH THE If-Then BLOCK

An If-Then block is used to execute a single statement or a block of statements on a conditional basis. There

are two different forms. The simplest is the single-line, single-statement If-Then, which is written as

 If logical expression Then executable statement

The executable statement will be executed only if the logical expression is true. Otherwise, the statement

following If-Then will be executed next. Note that the executable statement must appear on the same line as

the logical expression; otherwise, an End If statement will be required (see below).

EXAMPLE 3.1

A typical situation utilizing an If-Then statement is shown below.

 If x < 0 Then x = 0

 Sum = Sum + x

Here is a more general form of an If-Then

block:

 If logical expression Then

 executable statements

 End If

- 54 -

EXAMPLE 3.2

The following If-Then block permits a single group of statements to be executed conditionally.

 IF income <= 14000 THEN

 tax = 0.2 * pay

 net = pay - tax

 END IF

The assignment statements will be executed only if the logical expression income <= 14000 is true.

dell
Rectangle

dell
Rectangle

dell
Rectangle

3.4 BRANCHING WITH If-Then-Else BLOCKS

An If-Then-Else block permits one of two different groups of executable statements to be executed,

depending on the outcome of a logical test. Thus, it permits a broader form of branching than is available with

a single If-Then block.

In general terms, an If-Then-Else block is written as

 If logical expression Then

 executable statements

 Else

 executable statements

 End If

EXAMPLE 3.3

A typical If-Then-Else sequence is shown below. This sequence allows us to calculate either the area and circumference

of a circle or the area and circumference of a rectangle, depending on the string that is assigned to the variable form.

 pi = 3.141593

 If (form = "circle") THEN 'circle

 area = pi * radius ^ 2

 circumference = 2 * pi * r

 Else 'rectangle

 area = length * width

 circumference = 2 * (length + width)

 End If

- 55 -

- 55 -

A more general form of the If-Then-Else block can be written as

 If logical expression 1 Then

 executable statements

 ElseIf logical expression 2 Then

 executable statements

 repeated ElseIf clauses

 Else

 executable statements

 End If

dell
Rectangle

dell
Rectangle

dell
Rectangle

dell
Rectangle

- 56 -

a

acbb
x

2

42

1
−+−

=

a

acbb
x

2

42

2
−−−

=

provided the quantity b2 − 4ac is positive.

If b2 − 4ac is zero, we have a single (repeated) real root, determined as

x = −b / 2a

If b2 − 4ac is negative, we have two complex roots. In this case,

a

ibacb
x

2

4 2

1
−+−=

a

ibacb
x

2

4 2

2
−−−=

where i represents the imaginary number 1−

In Visual Basic, we can accommodate these three situations with a group of If-Then-ElseIf-Else

shown below.

EXAMPLE 3.4 ROOTS OF A QUADRATIC EQUATION

The roots of the quadratic equation ax2 + bx + c = 0 can be determined using the well-known formulas

 'Roots of a Quadratic Equation

 Dim a, b, c, d, x, x1, x2, real, imag 'variant data types

 d = (b ^ 2 − 4 * a * c)

 If d > 0 Then 'real roots

 x1 = (−b + Sqr(d)) / (2 * a)
 x2 = (−b - Sqr(d)) / (2 * a)

 ElseIf d = 0 Then 'repeated root

 x = −b / (2 * a)

 Else 'complex roots

 real = −b / (2 * a)
 imag = Sqr(−d) / (2 * a)

 End If

3.5 SELECTION: Select Case

One way to select a block of statements from several competing blocks is to use a series of If-Then-Else or

If-Then-ElseIf-Else blocks. This can be tedious, however, if the number of competing blocks is

moderately large. The Select Case structure frequently offers a simpler approach to this type of situation.

The most common form of the Select Case

structure is written in general terms as

- 57 -

 Select Case expression

 Case value1

 executable statements

 Case value2

 executable statements

 Case Else

 executable statements

 End Select

EXAMPLE 3.5

Here is a Visual Basic program segment that makes use of a Select Case structure.

 'Raise x to a Selected Power

 Dim x, z, n As Integer

 Select Case n 'select a group of statements

 Case 1 'x ^ 1

 z = x

 Case 2 'x ^ 2

 z = x ^ 2

 Case 3 'x ^ 3

 z = x ^ 3

 Case Else 'error

 MsgBox("ERROR - Please try again")

 End Select

dell
Rectangle

dell
Rectangle

- 58 -

3.6 LOOPING WITH For-Next

The For-Next structure is a block of statements that is used to carry out a looping operation; that is, to

execute a sequence of statements some predetermined number of times. The structure begins with a For-To

statement and ends with a Next statement. In between are the statements to be executed.

In its simplest form, a For-Next structure is written as

 For index = value1 To value2

 executable statements

 Next index

EXAMPLE 3.6

A typical For-To loop structure is shown below.

 sum = 0

 For i = 1 To 10

 sum = sum + i

 Next i

This structure will result in 10 passes through the loop. During the first pass, i will be assigned a value of 1; i will

then increase by 1 during each successive pass through the loop, until it has reached its final value of 10 in the last pass.

Within each pass, the current value of i is added to sum. Hence, the net effect of this program segment is to determine the

sum of the first 10 integers (i.e., 1 + 2 + . . . + 10).

A more general form of the For-Next structure can be written as

 For index = value1 To value2 Step value3

 executable statements

 Next index

EXAMPLE 3.7

The loop structure

 sum = 0

 For count = 2.5 To -1 STEP -0.5

 sum = sum + count

 Next count

will cause count to take on the values 2.5, 2.0, 1.5, . . ., 0.0, -0.5, -1.0. Hence, the final value of sum

will be 6.0 (because 2.5 + 2.0 + 1.5 + 1.0 + 0.5 + 0.0 – 0.5 – 1.0 = 6.0). Note that this structure will generate a total of

eight passes through the loop.

dell
Rectangle

dell
Rectangle

dell
Rectangle

dell
Rectangle

3.7 LOOPING WITH Do-Loop

In addition to For-Next structures, Visual Basic also includes Do-Loop structures, which are convenient

when the number of passes through a loop is not known in advance (as, for example, when a loop is required to

continue until some logical condition has been satisfied).

A Do-Loop structure always begins with a Do statement and ends with a Loop statement. However, there

are four different ways to write a Do-Loop structure. Two of the forms require that a logical expression appear

in the Do statement (i.e., at the beginning of the block); the other two forms require that the logical expression

appear in the Loop statement (at the end of the block).

The general forms of the Do-Loop structure are shown below.

First form: Second form:

Do While logical expression Do Until logical expression

 executable statements executable statements

Loop Loop

- 59 -

Third form: Fourth form:

Do Do

 executable statements executable statements

Loop While logical expression Loop Until logical expression

The first form continues to loop as long as the logical expression is true, whereas the second form

continues to loop as long as the logical expression is not true (until the logical expression becomes true).

Similarly, the third form continues to loop as long as the logical expression is true, whereas the fourth form

continues to loop as long as the logical expression is not true.

Note that there is a fundamental difference between the first two forms and the last two forms of the Do-

Loop block. In the first two forms, the logical test is made at the beginning of each pass through the loop;

hence, it is possible that there will not be any passes made through the loop, if the indicated logical condition is

not satisfied. In the last two forms, however, the logical test is not made until the end of each pass; therefore, at

least one pass through the loop will always be carried out.

EXAMPLE 3.8

Consider the following two Do-Loop structures.

 Private Sub Command1_click()

 Do While Name<>"Ali"

 Private Sub Command1_click()
Dim Name As String

Dim Name As String

Do
Name=InputBox("EnterYournameor Ali To quit") Name=InputBox("EnterYournameor Ali To quit")

If Name<> "Ali" Then Print Name

Loop

If Name<> "Ali" Then Print Name

Loop While Name<>"Ali"

End Sub End Sub

dell
Rectangle

dell
Rectangle

dell
Rectangle

dell
Rectangle

dell
Rectangle

dell
Rectangle

dell
Rectangle

EXAMPLE 3.9

sum = 0

count = 1

Do While count <= 10

 sum = sum + count

 count = count + 1

Loop

This structure will result in 10 passes through the loop. Note that count is assigned a value of 1 before entering the loop.

The value of count is then incremented by 1 during each pass through the loop. Once the value of count exceeds 10, the

execution will cease.

- 60 -

Here is another way to accomplish the same thing.

 sum = 0

 count = 1

 Do

 sum = sum + count

 count = count + 1

 Loop While count <= 10

If we choose to use an Until clause rather than a While clause, we can write the control structure in either of the

following ways.

sum = 0 sum = 0

count = 1 count = 1

Do Until count > 10 Do

 sum = sum + count sum = sum + count

 count = count + 1 count = count + 1

Loop Loop Until count > 10

Note that the logical expression in these two structures (count > 10) is the opposite of the logical expression in the first

two structures (count <= 10).

Control can be transferred out of a Do-Loop block using the Exit Do statement. This statement is

analogous to Exit For, which is used with For-Next blocks. Thus, when an Exit Do statement is

encountered during program execution, control is transferred out of the Do-Loop block to the first executable

statement following Loop.

EXAMPLE 3.10

 . sum = 0

 count = 1

 Do While count <= 10

 sum = sum + count

 If sum >= 10 Then

 Exit Do

 count = count + 1

 Loop

dell
Rectangle

Chapter 4
__

Visual Basic Control Fundamentals

4.1 VISUAL BASIC CONTROL TOOLS

In Chapter 1 we saw that the Visual Basic Toolbox (shown below in Fig. 4.1) contains a collection of control

tools, such as labels, text boxes and command buttons. These controls, together with customized menus, allow

us to build a broad variety of graphical user interfaces. In this chapter we will focus on several of the more

commonly used Toolbox control tools. These tools, together with the material covered in the previous two

chapters, will allow us to write complete Visual Basic programs.

Fig. 4.1 The Visual Basic toolbox

OLE Container

Shape (Drawing)

Image Box

Directory List Box

Timer

Horizontal Scroll Bar

Combo Box

Check Box

Frame

Label Text Box

Command Button

List Box

Option Button

Vertical Scroll Bar

Drive List Box

File List Box

Line (Drawing)

Data

Picture Box Pointer

- 61 -

Here, in alphabetical order, is a brief description of each control tool:

Check Box

Provides a means of specifying a Yes/No response. Within a group of check boxes, any number of boxes can

be checked, including none. (See also the Option Box description.)

Combo Box

Combines the capabilities of a text box and a list box. Thus, it provides a collection of text items, one of which

may be selected from the list at any time during program execution. Text items can be assigned initially, or

they can be assigned during program execution. In addition, the user can enter a text item at any time during

program execution.

Command Button

Provides a means of initiating an event action by the user clicking on the button.

Data

Provides a means of displaying information from an existing database.

Directory List Box

Provides a means of selecting paths and directories (folders) within the current drive.

Drive List Box

Provides a means of selecting among existing drives.

File List Box

Provides a means of selecting files within the current directory.

Frame

Provides a container for other controls. It is usually used to contain a group of option buttons, check boxes or

graphical shapes.

Horizontal Scroll Bar

Allows a horizontal scroll bar to be added to a control (if a horizontal scroll bar is not included automatically).

Image Box

Used to display graphical objects, and to initiate event actions. (Note that an Image Box is similar to a Picture

Box. It redraws faster and can be stretched, though it has fewer properties than a Picture Box.)

Label

Used to display text on a form. The text cannot be reassigned during program execution, though it can be hid-

den from view and its appearance can be altered. (See also the Text Box description.)

- 62 -

Line

Used to draw straight-line segments within forms. (See also the Shape tool description.)

List Box

Provides a collection of text items. One text item may be selected from the list at any time during program exe-

cution. Text items can be assigned initially, or they can be assigned during program execution. However, in

contrast to a text box, the user cannot enter text items to a list box during program execution. (Note that a

combo box combines the features of a list box and a text box).

OLE Container

Allows a data object to be transferred from another Windows application and embedded within the Visual Ba-

sic application.

Option Button

Provides a means of selecting one of several different options. Within a group of option buttons, one and only

one can be selected. (See also the Check Box description.)

Picture Box

Used to display graphical objects or text, and to initiate event actions. (Note that a Picture Box is similar to an

Image Box. It has more properties than an Image Box, though it redraws slower and cannot be stretched.)

Pointer

The pointer is not really a control tool, in the true sense of the word. When the pointer is active, the mouse can

be used to position and resize other controls on the design form, and to double-click on the controls, resulting

in a display of the associated Visual Basic code.

Shape

Used to draw circles, ellipses, squares and rectangles within forms, frames or picture boxes. (See also the Line

tool description.)

Text Box

Provides a means of entering and displaying text. The text can be assigned initially, it can be reassigned during

program execution, or it can be entered by the user during program execution. (See also the Label Box and the

Combo Box descriptions.)

Timer

Allows events to occur repeatedly at specified time intervals.

Vertical Scroll Bar

Allows a vertical scroll bar to be added to a control (if a vertical scroll bar is not included automatically).

- 63 -

4.2 CONTROL TOOL CATEGORIES

The control tools can be grouped into the following overall categories: (Keep in mind that some control tools

have multiple uses and are not restricted to the categories listed below.)

Entering Text Drawing

Text Box Line Button

Combo Box Shape Button

Displaying Text Selecting Among Alternatives

Label Check Box

Text Box Option Button

List Box Frame

Combo Box List Box

Displaying Graphics Viewing Windows

Image Box Frame

Picture Box Horizontal Scroll Bar

Frame Vertical Scroll Bar

Managing Files Accessing Existing Data

File List Box Data

Drive List Box

Directory List Box

Initiating Events Linking with Other Objects

Command Button OLE

Executing Timed Events

Timer

4.3 WORKING WITH CONTROLS

A control can be added to the Form Design Window two different ways:

1. By clicking on the desired control tool within the Toolbox, then clicking on the control’s location within
the Form Design Window.

2. By double-clicking on the desired control tool within the Toolbox, automatically placing the control at the

center of the Form Design Window.

A control can be relocated within the Form Design Window by dragging the control to its desired location

(hold down the left mouse button and drag).

A control can be resized within the Form Design Window by dragging one of its edges or corners.

A control can be removed from the Form Design Window by highlighting the control (i.e., by clicking on

it) and then pressing the Delete key.

4.4 NAMING FORMS AND CONTROLS

When an object (i.e., a form or control) is added to the Form Design Window, a generic default name (e.g.,

Form1, List1, List2, Text1, etc.) is automatically assigned to that object. Each name includes a generic identifier

- 64 -

(Form, List, Text, etc.) that identifies the type of object, followed by a number that identifies the order in which

that particular object type has been added to the Form Design Window. Thus, List1 is the name of the first list

box added to the Form Design Window, List2 is the name of the second list box, and so on.

The default names work well for simple applications. For more complicated applications, however, it may

be preferable to assign different names that suggest the purpose of each object. Thus, Students and Addresses

may be preferable to List1 and List2.

Microsoft suggests that such programmer-assigned names include a three-letter prefix suggesting the type

of object. Hence, we might use lstStudents and lstAddresses rather than Students and Addresses, if each ob-

ject is a list box. (The use of prefixes is unnecessary when the default names are used, since the names them-

selves indicate the object type.)

Microsoft recommends the following prefixes for programmer-defined object names:

Object Prefix Object Prefix

Combo Box cbo Label lbl

Check Box chk Line lin

Command Button cmd List Box lst

Data dat Menu mnu

Directory List Box dir OLE ole

Drive List Box drv Option Button opt

File List Box fil Picture Box pic

Frame fra Shape shp

Form frm Text Box txt

Horizontal Scroll Bar hsb Timer tmr

Image Box img Vertical Scroll Bar vsb

4.5 ASSIGNING PROPERTY VALUES TO FORMS AND CONTROLS

The properties associated with each object type are unique, though some, such as Name, BackColor (i.e., back-

ground color), Height and Width, are common to many different object types. The meaning of most properties

is readily apparent. Some, however, require further explanation, particularly certain unique properties that are

required for an object’s special behavior. For information about such properties, you should consult the on-line

help (press F1 or click on the Help menu), related example projects, or printed reference material.

Moreover, each object will have a unique set of values assigned to its properties. These values may be as-

signed at design time (i.e., when the object is first defined, before the application is executed), or at run time

(i.e., while the application is executing).

Design-time assignments are made by selecting a property from the list of properties shown in the Proper-

ties Window (see Fig. 1.5), and then either choosing an appropriate value from the adjoining list of values or

entering a value from the keyboard. These property values will apply when the application first begins to run.

In general terms, a property assignment is written as

 object_name.property = value

where object_name refers to the name of the form or control, property refers to the associated property name,

and value refers to an assignable item, such as a number or a string. The net effect is to assign the value on the

right-hand side of the equal sign to the property on the left. Such assignments can provide initial values to

properties that were formerly undefined, or they may replace previous assignments.

- 65 -

EXAMPLE 4.1 ASSIGNING VALUES TO PROPERTIES

Each of the following commands assigns a run-time value to a text box property.

 Text1.Text = "Welcome to Visual Basic"

 txtMessage.Text = "Welcome to Visual Basic"

 txtMessage.Height = 300

The first line assigns the string “Welcome to Visual Basic” to the Text property associated with text box Text1 (default

name). The second line assigns this same string to the Text property associated with text box txtMessage (programmer-

assigned name). The last line assigns a numerical value to the Height property associated with txtMessage.

Each of these commands either assigns a new value during program execution, or replaces a previously assigned ini-

tial value (i.e., a value assigned during design time).

4.6 EXECUTING COMMANDS (EVENT PROCEDURES AND COMMAND BUTTONS)

An event procedure is an independent group of commands that is executed whenever an “event” occurs during

program execution. Typically, an event occurs when the user takes some action, such as clicking on a control

icon, or dragging an icon to another location. Many (though not all) Visual Basic controls have event proce-

dures associated with them.

Each event procedure begins with a Sub statement, such as Private Sub Command1_Click(), and

ends with an End Sub statement. Between the Sub and End Sub statements is a group of instructions, such as

those discussed in the last two chapters, that are executed when the user initiates the corresponding event. The

parentheses in the Sub statement may contain arguments – special variables that are used to transfer informa-

tion between the event procedure and the “calling” routine.

Command buttons are often used to execute Visual Basic event procedures. Thus, when the user clicks on

a command button during program execution, the statements within the corresponding event procedure are car-

ried out. The statements within the event procedure may involve the properties of controls other than the com-

mand button. For example, a command-button event procedure may result in new values being assigned to the

properties of a label or a text box.

EXAMPLE 4.2 A SAMPLE EVENT PROCEDURE

A typical event procedure is shown below:

Private Sub Command1_Click()

 Label1.Caption = "Hello, " & Text1.Text & "! Welcome to Visual Basic."
 Label1.BorderStyle = 1

 Label1.Visible = True

End Sub

From the first line (i.e., the Sub statement), we see that this event procedure is associated with command button Com-

mand1, and it is a response to a click-type event. The three assignment statements within the event procedure will be exe-

cuted whenever the user clicks the mouse on command button Command1 during program execution.

To enter an event procedure, double-click on the appropriate command button within the Form Design

Window or click once on the command button (to activate it), and then select the Code Editor by

clicking on the leftmost button within the Project Window toolbar (see Fig. 4.2). You may then enter the re-

quired Visual Basic commands within the corresponding event procedure .

- 66 -

Code Editor button

Fig. 4.2 The Visual Basic Project Window

In the next section we will see how the Code Editor is used to enter an event procedure and associate that

event procedure with a command button.

4.7 DISPLAYING OUTPUT DATA (LABELS AND TEXT BOXES)

The most straightforward way to display output data is with a label or a text box. A label can only display out-

put data, though a text box can accept input data as well as display output data. For now, however, we will

work only with output data.

Both of these controls process information in the form of a string. This is not a serious limitation, however,

because numeric values can easily be converted to strings via the Str function .

To display output using a label, the basic idea is to assign a string containing the desired output informa-

tion to the label's Caption property. Similarly, when displaying output using a text box, a string containing the

desired output information is assigned to the text box's Text property. The following example illustrates the

technique.

Fig. 4.3

- 67 -

 WORKING WITH MENUS AND DIALOG BOXES

This chapter focuses on processing input from another source in the user interface: menu
commands and dialog boxes. In this chapter, you will learn how to:

® Add menus to your programs by using the Menu Editor.

® Process menu choices by using program code.

® Use the CommonDialog ActiveX control to display standard dialog boxes.

5.1: Creating Menus

Menus, which are located on the menu bar of a form, contain a list of related commands. When
you click a menu title in a Windows-based program, a list of menu commands should always
appear in a well-organized list.

Most menu commands run immediately after they are clicked. For example, when the user clicks
the Edit menu Copy command, Windows immediately copies information to the Clipboard.
However, if ellipsis points (…) follow the menu command, Visual Basic displays a dialog box that
requests more information before the command is carried out.

This section includes the following topics:

• Using the Menu Editor

• Adding Access and Shortcut Keys

• Processing Menu Choices

5.1.1:Using The Menu Editor
The Menu Editor is a Visual Basic dialog box that manages menus in your programs. With the
Menu Editor, you can:

• Add new menus

• Modify and reorder existing menus

• Delete old menus

• Add special effects to your menus, such as access keys, check marks, and keyboard
shortcuts.

Chapter 5

-68-

See the Figure below for Menu editor Window

Figure 1: The Menu Editor Window

Creating Menu Command Lists

To build lists of menu commands, you first need to create the menus and then add them to the
program menu bar.

 u To create a list of menu commands on a form

 1. Click the form itself (not an object on the form).

 2. On the Visual Basic toolbar, click the Menu Editor icon, or select Menu Editor from the
Tools menu.

 3. In the Caption text box, type the menu caption (the name that will appear on the menu bar),
and then press TAB.

 4. In the Name text box, type the menu name (the name the menu has in the program code).

By convention, programmers use the mnu object name prefix to identify both menus and menu
commands.

 5. To add the menu to your program menu bar, click Next.

The Menu Editor clears the dialog box for the next menu item. As you build your menus, the
structure of the menus and commands appear at the bottom of the dialog box.

 6. In the Caption text box, type the caption of your first menu command.

 7. Press tab, and then type the object name of the command in the Name text box.

 8. With this first command highlighted in the menu list box, click the right arrow button in the
Menu Editor.

In the Menu list box, the command moves one indent (four spaces) to the right. Click the right
arrow button in the Menu Editor dialog box to move items to the right, and click the left arrow
button to move items to the left.

9. Click Next, and then continue to add commands to your menu.

-69-

The position of list box items determines what they are:

List box item Position

Menu title Flush left
Menu command One indent
Submenu title Two indents
Submenu command Three indents

 u To add more menus

 1. When you’re ready to add another menu, click the left arrow button to make the menu flush
left in the Menu list box.

 2. To add another menu and menu commands, repeat Steps 3 through 9 in the preceding
procedure.

 3. When you’re finished entering menus and commands, click OK to close the Menu Editor.
(Don’t accidentally click Cancel or all your menu work will be lost.)

The Menu Editor closes, and your form appears in the programming environment with the
menus you created.

Adding Event Procedures

After you add menus to your form, you can use event procedures to process the menu
commands. Clicking a menu command on the form in the programming environment displays the
event procedure that runs when the menu command is chosen. You’ll learn how to create event
procedures that process menu selections in Processing Menu Choices.

5.1.2: Adding Access and Shortcut Keys
Visual Basic makes it easy to provide access key and shortcut key support for menus and menu
commands.

Access and Shortcut Keys
The access key for a command is the letter the user can press to execute the command when the
menu is open. The shortcut key is the key combination the user can press to run the command
without opening the menu. Here's a quick look at how to add access and shortcut keys to existing
menu items:

Add an access key to a menu item Start the Menu Editor. Prefix the access key letter in the
menu item caption with an ampersand (&).
Add a shortcut key to a menu command Start the Menu Editor. Highlight the command in the
menu list box. Pick a key combination from the Shortcut drop-down list box.

Creating Access and Shortcut Keys
You can create access keys and shortcut keys either when you first create your menu commands
or at a later time.

The following illustration shows the menu commands associated with two menus, File and Clock.
Each menu item has an access key ampersand character, and the Time and Date commands are
assigned shortcut keys. See figure below.

-70-

Figure 2: Menu Editor Window showing how to create shortcut keys

5.1.3: Processing Menu Choices
After you place menu items on the menu bar, they become objects in the program. To make the
menu objects do meaningful work, you need to write event procedures for them. Typically, menu
event procedures:

® Contain program statements that display or process information on a form.

® Modify one or more object properties.

For example, the event procedure for a command named Time might use the Time keyword to
display the current system time in a text box.

Processing the selected command might require additional information (you might need to open a
file on disk, for example). If so, you can display a dialog box to receive user input by using a
common dialog box. You’ll learn this technique in the next section.

Disabling a Menu Command
In a typical Windows application, not all menu commands are available at the same time. In a
typical Edit menu, for example, the Paste command is available only when there is data on the
Clipboard. When a command is disabled, it appears in dimmed (gray) type on the menu bar. You
can disable a menu item by:

® Clearing the Enabled check box for that menu item in the Menu Editor.

® Using program code to set the item's Enable property to False. (When you’re ready to use the
menu command again, set its Enable property to True.)

-71-

5.2: Creating Dialog Boxes
A dialog box is simply a form in a program that contains input controls designed to receive
information. To make your programming faster, Visual Basic includes an ActiveX control, named
CommonDialog.

With this control, you can easily display six standard dialog boxes in your programs. These
dialog boxes handle routine tasks such as opening files, saving files, and picking fonts. If the
dialog box you want to use is not included in this ready-made collection of objects, you can create
a new one by adding a second form to your program. This section includes the following topics:

® Using the CommonDialog Control

® Common Dialog Object Event Procedures

5.2.1: Using the Common Dialog Control
Before you can use the CommonDialog control, you need to verify that it is in your toolbox. If you
don’t see the CommonDialog icon, follow this procedure to add it to the toolbox.

 u To add the CommonDialog control to the toolbox

 1. From the Project menu, click Components.

 2. Click the Controls tab.

 3. Ensure that the Selected Items Only box is not checked.

 4. Place a check mark next to Microsoft Common Dialog Control, and then click OK.

Creating a Dialog Box
Follow this procedure to create a dialog box with the CommonDialog control.

 u To create a common dialog object on your form

 1. In the toolbox, double-click the CommonDialog control.

 2. When the common dialog object appears on your form, drag it to an out -of-the-way location.

Note: You cannot resize a common dialog object, and it disappears when your program runs.
The common dialog object itself displays nothing — its only purpose is to display a standard
dialog box on the screen when you use a method in program code to request it.

-72-

Figure 3: A Common Dialog object on a form

This table lists the name and purpose of the six standard dialog boxes that the common dialog
object provides and the methods you use to display them:

Dialog Box Purpose Method

Open Gets the drive, folder name,
and file name for an existing
file that is being opened.

ShowOpen

Save As Gets the drive, folder name,
and file name for a file that is
being saved.

ShowSave

Print Provides user-defined
printing options.

ShowPrinter

Font Provides user-defined font
type and style options.

ShowFont

Help Provides online user
information.

ShowHelp

Color Provides user-defined color
selection from a palette.

ShowColor

-73-

5.2.2: Common Dialog Object event Procedures

To display a standard dialog box in a program, you need to call the common dialog object. You do
this by using the appropriate object method in an event procedure. If necessary, you also use
program code to set one or more common dialog object properties before the call. (For example, if
you are using the Open dialog box, you might want to control what type of files is displayed in the
list box.) Finally, your event procedure needs to process the choices made by the user when they
complete the standard dialog box.

This section presents two simple event procedures, one that manages an Open dialog box and
one that uses information received from a Color dialog box.

The following topics are included in this section:

• Creating an Open Dialog Box

• Creating a Color Dialog Box

5.2.2.1:Creating an Open Dialog Box

The following code window shows an event procedure named mnuOpenItem_Click. You can use
this event procedure to display an Open dialog box when the user clicks the Open command on
the File menu. The event procedure assumes that you have already created a File menu
containing Open and Close commands and that you want to open Windows metafiles (.wmf). See
the piece of code given below.

Private Sub mnuOpenItem_Click()
 CommonDialog1.Filter = "Metafiles (*.WMF)|*.WMF"
 CommonDialog1.ShowOpen
 Image1.Picture = LoadPicture(CommonDialog1.FileName)
 mnuCloseItem.Enabled = True
End Sub

The event procedure uses these properties and methods:

Object Property/Method Purpose

Common Dialog

ShowOpen Displays the dialog box.

Common Dialog

Filter Defines the file type in the
dialog box.

Menu Enabled Enables the Close menu
command, which users can
use to unload the picture.

Image

Picture Opens the selected file.

 -74-

Figure 4:Open Dialog Box

5.2.2.2: Creating a Color Dialog Box

If you need to update the color of a user interface element while your program runs, you can
prompt the user to pick a new color with the Color dialog box displayed by using the Common
Dialog object. The color selections provided by the Color dialog box are controlled by the Flags
property, and the Color dialog box is displayed with the ShowColor method.

This code window shows an event procedure that you can use to change the color of a label while
your program runs. The value used for the Flags property — which in this case prompts Visual
Basic to display a standard palette of color selections — is a hexadecimal (base 16) number. (To
see a list of other potential values for the Flags property, search for CommonDialog constants in
the Visual Basic online Help.) The event procedure assumes that you have already created a
menu command named TextColor with the Menu Editor. See the code given below

Private Sub mnuTextColorItem_Click()
 CommonDialog1.Flags = &H1&
 CommonDialog1.ShowColor
 Label1.ForeColor = CommonDialog1.Color
End Sub

-75-

The figure below shows the color dialog box.

Figure 5: Color Dialog Box

EXERCISE: Creating a File Menu and Common Dialog Object Step by
Step

In this exercise, you use the Menu Editor to create a File menu with Open, Close , and Exit
commands for your program. You also assign access keys and shortcut keys to the commands,
so you can run them from the keyboard.

 u To create a File menu

 1. Start Visual Basic and open a new, standard Visual Basic application.

 2. On the toolbar, click Menu Editor to open the Menu Editor dialog box.

 3. In the Caption text box, type &File.

 4. In the Name text box, type mnuFile, and then click Next.

By placing the & character before the letter F, you specify F as the menu access key.

 u To assign access and shortcut keys

 1. In the Caption text box, type &Open….

 2. In the Name text box, type mnuOpenItem.

 3. To indent the selected (highlighted) command, click the right arrow button.

 4. In the Shortcut drop-down list, click CTRL+O for a shortcut key, and then click Next.

 5. In the Caption text box, type &Close .

 6. In the Name text box, type mnuCloseItem.

 7. In the Shortcut drop-down list, click CTRL+C for a shortcut key, and then click Next.

 8. In the Caption text box, type E&xit.

 9. In the Name text box, type mnuExitItem.

10. In the Shortcut drop-down list, click CTRL+X for a shortcut key, and then click OK.

-76-

u To save your project

1. From the File menu, click Save Project As.

2. Save your form and project to disk under the name “Picture”. Visual Basic will prompt you
for two file names — one for your form file (Picture.frm), and one for your project file
(Picture.vbp).

u To create a common dialog object

1. Verify that the CommonDialog control is in your project toolbox. If it isn't, add it now by
using the Project menu Components command.

2. To add a common dialog object to your form, double-click the CommonDialog control in the
toolbox, and then drag the object to the lower right-hand side of the form.

u To create the image object

1. Click the Image control and create a large image object in the middle of your form.

When you run your program, the image object displays picture files with *.jpg extension on a
form.

2. On the form, click Image1. To restore the Properties window to full size, double-click the
Properties window title bar.

If you cannot see the Properties window, click Properties on the toolbar to display it.

3. Click the Stretch property and set it to True.

When you run your program, Stretch makes the metafile fill the entire image object.

4. On the toolbar, click Save Project to save these changes to your program.

u To write event procedures

1. In the Project window, click View Code , click the Code window Object drop-down list box,
and then click mnuOpenItem.

2. In the mnuOpenItem_Click event procedure, type the following code:

CommonDialog1.Filter = "JPEG FILES (*.JPG)|*.JPG"
CommonDialog1.ShowOpen
Image1.Picture = LoadPicture(CommonDialog1.Filename)
mnuCloseItem.Enabled = True

3. In the Object drop-down list box, click mnuCloseItem, and then type the following code:

Image1.Picture = LoadPicture("")
mnuCloseItem.Enabled = False

4. In the Object drop-down list box, click mnuExitItem, and then type End in the event
procedure.

5. On the toolbar, click Save Project to save your changes.

.

u To run the program

1. On the Visual Basic toolbar, click Start.

Visual Basic loads the program and the form with its File menu.

2. From the File menu, click Open.

3. When the Open dialog box appears, load a picture file from your computer.

The picture selected should appear correctly sized in your image object.

4. From the File menu, click Close .

Your program should clear the picture file and turn off the Close command.

-77-

5. Try using the access keys and the shortcut keys to run the File menu commands. When
you’re finished, click the File menu Exit command.

 Graphics Techniques with Visual Basic

Graphics Methods

• Graphics methods apply to forms and picture boxes (remember a picture box is

like a form within a form). With these methods, we can draw lines, boxes, and
circles. Before discussing the commands that actually perform the graphics
drawing, though, we need to look at two other topics: screen management and
screen coordinates.

• In single program environments (DOS, for example), when something is drawn on

the screen, it stays there. Windows is a multi-tasking environment. If you switch
from a Visual Basic application to some other application, your Visual Basic form
may become partially obscured. When you return to your Visual Basic
application, you would like the form to appear like it did before being covered. All
controls are automatically restored to the screen. Graphics methods drawings
may or may not be restored - we need them to be, though. To accomplish this, we
must use proper screen management.

• The simplest way to maintain graphics is to set the form or picture box's

AutoRedraw property to True. In this case, Visual Basic always maintains a
copy of graphics output in memory (creates persistent graphics). Another way
to maintain drawn graphics is (with AutoRedraw set to False) to put all graphics
commands in the form or picture box's Paint event. This event is called whenever
an obscured object becomes unobscured. There are advantages and
disadvantages to both approaches (beyond the scope of discussion here). For
now, we will assume our forms won't get obscured and, hence, beg off the
question of persistent graphics and using the AutoRedraw property and/or Paint
event.

-83-

• All graphics methods described here will use the default coordinate system:

Note the x (horizontal) coordinate runs from left to right, starting at 0 and extending
to ScaleWidth - 1. The y (vertical) coordinate goes from top to bottom, starting at
0 and ending at ScaleHeight - 1. Points in this coordinate system will always be
referred to by a Cartesian pair, (x, y). Later, we will see how we can use any
coordinate system we want.

ScaleWidth and ScaleHeight are object properties representing the “graphics”
dimensions of an object. Due to border space, they are not the same as the
Width and Height properties. For all measurements in twips (default coordinates),
ScaleWidth is less than Width and ScaleHeight is less than Height. That is, we
can’t draw to all points on the form.

• PSet Method:

To set a single point in a graphic object (form or picture box) to a particular color,
use the PSet method. We usually do this to designate a starting point for other
graphics methods. The syntax is:

ObjectName.PSet (x, y), Color

where ObjectName is the object name, (x, y) is the selected point, and Color is
the point color (discussed in the next section). If the ObjectName is omitted, the
current form is assumed to be the object. If Color is omitted, the object's
ForeColor property establishes the color. PSet is usually used to initialize some
further drawing process.

ScaleWidth
(0, 0)

Scale
Height

y

x

-84-

• Pset Method Example:

This form has a ScaleWidth of 3975 (Width 4095) and a ScaleHeight of 2400
(Height 2805). The command:

PSet (1000, 500)

will have the result:

The marked point (in color ForeColor, black in this case) is pointed to by the
Cartesian coordinate (1000, 500) - this marking, of course, does not appear on
the form. If you want to try this example, and the other graphic methods, put the
code in the Form_Click event. Run the project and click on the form to see the
results (necessary because of the AutoRedraw problem).

• CurrentX and CurrentY:

After each drawing operation, the coordinate of the last point drawn to is
maintained in two Visual Basic system variables, CurrentX and CurrentY. This
way we always know where the next drawing operation will begin. We can also
change the values of these variables to move this last point. For example, the
code:

CurrentX = 1000
CurrentY = 500

is equivalent to:

PSet(1000, 500)

(1000, 500)

4095

3975

2805
2400

-85-

• Line Method:

The Line method is very versatile. We can use it to draw line segments, boxes,
and filled boxes. To draw a line, the syntax is:

ObjectName.Line (x1, y1) - (x2, y2), Color

where ObjectName is the object name, (x1, y1) the starting coordinate, (x2, y2)
the ending coordinate, and Color the line color. Like PSet, if ObjectName is
omitted, drawing is done to the current form and, if Color is omitted, the object’s
ForeColor property is used.

To draw a line from (CurrentX, CurrentY) to (x2, y2), use:

ObjectName.Line - (x2, y2), Color

There is no need to specify the start point since CurrentX and CurrentY are
known.

To draw a box bounded by opposite corners (x1, y1) and (x2, y2), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, B

and to fill that box (using the current FillPattern), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, BF

-86-

• Line Method Examples:

Using the previous example form, the commands:

Line (1000, 500) - (3000, 2000)
Line - (3000, 1000)

draws these line segments:

The command:

Line (1000, 500) - (3000, 2000), , B

draws this box (note two commas after the second coordinate - no color is
specified):

(3000, 2000)

(3000,2000)

(1000, 500)

(1000, 500)

(3000, 1000)

-87-

• Circle Method:

The Circle method can be used to draw circles, ellipses, arcs, and pie slices.
We'll only look at drawing circles - look at on-line help for other drawing modes.
The syntax is:

ObjectName.Circle (x, y), r, Color

This command will draw a circle with center (x, y) and radius r, using Color.

• Circle Example:

With the same example form, the command:

Circle (2000, 1000), 800

produces the result:

• Print Method:

Another method used to 'draw' to a form or picture box is the Print method. Yes,
for these objects, printed text is drawn to the form. The syntax is:

ObjectName.Print [information to print]

Here the printed information can be variables, text, or some combination. If no
object name is provided, printing is to the current form.

Information will print beginning at the object's CurrentX and CurrentY value. The
color used is specified by the object's ForeColor property and the font is
specified by the object's Font characteristics.

(2000, 1000)

800

-88-

• Print Method Example:

The code (can’t be in the Form_Load procedure because of that pesky
AutoRedraw property):

CurrentX=200
CurrentY=200
Print "Here is the line of text"

will produce this result (I’ve used a large font):

• Cls Method:

 To clear the graphics drawn to an object, use the Cls method. The syntax is:

 ObjectName.Cls

 If no object name is given, the current form is cleared. Recall Cls only clears the

lowest of the three display layers. This is where graphics methods draw.

-89-

Using Colors

• Notice that all the graphics methods can use a Color argument. If that argument

is omitted, the ForeColor property is used. Color is actually a hexadecimal (long
integer) representation of color - look in the Properties Window at some of the
values of color for various object properties. So, one way to get color values is to
cut and paste values from the Properties Window. There are other ways, though.

• Symbolic Constants:

Visual Basic offers eight symbolic constants (see Appendix I) to represent
some basic colors. Any of these constants can be used as a Color argument.

Constant Value Color
vbBlack 0x0 Black
vbRed 0xFF Red
vbGreen 0xFF00 Green
vbYellow 0xFFFF Yellow
vbBlue 0xFF0000 Blue
vbMagenta 0xFF00FF Magenta
vbCyan 0xFFFF00 Cyan
vbWhite 0xFFFFFF White

• QBColor Function:

For Microsoft QBasic, GW-Basic and QuickBasic programmers, Visual Basic
replicates the sixteen most used colors with the QBColor function. The color is
specified by QBColor(Index), where the colors corresponding to the Index are:

Index Color Index Color
0 Black 8 Gray
1 Blue 9 Light blue
2 Green 10 Light green
3 Cyan 11 Light cyan
4 Red 12 Light red
5 Magenta 13 Light magenta
6 Brown 14 Yellow
7 White 15 Light (bright) white

-90-

• RGB Function:

The RGB function can be used to produce one of 224 (over 16 million) colors! The
syntax for using RGB to specify the color property is:

RGB(Red, Green, Blue)

where Red, Green, and Blue are integer measures of intensity of the
corresponding primary colors. These measures can range from 0 (least intensity)
to 255 (greatest intensity). For example, RGB(255, 255, 0) will produce yellow.

• Any of these four representations of color can be used anytime your Visual Basic

code requires a color value.

• Color Examples:

frmExample.BackColor = vbGreen
picExample.FillColor = QBColor(3)
lblExample.ForeColor = RGB(100, 100, 100)

-91-

Mouse Events

• Related to graphics methods are mouse events. The mouse is a primary

interface to performing graphics in Visual Basic. We've already used the mouse
to Click and DblClick on objects. Here, we see how to recognize other mouse
events to allow drawing in forms and picture boxes.

• MouseDown Event:

The MouseDown event procedure is triggered whenever a mouse button is
pressed while the mouse cursor is over an object. The form of this procedure is:

Sub ObjectName_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y As Single)
 .
 .
End Sub

The arguments are:

Button Specifies which mouse button was pressed.
Shift Specifies state of Shift, Ctrl, and Alt keys.
X, Y Coordinate of mouse cursor when button was

pressed.

Values for the Button argument are:

Symbolic Constant Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.

Only one button press can be detected by the MouseDown event. Values for the
Shift argument are:

Symbolic Constant Value Description
vbShiftMask 1 Shift key is pressed.
vbCtrlMask 2 Ctrl key is pressed.
vbAltMask 4 Alt key is pressed.

The Shift argument can represent multiple key presses. For example, if Shift = 5
(vbShiftMask + vbAltMask), both the Shift and Alt keys are being pressed when
the MouseDown event occurs.

-92-

• MouseUp Event:

The MouseUp event is the opposite of the MouseDown event. It is triggered
whenever a previously pressed mouse button is released. The procedure outline
is:

Sub ObjectName_MouseUp(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 .
 .
End Sub

The arguments are:

Button Specifies which mouse button was released.
Shift Specifies state of Shift, Ctrl, and Alt keys.
X, Y Coordinate of mouse cursor when button was

released.

The Button and Shift constants are the same as those for the MouseDown event.

-93-

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Single)
Form1.BackColor = vbRed
End Sub

Private Sub Form_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
Form1.BackColor = vbBlue
End Sub

Example(1)

The Button and Shift constants are the same as those for the MouseDown event.
A difference here is that the Button argument can also represent multiple button
presses or no press at all. For example, if Button = 0, no button is pressed as the
mouse is moved. If Button = 3 (vbLeftButton + vbRightButton), both the left and
right buttons are pressed while the mouse is being moved.

-94-

• MouseMove Event:

The MouseMove event is continuously triggered whenever the mouse is being
moved. The procedure outline is:

Sub ObjectName_MouseMove(Button As Integer, Shift As Integer, X As
Single, Y As Single)
 .
 .
End Sub

The arguments are:

Button Specifies which mouse button(s), if any, are pressed.
Shift Specifies state of Shift, Ctrl, and Alt keys
X, Y Current coordinate of mouse cursor

Example(2)
Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
Form1.Cls
Line (100, 100)-(X, Y)
End Sub

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
Line (0, 0)-(X, Y)
End Sub

Example(3)

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
Dim i
For i = 1 To 100
Circle (1000 + X, 1000 + Y), 500, vbRed
Cls
Next i
End Sub

Example(4)

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
Dim i
For i = 1 To 100
Circle (2000, 2000), 100 + i, vbRed
Next i
Circle (2000 + X, 2000 + Y), 100, vbRed
Cls
End Sub

Example(5)

Sequential Files

• In many applications, it is helpful to have the capability to read and write

information to a disk file. This information could be some computed data or
perhaps information loaded into a Visual Basic object.

• Visual Basic supports two primary file formats: sequential and random access.

We first look at sequential files.

• A sequential file is a line-by-line list of data. You can view a sequential file with

any text editor. When using sequential files, you must know the order in which
information was written to the file to allow proper reading of the file.

• Sequential files can handle both text data and variable values. Sequential access

is best when dealing with files that have lines with mixed information of different
lengths. I use them to transfer data between applications.

Sequential File Output (Variables)

• We first look at writing values of variables to sequential files. The first step is to

Open a file to write information to. The syntax for opening a sequential file for
output is:

Open SeqFileName For Output As #N

where SeqFileName is the name of the file to open and N is an integer file
number. The filename must be a complete path to the file.

• When done writing to the file, Close it using:

 Close N

Once a file is closed, it is saved on the disk under the path and filename used to
open the file.

• Information is written to a sequential file one line at a time. Each line of output
requires a separate Basic statement.

-95-

• There are two ways to write variables to a sequential file. The first uses the Write
statement:

 Write #N, [variable list]

where the variable list has variable names delimited by commas. (If the variable
list is omitted, a blank line is printed to the file.) This statement will write one line
of information to the file, that line containing the variables specified in the variable
list. The variables will be delimited by commas and any string variables will be
enclosed in quotes. This is a good format for exporting files to other applications
like Excel.

Example

Dim A As Integer, B As String, C As Single, D As Integer
 .
 .
Open TestOut For Output As #1
Write #1, A, B, C
Write #1, D
Close 1

After this code runs, the file TestOut will have two lines. The first will have the
variables A, B, and C, delimited by commas, with B (a string variable) in quotes.
The second line will simply have the value of the variable D.

• The second way to write variables to a sequential file is with the Print statement:

 Print #N, [variable list]

This statement will write one line of information to the file, that line containing the
variables specified in the variable list. (If the variable list is omitted, a blank line
will be printed.) If the variables in the list are separated with semicolons (;), they
are printed with a single space between them in the file. If separated by commas
(,), they are spaced in wide columns.

-96-

Example

Dim A As Integer, B As String, C As Single, D As Integer
 .
 .
Open TestOut For Output As #1
Print #1, A; Chr(34) + B + Chr(34), C
Print #1, D
Close 1

After this code runs, the file TestOut will have two lines. The first will have the
variables A, B, and C, delimited by spaces. B will be enclosed by quotes
[Chr(34)]. The second line will simply have the value of the variable D.

Quick Example: Writing Variables to Sequential Files

1. Start a new project.

2. Attach the following code to the Form_Load procedure. This code simply writes

a few variables to sequential files.

 Private Sub Form_Load()
 Dim A As Integer, B As String, C As Single, D As Integer
 A = 5
 B = "Visual Basic"
 C = 2.15
 D = -20
 Open "Test1.Txt" For Output As #1
 Open "Test2.Txt" For Output As #2
 Write #1, A, B, C
 Write #1, D
 Print #2, A, B, C
 Print #2, D
 Close 1
 Close 2
 End Sub

3. Run the program. Use a text editor (try the Windows 95 Notepad) to examine the

contents of the two files, Test1.Txt and Test2.Txt. They are probably in the
Visual Basic main directory. Note the difference in the two files, especially how
the variables are delimited and the fact that the string variable is not enclosed in
quotes in Test2.Txt. Save the application, if you want to.

-97-

Sequential File Input (Variables)

• To read variables from a sequential file, we essentially reverse the write

procedure. First, open the file using:

 Open SeqFileName For Input As #N

 where N is an integer file number and SeqFileName is a complete file path. The

file is closed using:

 Close N

• The Input statement is used to read in variables from a sequential file. The

format is:

 Input #N, [variable list]

 The variable names in the list are separated by commas. If no variables are

listed, the current line in the file N is skipped.

• Note variables must be read in exactly the same manner as they were written. So,

using our previous example with the variables A, B, C, and D, the appropriate
statements are:

 Input #1, A, B, C
 Input #1, D

These two lines read the variables A, B, and C from the first line in the file and D
from the second line. It doesn’t matter whether the data was originally written to
the file using Write or Print (i.e. commas are ignored).

-98-

Quick Example: Reading Variables from Sequential Files

1. Start a new project or simply modify the previous quick example.

2. Attach the following code to the Form_Load procedure. This code reads in files

created in the last quick example.

 Private Sub Form_Load()
 Dim A As Integer, B As String, C As Single, D As Integer
 Open "Test1.Txt" For Input As #1
 Input #1, A, B, C
 Debug.Print "A="; A
 Debug.Print "B="; B
 Debug.Print "C="; C
 Input #1, D
 Debug.Print "D="; D
 Close 1
 End Sub

 Note the Debug.Print statements and how you can add some identifiers (in

quotes) for printed information.

3. Run the program. Look in the debug window and note the variable values. Save

the application, if you want to.

-99-

Writing and Reading Text Using Sequential Files

• In many applications, we would like to be able to save text information and retrieve

it for later reference. This information could be a text file created by an
application or the contents of a Visual Basic text box.

• Writing Text Files:

 To write a sequential text file, we follow the simple procedure: open the file, write

the file, close the file. If the file is a line-by-line text file, each line of the file is
written to disk using a single Print statement:

 Print #N, Line

 where Line is the current line (a text string). This statement should be in a loop

that encompasses all lines of the file. You must know the number of lines in your
file, beforehand.

 If we want to write the contents of the Text property of a text box named

txtExample to a file, we use:

 Print #N, txtExample.Text

 Example

 We have a text box named txtExample. We want to save the contents of the Text

property of that box in a file named MyText.ned on the c: drive in the \MyFiles
directory. The code to do this is:

 Open “c:\MyFiles\MyText.ned” For Output As #1
 Print #1, txtExample.Text
 Close 1

 The text is now saved in the file for later retrieval.

• Reading Text Files:

 To read the contents of a previously-saved text file, we follow similar steps to the

writing process: open the file, read the file, close the file. If the file is a text file, we
read each individual line with the Line Input command:

 Line Input #1, Line

-100-

 This line is usually placed in a Do/Loop structure that is repeated untill all lines of
the file are read in. The EOF() function can be used to detect an end-of-file
condition, if you don’t know, a prioiri, how many lines are in the file.

 To place the contents of a file opened with number N into the Text property of a

text box named txtExample we use the Input function:

 txtExample.Text = Input(LOF(N), N)

 This Input function has two arguments: LOF(N), the length of the file opened as N
and N, the file number.

 Example

 We have a file named MyText.ned stored on the c: drive in the \MyFiles directory.

We want to read that text file into the text property of a text box named
txtExample. The code to do this is:

 Open “c:\MyFiles\MyText.ned” For Input As #1
 txtExample.Text = Input(LOF(1), 1)
 Close 1

 The text in the file will now be displayed in the text box.

-101-

Timer Tool and Delays

· Many times, especially in using graphics, we want to repeat certain operations at
regular intervals. The timer tool allows such repetition. The timer tool does not
appear on the form while the application is running.
· Timer tools work in the background, only being invoked at time intervals you specify.
This is multi- tasking - more than one thing is happening at a time.
· Timer Properties:
Enabled Used to turn the timer on and off. When on, it
continues to operate until the Enabled property is set to
False.
Interval Number of milliseconds between each invocation of the
Timer Event.
· Timer Events:
The timer tool only has one event, Timer. It has the form:

-102-

Sub TimerName_Timer()
..
End Sub
This is where you put code you want repeated every Interval seconds.
· Timer Example:
To make the computer beep every second, no matter wha t else is going on, you add a
timer tool (named timExample) to the form and set the Interval property to 1000.
That timer tool's event procedure is then:
Sub timExample_Timer()
Beep
End Sub
· In complicated applications, many timer tools are often used to control numerous
simultaneous operations. With experience, you will learn the benefits and advantages
of using timer tools.
· Simple Delays:
If you just want to use a simple delay in your Visual Basic application, you might
want to consider the Timer function. This is not related to the Timer tool. The
Timer function simply returns the number of seconds elapsed since midnight.
To use the Timer function for a delay of Delay seconds (the Timer function seems to
be accurate to about 0.1 seconds, at best), use this code segment:
Dim TimeNow As Single
..
TimeNow = Timer
Do While Timer - TimeNow < Delay
Loop
One drawback to this kind of coding is that the application cannot be interrupted
while in the Do loop. So, keep delays to small values
.
Animation Techniques
· One of the more fun things to do with Visual Basic programs is to create animated
graphics. We'll look at a few simple animation techniques here. I'm sure you'll
come up with other ideas for animating your application.
· One of the simplest animation effects is achieved by toggling between two images.
For example, you may have a picture of a stoplight with a red light. By quickly
changing this picture to one with a green light, we achieve a dynamic effect -
animation. Picture boxes and image boxes are used to achieve this effect.
· Another approach to animation is to rotate through several pictures - each a slight
change in the previous picture - to obtain a longer animation. This is the principle
motion pictures are based on - pictures are flashed by us at 24 frames per second and
our eyes are tricked into believing things are smoothly moving. Control arrays are
usually used to achieve this type of animation.
· More elaborate effects can be achieved by moving an image while, at the same, time
changing the displayed picture. Effects such as a little guy walking across the screen
are easily achieved. An object is moved using the Move method. You can do both
absolute and relative motion (using an object's Left and Top properties).

For examp le, to move a picture box named picExample to the coordinate (100, 100),

-103-

use:
picExample.Move 100, 100
To move it 20 twips to the right and 50 twips down, use:
picExample.Move picExample.Left + 20, picExample.Top + 50

Random Numbers (Revisited) and Games
· Another fun thing to do with Visual Basic is to create games. You can write games
that you play against the computer or against another opponent.
· To introduce chaos and randomness in games, we use random numbers. Random
numbers are used to have the computer roll a die, spin a roulette wheel, deal a deck of
cards, and draw bingo numbers. Visual Basic develops random numbers using its
built- in random number generator.
· Randomize Statement:
The random number generator in Visual Basic must be seeded. A Seed value
initializes the generator. The Randomize statement is used to do this:
Randomize Seed
If you use the same Seed each time you run your application, the same sequence of
random numbers will be generated. To insure you get different numbers every time
you use your application (preferred for games), use the Timer function to seed the
generator:
Randomize Timer
With this, you will always obtain a different sequence of random numbers, unless you
happen to run the application at exactly the same time each day.
· Rnd Function:
The Visual Basic function Rnd returns a single precision, random number between 0
and 1 (actually greater than or equal to 0 and less than 1). To produce random
integers (I) between Imin and Imax (again, what we usually do in games), use the
formula:
I = Int((Imax - Imin + 1) * Rnd) + Imin
· Rnd Example:
To roll a six-sided die, the number of spots would be computed using:
NumberSpots = Int(6 * Rnd) + 1
To randomly choose a number between 100 and 200, use:
Number = Int(101 * Rnd) + 100

Randomly Sorting N Integers
· In many games, we have the need to randomly sort a number of intege rs. For
example, to shuffle a deck of cards, we sort the integers from 1 to 52. To randomly
sort the state names in a states/capitals game, we would randomize the values from 1
to 50.
· Randomly sorting N integers is a common task. Here is a ‘self-documenting’ general
procedure that does that task. Calling arguments for the procedure are N (the largest
integer to be sorted) and an array, NArray, dimensioned to N elements. After calling
the routine N_Integers , the N randomly sorted integers are returned in NArray. Note
the procedure randomizes the integers from 1 to N, not 0 to N - the zeroth array
element is ignored.
Private Sub N_Integers(N As Integer, Narray() As Integer)

-104-

'Randomly sorts N integers and puts results in Narray
Dim I As Integer, J As Integer, T As Integer
'Order all elements initially
For I = 1 To N: Narray(I) = I: Next I
'J is number of integers remaining
For J = N to 2 Step -1
I = Int(Rnd * J) + 1
T = Narray(J)
Narray(J) = Narray(I)
Narray(I) = T
Next J
End Sub

 SOUNDS AND MULTIMEDIA

More Elaborate Sounds
· Beeps are nice, but many times you want to play more elaborate sounds. Most
sounds you hear played in Windows applications are saved in WAV files (files with
WAV extensions). These are the files formed when you record using one of the many
sound recorder programs available.
· WAV files are easily played using DLL functions. There is more than one way to
play such a file. We’ll use the sndPlaySound function. This is a long function that
requires two arguments, a string argument with the name of the WAV file and a long
argument indicating how to play the sound. The usage syntax is:
Dim WavFile As String, SndType as Long, RtnValue as Long
...
RtnValue = sndPlayso und(WavFile, SndType)
· SndType has many possible values. We’ll just look at two:
SND_SYNC - Sound is played to completion, then execution continues
SND_ASYNC- Execution continues as sound is played
Quick Example 7 - Playing WAV Files
1. Start a new application. Add a command button and a common dialog box. Copy
and paste the sndPlaySound Declare statement from the API Text Viewer program
into your application. Also copy the SND_SYNC and SND_ASYNC constants.
When done copying and making necessary scope modifications, you should have:
Private Declare Function sndPlaySound Lib "winmm.dll" Alias
"sndPlaySoundA" (ByVal lpszSoundName As String, ByVal
uFlags As Long) As Long
Private Const SND_ASYNC = &H1
Private Const SND_SYNC = &H0
2. Add this code to the Command1_Click procedure:
Private Sub Command1_Click()
Dim RtnVal As Integer
'Get name of .wav file to play
CommonDialog1.Filter = "Sound Files|*.wav"
CommonDialog1.ShowOpen

-105-

RtnVal = sndPlaySound(CommonDialog1.filename, SND_SYNC)
End Sub

٤. Run the application. Find a WAV file and listen to the lovely results.

Playing Sounds Quickly
· Using the sndPlaySound function in the previous example requires first opening a
file, then playing the sound. If you want quick sounds, say in games, the loading
procedure could slow you down quite a bit. What would be nice would be to have a
sound file ‘saved’ in some format that could be played quickly. We can do that!
· What we will do is open the sound file (say in the Form_Load procedure) and write
the file to a string variable. Then, we just use this string variable in place of the file
name in the sndPlaySound argument list. We also need to ‘Or’ the SndType
argument with the constant SND_MEMORY (this tells sndPlaySound we are playing
a sound from memory as opposed to a WAV file). This technique is borrowed from
“Black Art of Visual Basic Game Programming,” by Mark Pruett, published by The
Waite Group in 1995. Sounds played using this technique must be short sounds (less
than 5 seconds) or mysterious results could ha ppen.

A Bit of Multimedia
· The computer of the 90’s is the multimedia computer (graphics, sounds, video).
Windows provides a set of rich multimedia functions we can use in our Visual Basic
applications. Of course, to have access to this power, we use the API. We’ll briefly
look at using the API to play video files with the AVI (audio - visual interlaced)
extension.
· In order to play AVI files, your computer needs to have software such as Video for
Windows (from Microsoft) or QuickTime for Windows (from Apple) loaded on your
machine. When a video is played from Visual Basic, a new window is opened with
the title of the video file shown. When the video is complete, the window is
automatically closed.
· The DLL function mciExecute is used to play video files (note it will also play WAV
files). The syntax for using this function is:
Dim RtnValue as Long
..
RtnValue = mciExecute (Command)
where Command is a string argument consisting of the keyword ‘Play’ concatenated
with the complete pathname to the desired file.
Quick Example 12 - Multime dia Sound and Video
1. Start a new application. Add a command button and a common dialog box. Copy
and paste the mciExecute Declare statement from the API Text Viewer program into
your application. It should read:
Private Declare Function mciExecute Lib "winmm.dll" (ByVal
lpstrCommand As String) As Long
2. Add this code to the Command1_Click procedure:
Private Sub Command1_Click()
Dim RtnVal As Long
'Get name of .avi file to play
CommonDialog1.Filter = "Video Files|*.avi"
CommonDialog1.ShowOpen

-106-

RtnVal = mciExecute("play " + CommonDialog1.filename)
End Sub
3. Run the application. Find a AVI file and see and hear the lovely results

Multimedia Control
· The multimedia control allows you to manage Media Control Interface (MCI)
devices. These devices include: sound boards, MIDI sequencers, CD-ROM drives,
audio players, videodisc players, and videotape recorders and players. This control is
loaded by selecting the Microsoft Multimedia Control from the Components dialog
box.
· The primary use for this control is:
à To manage the recording and playback of MCI devices. This
includes the ability to play CD’s, record WAV files, and playback
WAV files.
· When placed on a form, the multimedia control resembles the buttons you typically
see on a VCR:
You should recognize buttons such as Play, Rewind, Pause, etc.

 ADVANCE KEYS , MASHED EDIT CONTROL, CHART , RICH TEXT BOX AND SLIDER

Masked Edit Control
· The masked edit control is used to prompt users for data input using a mask pattern.
The mask allows you to specify exactly the desired input format. With a mask, the
control acts like a standard text box. This control is loaded by selecting the
Microsoft Masked Edit Control from the Components dialog box.
· Possible uses for this control include:
à To prompt for a date, a time, number, or currency value.
à To prompt for something that follows a pattern, like a phone number
or social security number.
à To format the display and printing of mask input data.
· Masked Edit Properties:
Mask Determines the type of information that is input into
the control. It uses characters to define the type of
input (see on-line help for complete descriptions).
Text Contains data entered into the control (including all
prompt characters of the input mask).
· Masked Edit Events:
Change Event called when the data in the control changes.
Validation Error Event called when the data being entered by the
user does not match the input mask
· Programming the Multimedia Control:
The multimedia control uses a set of high- level, device-independent commands,
known as MCI (media control interface) commands, to control various multimedia
devices. Our example will show you what these commands look like. You are

-107-

encouraged to further investigate the control (via on- line help) for further functions.
· Multimedia Control Example:
We’ll use the multimedia control to build a simple audio CD player. Put a
multimedia control on a form. Place the following code in the Form_Load Event:
Private Sub Form_Load()
'Set initial properties
Form1.MMControl1.Notify = False
Form1.MMControl1.Wait = True
Form1.MMControl1.Shareable = False
Form1.MMControl1.DeviceType = "CDAudio"
'Open the device
Form1.MMControl1.Command = "Open"
End Sub
This code initializes the device at run time. If an audio CD is loaded into the CD
drive, the appropriate buttons on the Multimedia control are enabled:

This button enabling is an automatic process - no coding is necessary. Try playing a
CD with this example and see how the button status changes.

Rich Textbox Control
· The rich textbox control allows the user to enter and edit text, providing more
advanced formatting features than the conventional textbox control. You can use
different fonts for different text sections. You can even control indents, hanging
indents, and bulleted paragraphs. This control is loaded by selecting the Microsoft
Rich Textbox Control from the Components dialog box.
· Possible uses for this control include:
à Read and view large text files.
à Implement a full-featured text editor into any applications.
· Rich Textbox Properties, Events, and Methods:
Most of the properties, events, and methods associated with the conventional textbox
are available with the rich text box. A major difference between the two controls is
that with the rich textbox, multiple font sizes, styles, and colors are supported. Some
unique properties of the rich textbox are:
FileName Can be used to load the contents of a .txt or .rtf file
into the control.
SelFontName Set the font name for the selected text.
SelFontSize Set the font size for the selected text.
SelFontColor Set the font color for the selected text.
Some unique methods of the rich textbox are:
LoadFile Open a file and load the contents into the control.
SaveFile Save the control contents into a file.
· Rich Textbox Example:
Put a rich textbox control on a form. Put a combo box on the form (we will use this
to display the fonts available for use). Use the following code in the Form_Load

-108-

event:
Private Sub Form_Load()
Dim I As Integer
For I = 0 To Screen.FontCount - 1
Combo1.AddItem Screen.Fonts(I)
Next I
End Sub

Use the following code in the Combo1_Click event:
Private Sub Combo1_Click()
RichTextBox1.SelFontName = Combo1.Text
End Sub
Run the application. Type some text. Highlight text you want to change the font on.
Go to the combo box and select the font. Notice that different areas within the text
box can have different fonts:

Slider Control
· The slider control is similar to a scroll bar yet allows the ability to select a range of
values, as well as a single value. This control is part of a group of controls loaded by
selecting the Microsoft Windows Common Controls from the Components dialog
box.
· Possible uses for this control include:
à To set the value of a point on a graph.
à To select a range of numbers to be passed into an array.
à To resize a form, field, or other graphics object
· Slider Control Properties:
Value Current slider value.
Min, Max Establish upper and lower slider limits.
TickFrequency Determines how many ticks appear on slider.
TickStyle Determines how and where ticks appear.
SmallChange Amount slider value changes when user presses left
or right arrow keys.
LargeChange Amount slider value changes when user clicks the
slider or presses PgUp or PgDn arrow keys.
SelectRange Enable selecting a range of values.
SelStart Starting selected value.
SelLength Length of select range of values.

-109-

Form under the Insert menu. Each form is designed using exactly the same
procedure we always use: draw the controls, assign properties, and write code.
Display of the different forms is handled by code you write. You need to decide
when and how you want particular forms to be displayed. The user always interacts
with the ‘active’ form.
· The first decision you need to make is to determine which form will be your startup
form. This is the form that appears when your application first begins. The startup
form is designated using the Project Properties window, activated using the Visual
Basic Project menu

· As mentioned, the startup form automatically loads when your application is run.
When you want another form to appear, you write code to load and display it.
Similarly, when you want a form to disappear, you write code to unload or hide it.
This form management is performed using various keywords :
Keyword Task
Load Loads a form into memory, but does not display it.
Show vbModeless Loads (if not already loaded) and displays a modeless
form (default Show form style).
Show vbModal Loads (if not already loaded) and displays a modal form.
Hide Sets the form’s Visible property to False. Form remains
in memory.
Unload Hides a form and removes it from memory.
A modeless form can be left to go to other forms. A modal form must be closed
before going to other forms. The startup form is modeless.
Examples
Load Form1 ‘ Loads Form1 into memory, but does not display it
Form1.Show ‘ Loads (if needed) and shows Form1 as modeless
Form1.Show vbModal ‘ Loads (if needed) and shows Form1 as modal.
Form1.Hide ‘ Sets Form1’s Visible property to False

-110-

 Multiple Form Visual Basic Applications

· All applications developed in this class use a single form. In reality, most Visual
Basic applications use multiple forms . The About window associated with most
applications is a common example of using a second form in an application. We need
to learn how to manage multiple forms in our projects.
· To add a form to an application, click the New Form button on the toolbar or select

Hide ‘ Hides the current form
Unload Form1 ‘ Unloads Form1 from memory and hides it.
· Hiding a form allows it to be recalled quickly, if needed. Hiding a form retains any
data attached to it, including property values, print output, and dynamically created
controls. You can still refer to properties of a hidden form. Unload a form if it is not
needed any longer, or if memory space is limited.
· If you want to speed up display of forms and memory is not a problem, it is a good
idea to Load all forms when your application first starts. That way, they are in
memory and available for fast recall.
· Multiple Form Example:
Start a new application. Put two command buttons on the form (Form1). Set one’s
Caption to Display Form2 and the other’s Caption to Display Form3. The form
will look like this

Attach this code to the two command buttons Click events.
Private Sub Command1_Click()
Form2.Show vbModeless
End Sub
Private Sub Command2_Click()
Form3.Show vbModal
End Sub
Add a second form to the application (Form2). This form will be modeless. Place a
command button on the form. Set its Caption to Hide Form.

Attach this code to the button’s Click event.
Private Sub Command1_Click()
Form2.Hide
Form1.Show
End Sub
Add a third form to the application (Form3). This form will be modal. Place a
command button on the form. Set its Caption to Hide Form

-111-

Attach this code to the button’s Click event.
Private Sub Command1_Click()
Form3.Hide
Form1.Show
End Sub
Make sure Form1 is the startup form (check the Project Properties window under
the Project menu). Run the application. Note the difference between modal (Form3)
and modeless (Form2) forms.

-112-

